
Algebraic Codes for
Data Transmission

Richard E. Blahut
Henry Magnuski Professor in Electrical and Computer Engineering,
University of Illinois at Urbana – Champaign

published by the press syndicate of the university of cambridge
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambridge university press
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

TypefacesTimes 10.5/14 pt and Helvetica Neue SystemLATEX2ε [tb]

A catalogue record for this book is available from the British Library

ISBN 0 521 55374 1 hardback

Contents

Preface pagexi

1 Introduction 1

1.1 The discrete communication channel 2
1.2 The history of data-transmission codes 4
1.3 Applications 6
1.4 Elementary concepts 7
1.5 Elementary codes 14
Problems 17

2 Introduction to Algebra 20

2.1 Fields of characteristic two 20
2.2 Groups 23
2.3 Rings 28
2.4 Fields 30
2.5 Vector spaces 32
2.6 Linear algebra 37
Problems 45
Notes 48

3 Linear Block Codes 49

3.1 Structure of linear block codes 49
3.2 Matrix description of linear block codes 50
3.3 Hamming codes 54
3.4 The standard array 56

v

vi Contents

3.5 Hamming spheres and perfect codes 59
3.6 Simple modifications to a linear code 62
Problems 63
Notes 66

4 The Arithmetic of Galois Fields 67

4.1 The integer ring 67
4.2 Finite fields based on the integer ring 70
4.3 Polynomial rings 72
4.4 Finite fields based on polynomial rings 79
4.5 Primitive elements 83
4.6 The structure of finite fields 86
Problems 92
Notes 95

5 Cyclic Codes 96

5.1 Viewing a code from an extension field 96
5.2 Polynomial description of cyclic codes 99
5.3 Minimal polynomials and conjugates 104
5.4 Matrix description of cyclic codes 111
5.5 Hamming codes as cyclic codes 113
5.6 Cyclic codes for correcting double errors 116
5.7 Quasi-cyclic codes and shortened cyclic codes 118
5.8 The Golay code as a cyclic code 119
5.9 Cyclic codes for correcting burst errors 123
5.10 The Fire codes as cyclic codes 125
5.11 Cyclic codes for error detection 127
Problems 128
Notes 130

6 Codes Based on the Fourier Transform 131

6.1 The Fourier transform 131
6.2 Reed–Solomon codes 138

vii Contents

6.3 Conjugacy constraints and idempotents 143
6.4 Spectral description of cyclic codes 148
6.5 BCH codes 152
6.6 The Peterson–Gorenstein–Zierler decoder 159
6.7 The Reed–Muller codes as cyclic codes 166
6.8 Extended Reed–Solomon codes 169
6.9 Extended BCH codes 172
Problems 175
Notes 177

7 Algorithms Based on the Fourier Transform 179

7.1 Spectral estimation in a finite field 179
7.2 Synthesis of linear recursions 183
7.3 Decoding of binary BCH codes 191
7.4 Decoding of nonbinary BCH codes 193
7.5 Decoding with erasures and errors 201
7.6 Decoding in the time domain 206
7.7 Decoding within the BCH bound 210
7.8 Decoding beyond the BCH bound 213
7.9 Decoding of extended Reed–Solomon codes 216
7.10 Decoding with the euclidean algorithm 217
Problems 223
Notes 226

8 Implementation 228

8.1 Logic circuits for finite-field arithmetic 228
8.2 Shift-register encoders and decoders 235
8.3 The Meggitt decoder 237
8.4 Error trapping 244
8.5 Modified error trapping 250
8.6 Architecture of Reed–Solomon decoders 254
8.7 Multipliers and inverters 258
8.8 Bit-serial multipliers 262
Problems 267
Notes 269

viii Contents

9 Convolutional Codes 270

9.1 Codes without a block structure 270
9.2 Trellis description of convolutional codes 273
9.3 Polynomial description of convolutional codes 278
9.4 Check matrices and inverse matrices 282
9.5 Error correction and distance notions 287
9.6 Matrix description of convolutional codes 289
9.7 The Wyner–Ash codes as convolutional codes 291
9.8 Syndrome decoding algorithms 294
9.9 Convolutional codes for correcting error bursts 298
9.10 Algebraic structure of convolutional codes 303
Problems 309
Notes 311

10 Beyond BCH Codes 313

10.1 Product codes and interleaved codes 314
10.2 Bicyclic codes 318
10.3 Concatenated codes 321
10.4 Cross-interleaved codes 323
10.5 Turbo codes 326
10.6 Justesen codes 329
Problems 332
Notes 334

11 Codes and Algorithms Based on Graphs 335

11.1 Distance, probability, and likelihood 336
11.2 The Viterbi algorithm 340
11.3 Sequential algorithms to search a trellis 343
11.4 Trellis description of linear block codes 350
11.5 Gallager codes 354
11.6 Tanner graphs and factor graphs 355
11.7 Posterior probabilities 357
11.8 The two-way algorithm 359
11.9 Iterative decoding of turbo codes 362

ix Contents

11.10 Tail-biting representations of block codes 364
11.11 The Golay code as a tail-biting code 368
Problems 372
Notes 374

12 Performance of Error-Control Codes 375

12.1 Weight distributions of block codes 375
12.2 Performance of block codes 383
12.3 Bounds on minimum distance of block codes 386
12.4 Binary expansions of Reed–Solomon codes 394
12.5 Symbol error rates on a gaussian-noise channel 399
12.6 Sequence error rates on a gaussian-noise channel 403
12.7 Coding gain 406
12.8 Capacity of a gaussian-noise channel 411
Problems 414
Notes 416

