
Chapter 2
Mie Theory: A Review

Thomas Wriedt

Abstract In optical particle characterisation and aerosol science today light scatter-
ing simulations are regarded as an indispensable tool to develop new particle charac-
terisation techniques or in solving inverse light scattering problems. Mie scattering
and related computational methods have evolved rapidly during the past decade such
that scattering computations for spherical scatterers a few order of magnitudes larger,
than the incident wavelength can be easily performed. This significant progress has
resulted from rapid advances in computational algorithms developed in this field and
from improved computer hardware. In this chapter the history and a review of the
recent progress of Mie scattering and Mie-related light scattering theories and avail-
able computational programs is presented. We will focus on Mie scattering theories
but as there is much overlap to related scattering theories they will also be mentioned
where appropriate. Short outlines of the various methods are given. This review is of
course biased by my interest in optical particle characterisation and my daily reading.

2.1 Introduction

When Gustav Mie wrote his classic paper on light scattering by dielectric absorb-
ing spherical particles in 1908 he was interested in explaining the colourful effects
connected with colloidal Gold solutions. Nowadays, the interest in Mie’s theory is
much broader. Interests range from areas in physics problems involving interstellar
dust, near-field optics and plasmonics to engineering subjects like optical particle
characterisation. Mie theory is still being applied in many areas because scattering
particles or objects are often homogeneous isotropic spheres or can be approximated
in such a way that Mie’s theory is applicable.

T. Wriedt (B)

Institut für Werkstofftechnik, Badgasteiner Str., 328359 Bremen, Germany
e-mail: thw@iwt.uni-bremen.de

W. Hergert and T. Wriedt (eds.), The Mie Theory, Springer Series in 53
Optical Sciences 169, DOI: 10.1007/978-3-642-28738-1_2,
© Springer-Verlag Berlin Heidelberg 2012



54 T. Wriedt

On the 100th anniversary of Mie’s theory a number of review papers, special papers
and conference proceedings were published [1–10] commemorating his 1908th
paper.

In this chapter I would like to review the history and the state of the art in Mie
scattering as it developed over the previous decades. I will give a short description
of the various extensions to Mie scattering available and provide information about
computation programs making reference to review papers where available. For more
profound reviews the interested reader is referred to the cited review articles.

2.2 Nonspherical Particles

In this review I am concerned with spherical scattering particles. Nevertheless, to
guide the reader interested in the broader aspects of light scattering I will also briefly
consider nonspherical particles in this section.

A number of light scattering theories also suitable for nonspherical particles have
been developed, all having their pros and cons. Extensive overviews of available
theories have been published by Wriedt [11], Kahnert [12] and more recently by
Veronis and Fan [13]. A review of this subject with emphasis on colloid science has
been written by Niklasson and Vargas [14]. A paper by Zhao et al. [15] provides an
overview of the methods that are currently being used to study the electromagnetics
of silver and gold nanoparticles. Of historic interest might be the critical review by
Bouwkamp [16] who presents the progress in classical diffraction theory up to 1954.
In this paper both scalar and electromagnetic problems are discussed. This report
may also serve as an introduction to general diffraction theory. Interesting reviews
on related subjects of nanooptics and metamaterials have recently been published by
Myroshnychenko et al. [17] and by Veselago et al. [18].

2.3 History of Mie’s Theory

In 1908, Gustav Mie published his famous paper on simulation of the colour effects
connected with colloidal Gold particles [19]. In this paper he gave a first outline of
how to compute light scattering by small spherical particles using Maxwell’s electro-
magnetic theory. With his first computations he managed to explain the colour of gold
colloids changing with diameter of the Gold spheres, which was later interpreted in
terms of surface plasmon resonances. First computations of scattering diagrams for
larger spheres of diameters up to 3.2λ are presented by Richard Gans (1880–1954)
[20] and Hans Blumer [21] in 1925. The early study of scattering by a sphere is
traced by Nelson A. Logan [22], who comments on Blumer’s results, that he missed
the regular undulations in the scattering diagram because of numerical mistakes.
This paper is interesting reading for all interested in the history of light scattering.
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Electromagnetic scattering by a homogeneous, isotropic sphere is commonly
referred to as Mie theory, although Gustav Mie (1868–1957) was not the first to
formulate this electromagnetic scattering problem. Before him Alfred Clebsch (1833–
72), solving the elastic point source scattering problem of a perfectly rigid sphere
using potential functions [23], and Ludvig Lorenz (1829–91) [24, 25] contributed to
this problem. In 1909, Peter Debye (1884–1966) considered the related problem of
radiation pressure on a spherical particle [26] utilising two scalar potential functions
like Mie. Therefore, plane wave scattering by a homogeneous isotropic sphere is
also referred to as Lorenz-Mie theory [27], or even Lorenz-Mie-Debye theory [28].
The incorrect name Lorentz-Mie theory is also quite commonly used (e.g. in Burlak
[29]). Milton Kerker (1920) provides an extensive postscript on the history of scat-
tering by a sphere in his book [30].

In 1890, Danish physics Ludvig Lorenz published essentially the same calculation
on the scattering of radiation by spheres [24]. This paper was not much noticed at the
time because it was written in Danish and it remained hardly known even after it had
been translated to French [25]. Also, Lorenz did not connect his derivation with the
Maxwells theory of electromagnetics [31, 32]. For information about Ludvig Lorenz,
see the article by Helge Kragh [33] who outlines his career and his contributions to
optical theory.

Cardona and Marx [34] commented that Mie’s 1908 paper was almost ignored
until about 1945 but its importance rose with increasing interest in colloids starting
from the 1950s such that hundred years after publication the paper is still much cited
[35] with currently 291 citations a year according to the Web of Science. Google
currently gives 4,064 citations and the Web of Science 4,958. The paper is called
Dornröschen (Sleeping Beauty) by the researchers at Information Retrieval Services
of Max Planck Society [36] because of its low recognition considering the number of
citations during the first years after its publication. But in the 1930s, contemporary
scientists acknowledged the importance of his contribution. In a special issue devoted
to Mie’s 70th birthday Ilse Fränz-Gotthold and Max von Laue [37] dedicate their
paper to “Gustav Mie whom physics owes the mathematical treatment of diffraction
by a sphere”.

Apparently one of the first English language versions of Mie theory was published
by Harry Bateman (1882–1946) [38]. Mie’s original paper was translated into the
English language as late as 1976 by the Royal Aircraft Establishment in the UK [39]
and 2 years later by Sandia Laboratories in US [40]. Recently, a Spanish translation of
the original paper became available [41] and Chinese, Hebrew and Italian translations
are on the way [42]. For information about typographical errors in the original paper
please refer to the Mie Translation Project [42]. Those typographical errors have
been corrected in the Spanish version of the paper [41].

Early citations of Mie’s theory make reference to the classical textbook on electro-
magnetic theory by Julius Adams Stratton (1901–1994) [43]. In outlining the theory,
Stratton made use of so-called vector spherical wave functions (VSWF) as first intro-
duced by William Webster Hansen (1909–1949) [44]. Later references were made
to the classic optics book by Max Born (1882–1970) and Emil Wolf (1922) [45]
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who used the Debye potential in their derivation. Hendrik Christoffel van de Hulst
(1918–2000) [46] and Bohren and Hufman [47] follow the Stratton approach.

An up-to-date version of the derivation of Mie’s theories has been published in
Appendix H of the recent book by Le Ru and Etchegin [48] and in a book chapter
by Enguehard [49]. Both provide an outline on how to solve the electromagnetic
scattering problem in the case of a spherical particle using Mie’s theory which give
the most useful mathematical expressions of Mie theory and its derivatives and also
information about implementation.

2.4 Mie Algorithms

Understandably, prior to the development of electronic computers in the middle of the
last century there were not many papers written on computing scattering problems
using Mie’s theory since the computational labour involved in evaluating functions
such as Riccati-Bessel functions was quite extreme.