13 Codes and Algorithms for Majority Decoding 418

13.1 Reed–Muller codes 418
13.2 Decoding by majority vote 426
13.3 Circuits for majority decoding 430
13.4 Affine permutations for cyclic codes 433
13.5 Cyclic codes based on permutations 437
13.6 Convolutional codes for majority decoding 441
13.7 Generalized Reed–Muller codes 442
13.8 Euclidean-geometry codes 447
13.9 Projective-geometry codes 456
Problems 460
Notes 461

Bibliography 463
Index 473

1 Introduction

A profusion and variety of communication systems, which carry massive amounts of
digital data between terminals and data users of many kinds, exist today. Alongside
these communication systems are many different magnetic tape storage systems, and
magnetic andoptical disk storage systems. The received signal in any communication or
recording system is always contaminated by thermal noise and, in practice, may also be
contaminated by various kinds of defects, nongaussian noise, burst noise, interference,
fading, dispersion, cross talk, and packet loss. The communication system or storage
system must transmit its data with very high reliability in the presence of these channel
impairments. Bit error rates as small as one bit error in 1012 bits (or even smaller) are
routinely specified.

Primitive communication and storage systems may seek to keep bit error rates small
by the simple expedient of transmitting high signal power or by repeating the message.
These simplistic techniques may be adequate if the required bit error rate is not too
stringent, or if the data rate is low, and if errors are caused by noise rather than by defects
or interference. Such systems, however, buy performance with the least expendable
resources: Power and bandwidth.

In contrast, modern communication and storage systems obtain high performance
via the use of elaborate message structures with complex cross-checks built into the
waveform. The advantage of these modern communication waveforms is that high
data rates can be reliably transmitted while keeping the transmitted power and spectral
bandwidth small. This advantage is offset by the need for sophisticated computations
in the receiver (and in the transmitter) to recover the message. Such computations,
however, are now regarded as affordable by using modern electronic technology. For
example, current telephone-line data modems use microprocessors in the demodulator
with well over 500 machine cycles of computation per received data bit. Clearly, with
this amount of computation in the modem, the waveforms may have a very sophis-
ticated structure, allowing each individual bit to be deeply buried in the waveform.
In some systems it may be impossible to specify where a particular user bit re-
sides in the channel waveform; the entire message is modulated into the channel
waveform as a package, and an individual bit appears in a diffuse but recoverable
way.

2 Introduction

The data-transmission codes described in this book are codes used for the prevention
of error. The phrase “prevention of error” has a positive tone that conveys the true role
such codes have in modern systems. The more neutral term, “error-control code,” is
also suitable. The older and widespread term, “error-correcting code,” is used as well,
but suffers from the fact that it has a negative connotation. It implies that the code is
used only to correct an unforeseen deficiency in the communication system whereas, in
modern practice, the code is an integral part of any high-performance communication
or storage system. Furthermore, in many applications, the code is so tightly integrated
with the demodulation that the point within the system where the errors occur and are
corrected is really notvisible to any external observer. It is a better description to say
that the errors are prevented because the preliminary estimates of the data bits within the
receiver are accompanied by extra information that cross-checks these data bits. In this
sense, the errors never really happen because they are eliminated when the preliminary
estimate of the datastream is replaced by the final estimate of the datastream that is
given to the user.

1.1 The discrete communication channel

A communication system connects a data source to a data user through a channel.
Microwave links, coaxial cables, telephone circuits, and even magnetic and optical
disks are examples of channels. A discrete communication channel may transmit binary
symbols, or symbols in an alphabet of size 2m, or even symbols in an alphabet of sizeq
whereq is not a power of 2. Indeed, digital communication theory teaches that discrete
channels using a larger symbol alphabet are usually more energy efficient than channels
that use a binary alphabet.

The designer of the communication system develops devices that prepare the code-
stream for the input to the discrete channel and process the output of the discrete channel
to recover the user’s datastream. Although user data may originate as a sequence of
bits, within the communication system it is often treated as a sequence of symbols. A
symbol may consist of eight bits; then it is called abyte. In other cases, a communication
system may be designed around a symbol ofr bits for some value ofr other than eight;
the symbol then is called anr -bit symbol. The choice of symbol structure within the
communication system is transparent to the user because the datastream is reformatted
at the input and output of the communication system.

A datastreamis a sequence of data symbols, which could be bits, bytes, or other
symbols at the input of an encoder. Acodestreamis a sequence of channel symbols,
which could be bits, bytes, or other symbols at the output of an encoder. The user
perceives that the datastream is being sent through the channel, but what is actually
sent is the codestream.

The encoder maps the datastream into the codestream. Codes are of two types: block
codes and tree codes. The distinction between them is based on the way that data

3 1.1 The discrete communication channel

Figure 1.1. Block diagram of a digital communication system

memory is used in the encoder. For constructing the codestream, additional structure is
defined on the datastream by segmenting it into pieces calleddatawordsordataframes.
Likewise, the codestream is segmented into pieces calledcodewordsor codeframes.
The codewords or codeframes are serially concatenated to form the codestream.

It is traditional to partition themajor functionsof thedigital communication systemas
in the block diagram of Figure 1.1. Data, which enters the communication system from
the data source, is first processed by a source encoder designed to represent the source
data more compactly. This interim representation is a sequence of symbols called the
source codestream. The source codestream becomes the input datastream to the channel
encoder, which transforms the sequence of symbols into another sequence called the
channel codestream. The channel codestream is a new, longer sequence that has more
redundancy than the source codestream. Each symbol in the channel codestream might
be represented by a bit, or perhaps by a group of bits. Next, the modulator converts
each symbol of the channel codestream into a corresponding symbol from a finite set
of symbols known as the channel alphabet. This sequence of analog symbols from the
channel alphabet is transmitted through the channel.