Even with the rise of the computer it took some time before stable algorithms were
developed. Gradually, several generally reliable and stable scattering programs were
published. Early well-known algorithms were published by Giese [50] and Dave [51].
In a report Cantrell [52] reviews the different numerical methods for the accurate
calculation of spherical Bessel functions as needed in Mie’s theory. Deirmendjann
[53] presents computational results of scattering parameters of polydispersions in a
number of tables, produced by application of the Mie theory. According to Cantrell
[52], Deirmendjian et al. [54] appear to have been the first to calculate the logarithmic
derivative of the Riccati-Bessel function to evaluate the Mie coefficients. Dave [51]
improved upon the approach of Deirmendjian et al. by applying downward recursion
to the correct calculation of logarithmic derivative of the Riccati-Bessel function.
The IBM report by Dave from 1968 [51] was still sent out on request in the 1990s.

Apparently at that time there was also independent research in this field such that
one can find papers not often cited such as Metz and Dettmar [55]. With multiple
databases and easy Internet search available today, the existence of other early and
at that time available Fortran program can be confirmed such as for example the
program by Maguire [56].

Nowadays, a number of efficient algorithms and Fortran programs are available. A
major step was the program MIEV0 written by Wiscombe [57, 58], which is based on
Lentz’s continued-fraction method for the calculation of spherical Bessel functions
[59]. The program is well-tested and widely used. The Supermidi program by Gréhan
and Gouesbet [60] is also based on Lentz’s algorithm. The authors give numerical
results over a wide range of size parameters and refractive indices. The advantage of
Lentz’s method is that errors do not accumulate as can occur with the use of faster
recurrence relation methods [61].

It has been demonstrated that Mie’s theory can now be successfully applied up
to size parameters of 10.000 [62–64]. Recently, Gogoi et al. [65] presented a new
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efficient and reliable computer program written in the C programming language to
compute the scattering matrix elements.

2.5 Spheres in an Absorbing Medium

Originally, the Mie theory was restricted to a nonabsorbing ambient medium although
some real-world applications require that the absorbing surrounding media be
accounted for in the theory. This is a topic in colloid science and computer graphics.

Apparently one of the first derivation of the Lorenz-Mie theory for a scattering
sphere immersed in an absorbing host medium is presented by Mundy et al. [66]
and by Bohren and Gilra [67]. Similar extension to the Mie theory was studied by
Quinten and Rostalski [68], Sudiarta [69] and Frisvad et al. [70]. It was found that
the absorption of the ambient medium can alter the scattering efficiency and the
scattering pattern of a sphere. The effect on the absorption efficiency is much less.
To extend such theories for light scattering by coated sphere immersed in an absorbing
medium is a small step [71].

2.6 Coated Spheres

As it is easy to consider spherical scatterers there are many extensions of the Mie
theory covering different aspects. A theory for a coated dielectric sphere was first
published by Aden and Kerker [72]. The Fortran code BART by Arturo Quirantes
[73] is based on the Aden-Kerker theory to calculate light-scattering properties for
coated spherical particles. In the program polydispersity is included for either core,
coating or entire particle.

A basic Fortan (BHCOAT) code is printed in the appendix of the book by Bohren
and Huffman [47]. An advanced algorithm is given by Toon and Ackerman [74].
An algorithm for a sphere having two coatings has been presented by Kaiser and
Schweiger [75]. These theories have also been extended to spherical particles con-
sisting of multiple layers by Li Kai [76]. Another algorithm for plane wave and
shaped beam scattering by a multilayered sphere has been published by Wu et
al. [77]. Even in recent times, improved algorithms have been published on this
subject [78].

2.7 Distorted Spheres

To compute scattering by a slightly distorted sphere Martin [79, 80] developed a
first-order perturbation theory. He derives formulae bearing close resemblance to the
zero-order ones encountered in Mie scattering theory, expressing the perturbation
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applied to the surface of the sphere in angular functions identical to those used in the
spherical harmonic expansion. The approximation is that the particle be smooth and
not deviate far from sphericality.

2.8 Magnetic Spheres

With growing interest in magnetic nanostructures there is also interest in Mie scatter-
ing of magnetic spheres. A Mie theory allowing for magnetic media where the media
properties includes a nonzero permeability μ has been developed early by Kerker
et al. [81, 82]

A Fortran code for spherical scatterers with both a complex permittivity and
a complex permeability is listed in a report by Milham [83]. Tarento et al. [84]
considered Mie scattering of magnetic spheres extending the classical Mie scattering
approach to a media where the dielectric constant is no more a real number but a tensor
with a gyrotropic form. A usable code for scattering by a sphere having a different
magnetic permeability than the surrounding is included in the Matlab program by
Christian Mätzler [85].

2.9 Chiral and Anisotropic Spheres

During the previous decades, much attention has been focused on the light scatter-
ing interaction between chiral and anisotropic particles and electromagnetic waves,
as a result of numerous applications in the electromagnetic scattering and antenna
theory. The historical background, and a general description, of the subject of elec-
tromagnetic chirality and its applications can be found in the books by Lakhtakia
and Varadan [86] and Weiglhofer and Lakhtakia [87]. A isotropic chiral medium or
an optical active medium is rotationally symmetric but not mirror symmetric. Only
circularly polarised plane waves can propagate in the chiral medium without a change
in their state of polarisation.

A scattering sphere can also be chiral. The extension of Mie’s theory to an optically
active sphere was published by Bohren [88] and later extended to a sphere with a
chiral shell [89]. Bohren devised a transformation to decompose the problem such
that he could consider two independent modes of propagation in the chiral medium,
namely left- and right-circularly polarised waves. In the limit of no chirality the
solution is identical to the Mie solution.

Theories and programs for such types of scatterers have been published by Bohren
in his thesis for a chiral sphere [90].

Using the Bohren decomposition Hinders and Rhodes [91] investigate the problem
of scattering by chiral spheres embedded in a chiral host medium.

As colour pigments and crystals are often anisotropic there is some interest to
extend Mie’s theory to such kind of scattering particles. Stout et al. [92] established
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a vector spherical harmonic expansion of the electromagnetic field propagating inside
an arbitrary anisotropic medium to solve this problem. A similar problem of a uniaxial
anisotropic sphere was considered by Geng et al. [93] to find the coefficients of the
scattered field. Droplets of liquid crystals may be considered as spherical particles
with radial anisotropy. This scattering problem is discussed by Qiu et al. [94] using
an extension of Mie theory.

2.10 Scattering by a Short Pulse

The history of the investigation of time domain scattering by a sphere, given an
incident short pulse, can be traced back at least to Kennaugh [95]. The interest
was to investigate short-pulse radar systems for target discrimination. The incident
pulse is expanded in a Fourier series. For each wavelength in the Fourier series Mie
scattering is computed.

Ito et al. [96] analyse the transient responses of a perfectly conducting sphere.
For numerical calculation a Laplace transform algorithm is used. This method was
later extended to a dielectric sphere [97] to analyse the multiple reflections within a
sphere. Bech et al. [98] provided an extension by way of the Fourier-Lorenz-Mie-
Theory (FLMT) [99], which permits the scattering of a laser beam and the separation
of individual scattered light orders using the Debye series expansion to compute
scattering by a femtosecond Laser pulse to determine the particle diameter from the
time differences between the scattered light orders of the Debye series. The Debye
series expansion is analogous to a multiple internal reflection treatment such that it
is similar to geometrical optics where each term has a clear physical interpretation
such as diffraction, reflection, refraction and higher order refractions.