Because the channel is subject to various types of noise, distortion, and interference,
the channel output differs from the channel input. The demodulator may convert the re-
ceived channel output signal into a sequence of the symbols of the channel codestream.
Then each demodulated symbol is a best estimate of that code symbol, though the
demodulator may make some errors because of channel noise. The demodulated se-
quence of symbols is called thesensewordor the received word. Because of errors,
the symbols of the senseword do not always match those of the channel codestream.
The channel decoder uses the redundancy in the channel codestream to correct the errors

4 Introduction

in the received word and then produces an estimate of the user datastream. If all errors
are corrected, the estimated user datastream matches the original user datastream. The
source decoder performs the inverse operation of the source encoder and delivers its
output datastream to the user.

Alternatively, some functions of the demodulator may be moved into the channel
decoder in order to improve performance. Then the demodulator need not make hard
decisions on individual code symbols but may give the channel decoder something
closer to the raw channel data.

This book deals only with the design of the channel encoder and decoder, a subject
known as the subject oferror-control codes, or data-transmission codes, or perhaps,
error-prevention codes. The emphasis is on the algebraic aspects of the subject; the
interplay between algebraic codes and modulation is treated only lightly. The data
compression or data compaction functions performed by the source encoder and source
decoder are not discussed within this book, nor are the modulator and the demodulator.
The channel encoder and the channel decoder will be referred to herein simply as the
encoder and the decoder, respectively.

1.2 The history of data-transmission codes

The history of data-transmission codes began in 1948 with the publication of a famous
paper by Claude Shannon. Shannon showed that associated with any communication
channel or storage channel is a numberC (measured in bits per second), called the
capacityof the channel, which has the following significance. Whenever the informa-
tion transmission rateR (in bits per second) required of a communication or storage
system is less thanC then, by using a data-transmission code, it is possible to design a
communication system for the channel whose probability of output error is as small as
desired. In fact, an important conclusion from Shannon’s theory of information is that
it is wasteful to make the raw error rate from an uncoded modulator–demodulator too
good; it is cheaper and ultimately more effective to use a powerful data-transmission
code.

Shannon, however, did not tell us how to find suitable codes; his contribution was to
prove that they exist and to define their role. Throughout the 1950s, much effort was
devoted to finding explicit constructions for classes of codes that would produce the
promised arbitrarily small probability of error, but progress was meager. In the 1960s,
for the most part, there was less obsession with this ambitious goal; rather, coding
research began to settle down to a prolonged attack along two main avenues.

The first avenue has a strong algebraic flavor and is concerned primarily with block
codes. The first block codes were introduced in 1950 when Hamming described a class
of single-error-correcting block codes. Shortly thereafter Muller (1954) described a
class of multiple-error-correcting codes and Reed (1954) gave a decoding algorithm
for them. The Hamming codes and the Reed–Muller codes were disappointingly weak

5 1.2 The history of data-transmission codes

compared with the far stronger codes promised by Shannon. Despite diligent research,
no better class of codes was found until the end of the decade. During this period,
codes of short blocklength were found, but without any general theory. The major
advances came when Bose and Ray-Chaudhuri (1960) and Hocquenghem (1959) found
a largeclassofmultiple-error-correcting codes (theBCHcodes), andReedandSolomon
(1960) and, independently, Arimoto (1961) found a related class of codes for nonbinary
channels. Although these remain among the most important classes of codes, the theory
of the subject since that time has been greatly strengthened, and new codes continue to
be discovered.

The discovery of BCH codes led to a search for practical methods of designing the
hardware or software to implement the encoder and decoder. The first good algorithm
was found by Peterson (1960). Later, a powerful algorithm for decoding was discovered
by Berlekamp (1968) and Massey (1969), and its implementation became practical
as new digital technology became available. Now many varieties of algorithms are
available to fit different codes and different applications.

The second avenue of coding research has a more probabilistic flavor. Early research
was concerned with estimating the error probability for the best family of block codes
despite the fact that the best codes were not known. Associated with these studies were
attempts to understand encoding and decoding from a probabilistic point of view, and
theseattempts led to thenotionof sequential decoding.Sequential decoding required the
introduction of a class of nonblock codes of indefinite length, which can be represented
by a tree and can be decoded by algorithms for searching the tree. The most useful
tree codes are highly structured codes calledconvolutional codes. These codes can be
generated by a linear shift-register circuit that performs a convolution operation on the
data sequence. Convolutional codes were successfully decoded by sequential decoding
algorithms in the late 1950s. It is intriguing that the Viterbi algorithm, a much simpler
algorithm for decoding them, was not developed until 1967. The Viterbi algorithm
gained widespread popularity for convolutional codes of modest complexity, but it is
impractical for stronger convolutional codes.

During the 1970s, these two avenues of research began to draw together in some ways
and to diverge further in others. Development of the algebraic theory of convolutional
codes was begun by Massey and Forney, who brought new insights to the subject of
convolutional codes. In the theory of block codes, schemes were proposed to construct
good codesof longblocklength.Concatenated codeswere introducedbyForney (1966),
and Justesen used the idea of a concatenated code to devise a completely constructive
class of long block codes with good performance. Meanwhile, Goppa (1970) defined a
class of codes that is sure to contain good codes, though without saying how to identify
the good ones.