2.11 Nanosized Spheres

With a nanosized nobel metal particle of size lower than about 20 nm, various modi-
fications, extensions and corrections to Mie’s original theory are needed to take into
account that “sharp” boundary conditions do not hold in the nanoscale [100]. In his
recent survey paper [101] Kreibig lists among others the following supplementary
models to the Mie theory, i.e. non plane-wave incident field, non step-like boundary
condition and a particle size-dependent dielectric function. Applying these exten-
sions help to explain measured absorption spectra of Ag nanoparticles and plasmon
polaritons.
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2.12 Gaussian Beam Scattering

The traditional Lorenz-Mie theory describes the scattering by a spherical homoge-
neous dielectric particles illuminated by an incident plane wave. However, in many
applications such as optical particle sizers, confocal microscopes, optical trapping
and optical manipulation scattering by a focused laser beam is quite often of interest.
In his recent book Quinten [102] refers to Möglich [103] who in 1933 derived expres-
sion for the expansion coefficients of the field in the focal point of a lens system to
compute scattering in the Rayleigh approximation.

There are different concepts available to handle the problem of laser beam scat-
tering. With a point matching approach you just need an analytical description of the
incident field at the matching points on the particle surface. This method which is
also suitable for a spherical scatterer has been implemented in the Multiple Multi-
pole Program (MMP) by Evers et al. [104]. But in this review we are concerned with
the Mie theory and within this theory various beam expansion methods have been
developed.

A laser beam with Gaussian intensity distribution can be expanded into spherical
vector wave functions or into a spectrum of plane waves [105]. The Generalised
Lorenz Mie Theory (GLMT) developed by Gérard Gouesbet and co-workers is
based on the first approach computing beam shape coefficients. It has recently been
reviewed by Gouesbet [106]. Plane wave expansion is used by Albrecht et al. [99]
and it is integrated into the Null-Field Methods with Discrete Sources (NFM-DS)
developed by Doicu and co-workers [107]. Doicu et al. [105] give quantitative com-
parison of the localised approximation method and the plane wave spectrum method
for the beam shape coefficients of an off-axis Gaussian beam. Usually the plane wave
expansion method is considered computationally inefficient compared to the GLMT
method [108].

Since its foundation at the end of the 1970s Gérard Gouesbet and his co-worker
Gérard Gréhand developed the Generalised Lorenz-Mie Theory (GLMT). Initially
the theory only included a single spherical scatterer but the theory was later extended
to aggregates of spheres [109], coated spheres [110], a sphere with an eccentrically
located spherical inclusion [111] and pulsed Laser scattering [112]. Based on the
Davis formulation of the Gaussian beam [113] Gouesbet and co-workers developed
a theory to expand the beam into vector spherical wave functions which is compatible
with the Lorenz-Mie Theory. In the first implementation the expansion was restricted
to on-axis spheres. This theory was later extended to an arbitrarily positioned sphere.
Parallel to this development the localised approximation was investigated to reduce
the computational demand in computing the beam shape coefficients. Since 1998
the Livre GMTL, fully outlining the GLMT theory and providing printouts of For-
tran programs, is available via the Internet [114]. This year Gouesbet and Gréhan
published a revised version with the Springer publisher [106].

Moore et al. [115] developed an alternate generalisation of the Lorenz-Mie theory
wherein the incident fields are complex focus fields which are nonparaxial generali-
sations of Gaussian beams. This approach results in an easily calculable closed form
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for the coefficients in the multipolar expansion of the incident field that results from
a beam passing through a high numerical aperture lens system.

2.13 Near Fields

With the recent rise of plasmonics there seems to be an increasing interest in com-
puting the near field or the internal field by scattering particles. There is especially
interest in morphological resonances and in plasmon resonances. There are not many
programs available which focus on near field computation. Most programs consider
the far field approximation of the radiating spherical vector wave functions to com-
pute scattering patterns in the far field. The T-Matrix programs on the disk accom-
panying the book by Barber and Hill [116] allow for the simulation of the internal
and external near field intensity distribution by a scattering sphere.

Near field and internal field computations of a spherical particle in a Gaussian
laser beam can be done using the Windows program GLMT Champ Internes by Loic
Mees [117].

To compute near fields by a number of scattering spheres you can use the extension
of Yu-lin Xu’s GMM program by Moritz Ringer. He extended GMM while working
on his PhD thesis [118]. His Fortran program GMM-Field allows for the computa-
tion of the near field. GMM-Dip gives the near field with a dipole as the incident
field. Apparently Giovanni Pellegrini did a similar extension of the GMM program
in this PhD thesis [119]. A paper on parallising multiple scattering and near field
computation by coated spheres was recently published by Boyde et al. [120].

The LightScatPro Matlab program by Sylvain Lecler used for his thesis [121] is
also suitable for near field computation for light scattering by a number of spheres.

2.14 Longitudal Modes

Basically, in the Mie theory, transverse wave modes are dominant. However, there
is the question about what the theory would look like if there were also longitudinal
modes created inside the scattering sphere.

Ruppin [122] extended Mie theory to the case of small metal spheres whose
material sustains the propagation of longitudinal waves. This theory is also outlined
in the book by Borghese et al. [123]. Ruppin demonstrated that a slight shift of the
surface plasmon peak towards higher frequencies would occur. According to Quinten
in his recent book [102], all effects connected with longitudal modes have not yet been
identified experimentally. Travis and Guck [124] recently revisited the Mie theory
and also include longitudinal vector spherical wavefunctions in the expansion of the
internal field. The authors argue that in the optical wavelength range the longitudinal
wavenumber is almost purely imaginary such that for particles larger than about 2 nm
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the longitudinal plasma modes are evanescent and the normal Mie approximation is
acceptable.

2.15 Aggregates of Spheres

Scattering by an aggregate or cluster of spheres will be considered in this section.
There is a recent extensive review on this topic by Okada [125] giving a timeline
of the development in the field since the 1960s. Multiple scattering by a number of
spheres dates at least as far back as Trinks [126], who used multipole expansions
combined with the translation addition theorem for spherical vector wave functions
to express the scattered fields of all other spheres at the origin of a sphere.

Levine et al. [127] extended the work of Trinks by considering two Rayleigh
particles, arbitrarily positioned in relation to the incident plane wave. Lenine et al.
also made use of Debye scalar potentials as did Trinks. In the following years various
rigorous methods extending the Mie theory were developed. Bruning and Lo [128,
129] presented the first solution for two spheres using recursive relations for the
translation coefficients.

Later, Fuller et al. [130] considered the two-sphere problem using the order-of-
scattering approach, a chain of spheres [131] and an arbitrary cluster of spheres
[132].

Next, two well-known rigorous methods were developed to simulate the light scat-
tering by an aggregate of spheres, Mackowski [133] and Mackowski and Mishchenko
[134] developed the multiple scattering T-matrix algorithm and the generalised mul-
tisphere Mie-solution (GMM) method developed by Xu [135, 136]. Today, there are
efficient Fortran programs made available by Mackowski [134] and Yu-lin Xu [135].

These multiple scattering programs are commonly used to study the scattering
and absorption properties of soot aggregates [137].

The theory has recently been extended to clusters of rotationally symmetric
particles [138] and arbitrary shaped particles [6] using the T-Matrix method.

2.16 Parallelisation

Another current issue is the parallelisation of executing programs. Various methods
such as Open Multiple-Processing (OpenMP) and Message Passing Interface (MPI)
are available. Within the T-Matrix methods the NFM-DS has recently been paral-
lelised [139]. With the T-Matrix method the computational demand lies mostly in the
need to compute the surface integrals. This can of course be easily done by dividing
the surface of the scatterer into different sections and then computing the integral
of this sections using a separate parallel thread. Mackowski et al. [140] recently
implemented parallelisation of a multiple scattering program. A paper on parallizing
multiple scattering by coated spheres was published by Boyde et al. [120].
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2.17 Further Topics

Not all extensions of the Mie theory can be extensively covered in this chapter.
Therefore, in this section some interesting topics not treated above will be briefly
mentioned.

Travis and Guck revised the Mie theory [124] using a modern T-matrix formalism
and discuss inclusion of longitudinal components of the dielectric permittivity tensor.