The 1980s saw encoders and decoders appear frequently in newly designed digital
communication systems and digital storage systems. A visible example is the compact
disk, which uses a simple Reed–Solomon code for correcting double byte errors. Reed–
Solomon codes also appear frequently in many magnetic tape drives and network

6 Introduction

modems, and now in digital video disks. In other applications, such as telephone-line
modems, the role of algebraic codes has been displaced by euclidean-space codes, such
as the trellis-codedmodulation ofUngerboeck (1982). The success of thesemethods led
to further work on the design of nonalgebraic codes based on euclidean distance. The
decade closed with widespread applications of data-transmission codes. Meanwhile,
mathematicians took the search for good codes based on the Hamming distance into
the subject of algebraic geometry and there started a new wave of theoretical progress
that continues to grow.

The 1990s saw a further blurring of the walls between coding, signal processing, and
digital communications.The development of the notion of turbo decoding and the ac-
companying codes of Berrou (1993) can be seen as the central event of this period. This
workdidasmuch for communicationsover thewidebandchannel asUngerboeck’swork
did the previous decade for communications over the bandlimited channel. Practical
iterative algorithms, such as the “two-way algorithm,” for soft-decision decoding of
large binary codes are now available to achieve the performance promised by Shannon.
The Ungerboeck codes and the Berrou codes, together with their euclidean-space de-
coding algorithms, have created a body of techniques, still in rapid development, that
lie midway between the subjects of modulation theory and of data transmission codes.
Further advances toward the codes promised by Shannon are awaited.

This decade also saw the development of algorithms for hard-decision decoding of
large nonbinary block codes defined on algebraic curves. Decoders for the codes known
as hermitian codes are now available and these codes may soon appear in commercial
products. At the same time, the roots of the subject are growing even deeper into the
rich soil of mathematics.

1.3 Applications

Because the development of data-transmission codes was motivated primarily by prob-
lems in communications, much of the terminology of the subject has been drawn from
the subject of communication theory. These codes, however, have many other applica-
tions. Codes are used to protect data in computer memories and on digital tapes and
disks, and to protect against circuit malfunction or noise in digital logic circuits.

Applications to communication problems are diversified. Binary messages are com-
monly transmitted between computer terminals, in communication networks, between
aircraft, and from spacecraft. Codes can be used to achieve reliable communication
even when the received signal power is close to the thermal noise power. And, as the
electromagnetic spectrum becomes ever more crowded with man-made signals, data-
transmission codes will become even more important because they permit communica-
tion links to function reliably in the presence of interference. In military applications,
it often is essential to employ a data-transmission code to protect against intentional
enemy interference.

7 1.4 Elementary concepts

Many communication systems have limitations on transmitted power. For example,
power may be very expensive in communication relay satellites. Data-transmission
codes provide an excellent tool with which to reduce power needs because, with the
aid of the code, the messages received weakly at their destinations can be recovered
correctly.

Transmissions within computer systems usually are intolerant of even very low error
rates because a single error can destroy the validity of a computer program. Error-
control coding is important in these applications. Bits can be packed more tightly into
some kinds of computer memories (magnetic or optical disks, for example) by using a
data-transmission code.

Another kind of communication system structure is a multiaccess system, in which
each of a number of users is preassigned an access slot for the channel. This access may
be a time slot or frequency slot, consisting of a time interval or frequency interval during
which transmission is permitted, or it may be a predetermined coded sequence repre-
senting a particular symbol that the user is permitted to transmit. A long binary message
may be divided into packets with one packet transmitted within an assigned access slot.
Occasionally packets become lost because of collisions, synchronization failure, or
routing problems. A suitable data-transmission code protects against these losses be-
cause missing packets can be deduced from known packets.

Communication is also important within a large system. In complex digital systems,
a large data flow may exist between subsystems. Digital autopilots, digital process-
control systems, digital switching systems, and digital radar signal processing all are
systems that involve large amounts of digital data which must be shared by multiple
interconnected subsystems. This data transfer might be either by dedicated lines or
by a more sophisticated, time-shared data-bus system. In either case, error-control
techniques are important to ensure proper performance.

Eventually, data-transmission codes and the circuits for encoding and decoding will
reach the point where they can handle massive amounts of data. One may anticipate
that such techniques will play a central role in all communication systems of the future.
Phonograph records, tapes, and television waveforms of the near future will employ
digital messages protected by error-control codes. Scratches in a record, or interference
in a received signal, will be completely suppressed by the coding as long as the errors
are less serious than the capability designed into the error-control code. (Even as these
words were written for the first edition in 1981, the as yet unannounced compact disk
was nearing the end of its development.)

1.4 Elementary concepts

The subject of data-transmission codes is both simple and difficult at the same time. It is
simple in the sense that the fundamental problem is easily explained to any technically

8 Introduction

trained person. It is difficult in the sense that the development of a solution – and only
a partial solution at that – occupies the length of this book. The development of the
standard block codes requires a digression into topics of modern algebra before it can
be studied.

Suppose that all data of interest can be represented as binary (coded) data, that is,
as a sequence of zeros and ones. This binary data is to be transmitted through a binary
channel that causes occasional errors. The purpose of a code is to add extra check
symbols to the data symbols so that errors may be found and corrected at the receiver.
That is, a sequence of data symbols is represented by some longer sequence of symbols
with enough redundancy to protect the data.

A binary code of sizeM andblocklength nis a set ofM binary words of lengthn
calledcodewords. Usually,M = 2k for an integerk, and the code is referred to as an
(n, k) binary code.

For example, we can make up the following code

C =




1 0 1 0 1
1 0 0 1 0
0 1 1 1 0
1 1 1 1 1




.

This is a very poor (and very small) code withM = 4 andn = 5, but it satisfies the
requirements of the definition, so it is a code. We can use this code to represent two-bit
binary numbers by using the following (arbitrary) correspondence:

0 0 ↔ 1 0 1 0 1
0 1 ↔ 1 0 0 1 0
1 0 ↔ 0 1 1 1 0
1 1 ↔ 1 1 1 1 1.

If one of the four five-bit codewords is received, we may then suppose that the corre-
sponding two data bits are the original two data bits. If an error is made, we receive
a different five-bit senseword. We then attempt to find the most likely transmitted
codeword to obtain our estimate of the original two data bits.

For example, if we receive the senseword (0, 1, 1, 0, 0), then we may presume that
(0, 1, 1, 1, 0) was the transmitted codeword, and hence 10 is the two-bit dataword. If
we receive the “soft” senseword consisting of the real numbers (0.1, 1.1, 0.9, 0.4, 0.2)
then we may presume that (0, 1, 1, 1, 0) was the transmitted codeword because it is
closest in euclidean distance, and hence 10 is the two-bit dataword. The decoding of
soft sensewords is treated in Chapter 11.

The code of the example is not a good code because it is not able to correct many
patterns of errors. We want to design a code so that every codeword is as different
as possible from every other codeword, and we want to do this especially when the
blocklength is long.

9 1.4 Elementary concepts

The first purpose of this book is to find good codes. Although, superficially, this may
seem like a simple task, it is, in fact, exceedingly difficult, and many good codes are as
yet undiscovered.

To the inexperienced, it may seem that it should suffice to define the requirements of
a good code and then let a computer search through the set of all possible codes. But
how many binary codes are there for a given (n, k)? Each codeword is a sequence ofn
binary symbols, and there are 2k such codewords in an (n, k) binary code. Therefore a
code is described byn · 2k binary symbols. Altogether there are 2n·2k ways of picking
these binary symbols. Hence the number of different (n, k) codes is 2n·2

k
. Of course, a

great many of these codes are of little value (as when two codewords are identical), but
either the computer search must include these codes or some theory must be developed
for excluding them.

For example, take (n, k) = (40, 20), which is a very modest code by today’s stan-
dards. The number of such codes is much larger than 1010,000,000 – an inconceivably
large number. Hence undisciplined search procedures are worthless.

In general, we define block codes over an arbitrary finite alphabet, say the alphabet
with q symbols{0, 1, 2, . . . ,q − 1}. At first sight, it might seem to be an unnecessary
generalization to introduce alphabets other than the binary alphabet. For reasons such
as energy efficiency, however, many channels today are nonbinary, and codes for these
channels must be nonbinary. In fact, data-transmission codes for nonbinary channels
are often quite good, and this can reinforce the reasons for using a nonbinary channel. It
is a trivial matter to represent binary source data in terms of aq-ary alphabet, especially
if q is a power of 2, as usually it is in practice.

Definition 1.4.1. A block code of size M over an alphabet with q symbols is a set of
M q-ary sequences of length n calledcodewords.

If q = 2, the symbols are called bits. Usually,M = qk for some integerk, and we
shall be interested only in this case, calling the code an (n, k) code. Each sequence ofk
q-ary data symbols can be associated with a sequence ofn q-ary symbols comprising
a codeword.

There are two basic classes of codes:block codesandtrellis codes. These are illus-
trated in Figure 1.2. A block code represents a block ofk data symbols by ann-symbol
codeword. The rateRof a block code1 is defined asR= k/n. Initially, we shall restrict
our attention to block codes.

A trellis code is more complicated. It takes a nonending sequence of data symbols
arranged ink-symbol segmentscalleddataframes, andputsoutacontinuoussequenceof
code symbols arranged inn-symbol segments calledcodeframes. The distinction with

1 This rate is dimensionless, or perhaps measured in units of bits /bit or symbols/symbol. It should be distinguished
from another use of the termrate measured in bits/second through a channel. Yet another definition,R=
(k/n) loge q, which has the units of nats /symbol, with a nat equaling log2 e bits, is in use. The definition
R= (k/n) log2 q, which has the units of bits /symbol, is also popular.

10 Introduction

Figure 1.2. Basic classes of codes

block codes is that in a trellis code, ak-symbol dataframe can affect all succeeding
codeword frames, whereas in a block code, ak-symbol datablock determines only
the nextn-symbol codeblock, but no others. We shall defer the study of trellis codes,
specifically convolutional codes, until Chapter 9.

Whenever a message consists of a large number of bits, it is better, in principle, to use
a single block code of large blocklength than to use a succession of codewords from a
shorter block code. The nature of statistical fluctuations is such that a random pattern of
errors usually exhibits some clustering of errors. Some segments of the random pattern
contain more than the average number of errors, and some segments contain less. Long
codewords are considerably less sensitive to random errors than are short codewords
of the same rate, because a segment with many errors can be offset by a segment with
few errors, but of course, the encoder and decoder may be more complex.

As an example, suppose that 1000 data bits are transmitted with a (fictitious) 2000-bit
binary codeword that can correct 100 bit errors. Compare this with a scheme for trans-
mitting 100 data bits at a time with a 200-bit binary codeword that can correct 10 bit
errors per block. Ten such blocks are needed to transmit 1000 bits. This latter scheme
can also correct a total of 100 errors, but only if they are properly distributed – ten
errors to a 200-bit block. The first scheme can correct 100 errors no matter how they
are distributed within the 2000-bit codeword. It is far more powerful.