Tagviashvili [141] considered the classical Mie theory for electromagnetic radia-
tion scattering by homogeneous spherical particles in the dielectric constant (ε) → 0
limit and TE field resonances in the visible spectrum are demonstrated.

With Mie scattering morphological resonances show up. This can be used to deter-
mine the diameter of a spherical droplet to a high precision. Ward et al. [142] used
a white light LED for illumination to study the broadband Mie backscattering from
optically levitated aerosol droplets to observe the morphological Mie resonances
simultaneously across a spectral range from 480 to 700 nm. Correlating the mea-
sured resonances to the mode order and mode number using Mie theory the droplet
size can be determined with an accuracy of ±2 nm.

As the scattering of a plane electromagnetic wave by a dielectric sphere is con-
sidered a canonical problem, Mie’s theory is still widely used as a standard reference
to validate methods intended for more complex scattering problems [143, 144]. For
example, Khoury et al. [145] compare COMSOL’s finite element method (FEM)
algorithm with the Mie theory for solving the electromagnetic fields in the vicin-
ity of a silica–silver core–shell nanoparticle. It is demonstrated that the COMSOL
FEM algorithm also generates accurate solutions of the near field. Takano and Liou
[146] developed a geometrical optics ray-tracing program to compute scattering for
concentrically stratified spheres and in the validation section show that it produces
the same general scattering features as the “exact” Lorenz–Mie theory for a size
parameter of 600.

2.18 Further Reading

There are various topics not considered in this review. For these topics I suggest some
further reading. For the basics on the Mie theory readers may refer to the classical
books by Stratton [43], van de Hulst [46] (available as a budget Dover edition), Born
and Wolf [45], Kerker [30] and Bohren and Huffman [47]. For a more recent and
extensive discussion on the topic refer to Grandy [27]. Morphological resonances in
Mie scattering are extensively covered in the book by Davis and Schweiger [28].

Scattering particles are commonly positioned on a plane interface and particle–
surface scattering interaction will have to be considered in the corresponding exten-
sion of Mie theory. This is for example a problem when simulation particle surface
scanners detect particle conterminants on wafers. For these who are interested in such
kinds of problems there are methods based on the T-matrix method taking account
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of the plane surface. Such methods are fully outlined in the books by Doicu et al.
[147] and Borghese et al. [123]. There is a section on supported nanoparticles in the
recent book by Quinten [102]. For those interested in plasmonics and the optics of
nanosized noble metalparticles, Quinten’s book gives an overview of analytical and
numerical models for the optical response of nanoparticles and nanoparticle systems.
Nanooptics is the topic of the book by Novotny and Hecht [148] who also care for
the topic of particles on surfaces in an extensive way.

2.19 Available Programs

Those looking for computational programs to compute Mie scattering or to solve
related scattering problems there are various web sites available which provide infor-
mation about these topics or give links to available computer programs. First of all
there is the portal ScattPort [149] which is intended to be a Light Scattering Informa-
tion Portal for the light scattering community. The basic concept of this information
portal includes features such as database of available computer programs and up-to-
date information related to the subject of light scattering, e.g. conference announce-
ments, available jobs, new books, etc. Many of the listed programs are based on Mie
theory or are extensions of Mie theory. Further information about the history and
concept of the portal is presented by Hellmers and Wriedt [150].

SCATTERLIB by Flatau [151] is another web site with an emphasis to list open
access computational programs suitable to compute light scattering by particles.
In the list Mie theory has been implemented in various traditional programming
languages originating in Fortran, but are also available in Pascal, C++ and Java. It has
also been programmed in computer algebra systems such as Maple and Mathematica.
Additionally, it is available in numerical mathematical systems such as IDL and
Matlab [149] and 3 years ago the Mie theory has even been programmed on a Java
enabled Mobile Phone using a Matlab clone [152].