This heuristic argument can be given a sound theoretical footing, but that is not our
purpose here. We only wish to make plausible the fact that good codes are of long
blocklength, and that very good codes are of very long blocklength. Such codes can
be very hard to find and, when found, may require complex devices to implement the
encoding and decoding operations.

Given twosequencesof thesame lengthof symbols fromsomefixedsymbol alphabet,
perhaps the binary alphabet{0, 1}, we shall want to measure how different those two
sequences are from each other. The most suggestive way to measure the difference

11 1.4 Elementary concepts

between the two sequences is to count the number of places in which they differ. This
is called theHamming distancebetween the sequences.

Definition 1.4.2. The Hamming distance d(x, y) between two q-ary sequencesx and
y of length n is the number of places in whichx andy differ.

For example, takex = 10101,y = 01100, thend(10101, 01100)= 3. For another
example, takex = 30102,y = 21103, thend(30102, 21103)= 3.

The reason for choosing the term “distance” is to appeal to geometric intuition when
constructing codes. It is obvious that theHammingdistance is nonnegative and symmet-
ric. It is easy to verify that the Hamming distance also satisfies the triangle inequality
d(x, y) ≤ d(x, z) + d(y, z). This means that geometric reasoning and intuition based
on these properties are valid.

Definition 1.4.3. Let C = {c� | � = 0, . . . ,M − 1} be a code. Then the minimum
Hamming distance dmin (or d) of C is the Hamming distance between the pair of
codewords with smallest Hamming distance. That is,

dmin = min
ci ,c j ∈C
i �= j

d(ci , c j).

Block codes are judged by three parameters: the blocklengthn, the datalengthk, and
the minimum distancedmin. An (n, k) block code with minimum distancedmin is also
described as an (n, k,dmin) block code.

In the block codeC, given in the first example of this section,

d(10101, 10010)= 3

d(10101, 01110)= 4

d(10101, 11111)= 2

d(10010, 01110)= 3

d(10010, 11111)= 3

d(01110, 11111)= 2.

Hencedmin = 2 for this code.
We may also have two infinitely long sequences over some symbol alphabet. Again,

the Hamming distance is defined as the number of places in which the two sequences
are different. The Hamming distance between two infinite sequences will be infinite
unless the sequences are different only on a finite segment.

Suppose that a block codeword is transmitted and a single error is made by the
channel in that block. Then theHammingdistance from the senseword to the transmitted
codeword is equal to 1. If the distance to every other codeword is larger than 1, then
the decoder will properly correct the error if it presumes that the closest codeword to
the senseword is the codeword that was actually transmitted.

12 Introduction

Figure 1.3. Decoding spheres

More generally, ift errors occur, and if the distance from the senseword to every
other codeword is larger thant , then the decoder will properly correct thet errors if
it presumes that the closest codeword to the senseword was actually transmitted. This
always occurs if

dmin ≥ 2t + 1.

It may be possible, sometimes, to correct certain error patterns witht errors even when
this inequality is not satisfied. However, correction oft errors cannot be guaranteed if
dmin < 2t + 1 because then it depends on which codeword is transmitted and on the
actual pattern of thet errors within the block.

We shall often describe coding and decoding by using the language of geometry
because geometric models are intuitive and powerful aids to reasoning. Figure 1.3
illustrates the geometric situation. Within the space of allq-aryn-tuples, theHamming
sphereof radiust (a nonnegative integer), with the center at the sequencev, is the set
of all sequencesv′ such thatd(v, v′) ≤ t . To define a code within the space ofq-ary
n-tuples, a set ofn-tuples is selected, and thesen-tuples are designated as codewords
of codeC. If dmin is the minimum distance of this code andt is the largest integer
satisfying

dmin ≥ 2t + 1,

then nonintersecting Hamming spheres of radiust can be drawn about each of the
codewords. A senseword contained in a sphere is decoded as the codeword at the center
of that sphere. Ift or fewer errors occur, then the senseword is always in the proper
sphere, and the decoding is correct.

13 1.4 Elementary concepts

Some sensewords that have more thant errors will be in a decoding sphere about
another codeword and, hence, will be decoded incorrectly. Other sensewords that
have more thant errors will lie in the interstitial space between decoding spheres.
Depending on the requirements of the application, these can be treated in either of two
ways.

A bounded-distance decoderdecodes only those sensewords lying in one of the
decoding spheres about one of the codewords. Other sensewords have more errors than
a bounded-distance decoder can correct and are so declared by the decoder. Such error
patterns in a bounded-distance decoder are calleduncorrectable error patterns. When
a decoder encounters an uncorrectable error pattern, it declares adecoding failure. A
bounded-distance decoder is an example of anincomplete decoder, which means that
it has uncorrectable error patterns. Most error-correcting decoders in use are bounded-
distance decoders.

A complete decoderdecodes every received word into a closest codeword. In ge-
ometrical terms, the complete decoder carves up the interstices between spheres and
attaches portions to each of the spheres so that each point in an interstice is attached
to a closest sphere located nearby. (Some points are equidistant from several spheres
and are arbitrarily assigned to one of the closest spheres.) When more thant (but not
toomany) errors occur in a codeword of large blocklength, the complete decoder will
usually decode correctly, but occasionally will produce an incorrect codeword. A com-
plete decoder may be preferred for its performance, but for a large code the issue of
complexity leads to the use of an incomplete decoder. An incomplete decoder may also
be preferred as a way to reduce the probability of decoding error in exchange for a
larger probability of decoding failure.

We shall also deal with channels that makeerasures– or both errors and erasures –
as well as channels, calledsoft-output channels, whose output for each symbol is a real
number, such as a likelihood measure. A soft-output channel has an input alphabet of
sizeq and an output alphabet consisting of real numbers, or vectors of real numbers.
An error-control code can be used with a soft-output channel. The output of the channel
then is called asoft sensewordand the decoder is called asoft decoderor asoft-input
decoder. A soft-input decoder is more tightly interconnected with the modulator and,
for this reason, often has very good performance.

For anerasure channel, the receiver is designed to declare a symbol erased when
that symbol is received ambiguously, as when the receiver recognizes the presence of
interference or a transient malfunction. An erasure channel has an input alphabet of
sizeq and an output alphabet of sizeq + 1; the extra symbol is called anerasure. For
example, an erasure of the third symbol from the message 12345 gives 12− 45. This
should not be confused with another notion known as adeletion, which would give
1245.

An error-control code can be used with an erasure channel. If the code has a minimum
distancedmin, then any pattern ofρ erasures can be filled ifdmin ≥ ρ + 1. Furthermore,

14 Introduction

any pattern ofν errors andρ erasures can be decoded, provided

dmin ≥ 2ν + 1+ ρ

is satisfied. To prove this statement, delete theρ components that contain erasures in
the senseword from all codewords of the code. This process gives a new code, called a
punctured code, whose minimum distance is not smaller thandmin − ρ; henceν errors
canbecorrected, provideddmin − ρ ≥ 2ν + 1 is satisfied. In thiswaywecan recover the
punctured codeword, which is equivalent to the original codeword withρ components
erased. Finally, becausedmin ≥ ρ + 1, there is only one codeword that agrees with the
unerased components; thus the entire codeword can be recovered.

1.5 Elementary codes

Some codes are simple enough to be described at the outset.

Parity-check codes

These are high-rate codes with poor error performance on a binary output channel.
Givenk data bits, add a (k+ 1)th bit so that the total number of ones in each codeword
is even. Thus for example, withk = 4,

0 0 0 0 ↔ 0 0 0 0 0
0 0 0 1 ↔ 0 0 0 1 1
0 0 1 0 ↔ 0 0 1 0 1
0 0 1 1 ↔ 0 0 1 1 0,

and so forth. This is a (k+ 1, k) or an (n,n− 1) code. The minimum distance is 2, and
hence no errors can be corrected. A simple parity-check code is used to detect (but not
correct) a single error.

Repetition codes

These are low-rate codes with good error performance on a binary output channel.
Given a single data bit, repeat itn times. Usually,n is odd

0 ↔ 0 0 0 0 0
1 ↔ 1 1 1 1 1.

This is an (n, 1) code. The minimum distance isn, and1
2(n− 1) errors can be corrected

by assuming that the majority of the received bits agrees with the correct data bit.

15 1.5 Elementary codes

Hamming codes

These are codes that can correct a single error. For eachm, there is a (2m − 1,

2m − 1−m) binary Hamming code. Whenm is large, the code rate is close to 1,
but the fraction of the total number of bits that can be in error is very small. In this
section, we will introduce the (7, 4) Hamming codes via a direct descriptive approach.
The (7, 4) Hamming code can be described by the implementation in Figure 1.4(a).
Given four data bits (a0,a1,a2,a3), let the first four bits of the codeword equal the four

a1

a2

a3

a0

a1

a2

a3

p0

p1

p2

Parity on a0, a1, a2

Parity on a1, a2, a3

Parity on a0, a1, a3

a0

a'1

a'2

a'3
p'0

p'1

p'2

a'0

a1

a2

a3

a0

Modulo
2

adder

Modulo
2

adder

Modulo
2

adder

Modulo
2

adder

Modulo
2

adder

Modulo
2

adder

4-bit
dataword

Error at
a0, a1, a2, or p0

Error at
a1, a2, a3, or p1

Error at
a0, a1, a3, or p2

4-bit dataword

7-bit Senseword

�

�

�

�

7-bit codeword

 -

Figure 1.4. A simple encoder/decoder for a (7, 4) Hamming code

16 Introduction

Table 1.1. The(7, 4)
Hamming code

0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 0 1 1 1 0 1
0 1 0 0 1 1 1
0 1 0 1 1 0 0
0 1 1 0 0 0 1
0 1 1 1 0 1 0
1 0 0 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 1 0
1 1 0 1 0 0 1
1 1 1 0 1 0 0
1 1 1 1 1 1 1

data bits. Append three check bits (p0, p1, p2), defined by

p0 = a0 + a1 + a2

p1 = a1 + a2 + a3

p2 = a0 + a1 + a3.

Here+ denotes modulo-2 addition (0+ 0 = 0, 0+ 1 = 1, 1+ 0 = 1, 1+ 1 = 0). The
sixteen codewords of the (7, 4) Hamming code are shown in Table 1.1. Of course, the
idea of the code is not changed if the bit positions are permuted. All of these variations
are equivalent, and all are called the (7, 4) Hamming code.

The decoder receives a seven-bit sensewordv = (a′
0,a

′
1,a

′
2,a

′
3, p

′
0, p

′
1, p

′
2). This

corresponds to a transmitted codeword with at most one error. The decoder, shown in
Figure 1.4(b), computes

s0 = p′
0 + a′

0 + a′
1 + a′

2

s1 = p′
1 + a′

1 + a′
2 + a′

3

s2 = p′
2 + a′

0 + a′
1 + a′

3.