2.20 Sample Simulation Results

To graphically demonstrate the differences of various kinds of extensions of the
Mie’s theory we next plot some scattering diagrams. All programs used are avail-
able from ScattPort [149]. As basic parameters for this comparison, we choose
a particle diameter of d = 700 nm and an incident wavelength of λ = 500 nm.
Figure 2.1 shows the scattering pattern of a dielectric sphere with a refractive index of
n = 1.5 calculated using the Mie theory. Both p- and s-polarisation are plotted. The
next figures demonstrate the variation in the scattering pattern with change in the
properties of the scattering sphere. Even a small amount of absorption gives a change
in the scattering pattern as seen from Fig. 2.2. Also, a coating with a shell having a
slightly lower refractive index gives another scattering diagram (Fig. 2.3). The next
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Fig. 2.1 Scattering pattern of
a homogeneous nonabsorbing
sphere d = 700 nm, λ =
500 nm, n = 1.5

Fig. 2.2 Scattering pattern
of a homogeneous absorbing
sphere d = 700 nm, λ =
500 nm, n = 1.5 + i 0.1

Fig. 2.3 Scattering pattern of
a homogeneous coated sphere
d1 = 700 nm, d2 = 500 nm,
λ = 500 nm, n1 = 1.5, n2 =
1.33

scattering pattern (Fig. 2.4) is for a sphere possessing a refractive index gradient gra-
dient with n = 1.33 at the centre of the sphere and n = 1.5 at the boundary of the
sphere. This gradient is approximated by 50 steps. With a chiral or optically active
sphere there are also great differences in the scattering pattern (Fig. 2.5).

If the sphere is positioned in a highly focused laser beam with Gaussian intensity
distribution pronounced differences to the first scattering diagram show up (Fig. 2.6).
A slightly perturbed sphere gives also only slight perturbation in the scattering dia-
gram (Fig. 2.7). With an unisotropic particle having three different refractive indices
in the three cartesian coordinates the scattering pattern is no longer rotationally sym-
metric (Fig. 2.8).
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Fig. 2.4 Scattering pattern
of a sphere possessing a
refractive index gradient
d = 700 nm, λ = 500 nm,
gradient n = 1.33–1.5

Fig. 2.5 Scattering pattern of
a homogeneous chiral sphere
d = 700 nm. λ = 500 nm,
n = 1.5, kb=0.1

Fig. 2.6 Scattering pattern
of a homogeneous sphere
in a Gaussian laser beam
d = 700 nm, λ = 500 nm,
beam waist diameter =
500 nm, n = 1.5

Fig. 2.7 Scattering pattern of
a homogeneous slighly rough
sphere beam d = 700 nm, λ =
500 nm, epsilon (perturbation)
= 0.2, n = 1.5
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Fig. 2.8 Scattering pattern of
an unisotropic sphere beam d
= 700 nm, λ = 500 nm, nx =
1.2, ny = 1.3, nz = 1.5

2.21 Conclusion

What is the current state of Mie’s theory? It seems to be as lively as ever. It is con-
tinuously used for code validation. Wherever particles can be considered spherical,
Mie scattering is applicable. It is applied everyday in diffraction-based instruments
to characterise particles. To this day, new approaches in computing Mie scattering
are developed and the methods are continuously extended to cover related scattering
problems such as coated spheres.

It is not only used for educating students and the validation of more advanced
theories but also it is the basis of radiative transfer, Lidar and optical particle char-
acterisation. Even today there is still progress in programming and new programs
which are based on Mie theory or which extend Mie theory in some respect show up
every year.

In this chapter an overview of the progress in developing light scattering programs
suitable for Mie-related scattering problems has been given. A short description of
each technique has been presented and suitable references have been provided such
that the reader can find more detailed information about the various methods and
sources of computer programs.

The state of the art in numerical light scattering modelling is progressing rapidly
especially with fast advancing research fields such as nanophotonics and near-field
optics. With almost all concepts there was much progress in the recent years.

The recent advances in computer hardware and the development of fast algorithms
with reduced computational demands and memory requirements have made the exact
numerical solution of the problem of scattering from large scattering particles highly
feasible. Today, scattering by spherical particles of realistic sizes can be computed in
an efficient way. Especially, the number of open source programs and development
projects is increasing continuously.
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