The three-bit pattern (s0, s1, s2) is called thesyndrome. It does not depend on the actual
data bits, but only on the error pattern. There are eight possible syndromes: one that
corresponds to no error, and one for each of the seven possible patterns with a single
error. Inspection shows that each of these error patterns has a unique syndrome, as
shown in Table 1.2.

It is a simple matter to design binary logic that will complement the bit location
indicatedby the syndrome.After correction is complete, the checkbits canbediscarded.

17 Problems

Table 1.2. Syndrome table

Syndrome Error

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0
0 1 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0 0 0

If two or more errors occur, then the design specification of the code is exceeded and
the code will miscorrect. That is, it will make a wrong correction and put out incorrect
data bits.

Because the (7, 4) Hamming code is a very simple code, it is possible to describe it
in this elementary way. A more compact description, which we will eventually prefer,
is to use vector space methods, writing the codeword as a vector–matrix product



a0

a1

a2

a3

p0

p1

p2




=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 1 0 1






a0

a1

a2

a3


 ,

and the syndrome as another matrix–vector product



s0

s1

s2


 =




1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 0







a′
0

a′
1

a′
2

a′
3

p′
0

p′
1

p′
2




.

Problems

1.1 a. By trial and error, find a set of four binary words of length 3 such that each
word is at least a distance of 2 from every other word.

b. Find a set of sixteen binary words of length 7 such that each word is at least a
distance of 3 from every other word.

18 Introduction

1.2 a. Describe how to cut 88 circles of 1-inch diameter out of a sheet of paper of
width 8.5 inches and length 11 inches. Prove that it is not possible to cut out
more than 119 circles of 1-inch diameter.

b. Prove that it is not possible to find 32 binary words, each of length 8 bits, such
that every word differs from every other word in at least three places.

1.3 A single-error-correcting Hamming code has 2m − 1 bits of whichm bits are
check bits.
a. Write (n, k) for the first five nontrivial Hamming codes (starting atm= 3).
b. Calculate their rates.
c. Write an expression for the probability of decoding error,pe, when the code is

used with a binary channel that makes errors with probabilityq. How does the
probability of error behave withn?

1.4 Design an encoder/decoder for a (15, 11) Hamming code by reasoning as in
Figure 1.4. There is no need to show repetitive details (that is, show the principle).

1.5 For any (n, k) block code with minimum distance 2t + 1 or greater, the number
of data symbols satisfies

n− k ≥ logq

[
1+

(
n
1

)
(q − 1)+

(
n
2

)
(q − 1)2 + · · · +

(
n
t

)
(q − 1)t

]
.

Prove this statement, which is known as theHamming bound.
1.6 The simplest example of a kind of code known as aproduct codeis of the form:

a00 a01 . . . a0,k1−1 p0,k1

a10 a11 p1,k1

...
...

...
ak2−1,0 . . . ak2−1,k1−1 pk2−1,k1

pk2,0 . . . pk2,k1−1 pk2,k1

where thek1k2 symbols in the upper left block are binary data symbols,
and each row (and column) is a simple parity-check code. This gives a
((k1 + 1)(k2 + 1), k1k2) binary product code.
a. Show thatpk2,k1 is a check on both its column and its row.
b. Show that this is a single-error-correcting code.
c. Show that this code is also a double-error-detecting code. Give two double-

error patterns that cannot be distinguished from one another when using this
code and so cannot be corrected.

d. What is the minimum distance of the code?
1.7 Show that Hamming distance has the following three properties:

(i) d(x, y) ≥ 0 with equality if and only ifx = y;
(ii) d(x, y) = d(y, x).

19 Problems

(iii) Triangle inequality

d(x, y) ≤ d(x, z) + d(y, z).

A distance function with these three properties is called ametric.
1.8 a. Show that a codeC is capable of detecting any pattern ofd or fewer errors if

and only if the minimum distance of the codeC is greater thand.
b. Show that a code is capable of correcting any pattern oft or fewer errors if

and only if the minimum distance of the code is at least 2t + 1.
c. Show that a code can be used to correct all patterns oft or fewer errors and,

simultaneously, detect all patterns ofd or fewer errors (d ≥ t) if the minimum
distance of the code is at leastt + d + 1.

d. Show that a code can be used to fillρ erasures if the minimum distance of the
code is at leastρ + 1.

1.9 A soft sensewordv is a vector of real numbers, onecorresponding to each bit.
To decode a soft senseword, one may choose the codewordc that lies closest to
the senseword in euclidean distance

d(v, c) =
n−1∑
i=0

(vi − ci)
2.

Let vi = ci + ei where the noise componentsei are independent, white, and
identical gaussian random variables of varianceσ 2 and zero mean. LetEm =∑n−1

i=0 c
2
i .

Prove that a binary repetition code using the real numbers±1 to represent the
code bits has the same energy and the same probability of bit error as an uncoded
bit that uses the two real numbers±n to represent the value of the single bit.

1.10 a. Show that if the binary (15, 11) Hamming code is used to correct single errors
on a channel that makes two errors, the decoder output is always wrong.

b. Show that if the twoerrors are in checkbits, the decoderwill alwaysmiscorrect
a data bit.

c. By appending an overall check bit, show how to extend the (15, 11) Hamming
code to a (16, 11) code that corrects all single errors and detects all double
errors. What is the minimum distance of this code?

1.11 Show that the list of codewords in Table 1.1 is unchanged by the permutation

(c0, c1, c2, c3, c4, c5, c6) → (c0, c4, c1, c5, c2, c6, c3).

Such a permutation is called an automorphism of the code.

