
Chapter 2
Entropy Guided Transformation
Learning

Abstract This chapter details the entropy guided transformation learning algorithm
[8, 23]. ETL is an effective way to overcome the transformation based learning
bottleneck: the construction of good template sets. In order to better motivate and
describe ETL, we first provide an overview of the TBL algorithm in Sect. 2.1. Next,
in Sect. 2.2, we explain why the manual construction of template sets is a bottleneck
for TBL. Then, in Sect. 2.3, we detail the entropy guided template generation strategy
employed by ETL. In Sect. 2.3, we also present strategies to handle high dimensional
features and to include the current classification feature in the generated templates.
In Sects. 2.4–2.6 we present some variations on the basic ETL strategy. Finally, in
Sect. 2.7, we discuss some related works.
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2.1 Transformation Based Learning

Transformation based learning is a supervised ML algorithm usually applied to NLP
tasks. TBL generates a set of transformation rules that correct classification mistakes
of a baseline classifier [3]. The following three rules illustrate the kind of transfor-
mation rules learned by TBL.

pos [0] =ART pos [1] =ART → pos [0] =PREP
pos [0]=ART pos [1] =V word [0] =a → pos [0] =PREP
pos [0]=N pos [−1] =N pos [−2] =ART → pos [0] =ADJ

These rules were learned for Portuguese POS tagging. They check the following
features: pos [0], the POS tag of the current word; pos [1], the POS tag of the
next word; pos [−1], the POS tag of the previous word; pos [−2], the POS tag of
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Fig. 2.1 Transformation
based learning

the word two before; and word [0], the current lexical item. The first rule should
be read as

“IF the POS tag of the current word is an article
AND the POS tag of the next word is an article

THEN change the POS tag of the current word to preposition”

TBL rules are composed of two parts: the left hand side and the right hand side.
The left hand side is a conjunction of feature = value tests, whereas the right hand
side indicates a value assignment to a target feature. TBL rules must follow patterns,
called rule templates, that specify which feature combinations should appear in the
rule left-hand side. The template set defines the candidate rules space to be searched.
Briefly, a template is an uninstantiated rule. The following three templates were used
to create the previously shown rules.

pos [0] pos [1]
pos [0] pos [1] word [0]
pos [0] pos [−1] pos [−2]

TBL requires three main inputs:

(i) a correctly labeled training set;
(ii) an initial (baseline) classifier, the baseline system (BLS), which provides an

initial labeling for the training examples. Usually, the BLS is based on simple
statistics of the correctly labeled training set, such as to apply the most frequent
class;

(iii) a set of rule templates.

The TBL algorithm is illustrated in Fig. 2.1. The central idea in the TBL learning
process is to greedily learn rules that incrementally reduces the number of classifi-
cation errors produced by the initial classifier. At each iteration, the algorithm learns
the rule that has the highest score. The score of a rule r is the difference between the
number of errors that r repairs and the number of errors that r creates. The learning
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process stops when there are no more rules whose score is above a given threshold.
The rule score threshold is a parameter of TBL.

A pseudo-code of TBL is presented in Algorithm 1. In this pseudo-code, the apply
function classifies the given training set examples using the given initial classifier or
transformation rule. The isWronglyClassified function checks whether the example
is misclassified or not. This checking is done by comparing the current example class
to the correct class. The instantiateRule function creates a new rule by instantiating
the given template with the given example context values. The countCorrections
function returns the number of corrections that a given rule would produce in the
current training set. Similarly, the countErrors function returns the number of mis-
classifications that a given rule would produce in the current training set. There are
also several variants of the TBL algorithm. FastTBL [14] is the most successful,
since it achieves a significant speedup in the training time while still achieving the
same performance as the standard TBL algorithm. We have also developed a TBL
variant that produces probabilistic classifications [9].

When using a TBL rule set to classify new data, we first apply the Initial Classifier
to the new data. Then we apply the learned rule sequence. The rules must be applied
following the same order they were learned.

2.2 TBL Bottleneck

TBL templates are meant to capture relevant feature combinations. Templates are
handcrafted by problem experts. Therefore, TBL templates are task specific and
their quality strongly depends on the problem expert skills to build them. For
instance, Ramshaw and Marcus [29] propose a set of 100 templates for the phrase
chunking task. Florian [12] proposes a set of 133 templates for the named entity
recognition task. Higgins [16] handcrafted 130 templates to solve the semantic role
labeling task. Elming [11] handcrafted 70 templates when applying TBL for machine
translation.

The development of effective template sets is a difficult task. It usually involves a
lengthy trial-and-error strategy or the adaptation of an existent, known-to-perform-
well-on-a-similar-task template set to the new task [13]. The template developer
should indicate the relevant feature combinations, otherwise the TBL algorithm can
not learn effective rules. When the number of features to be considered is large,
the effort to manually combine them is extremely increased, since there are 2|F |
feature combinations, where F denotes the feature set. On the other hand, the
template developer can not generate a very large number of templates, since the
training time and memory requirements become intractable. Moreover, Ramshaw and
Marcus [28] argue that overfitting is likely when irrelevant templates are included.
Overfitting is the phenomenon of training too complex a model that do not generalize
for new data.



12 2 Entropy Guided Transformation Learning

Even when a template set is available for a given task, it may not be effective
when we change from a language to another. For instance, dos Santos and Oliveira
[10] extend the Ramshaw and Marcus [29] template set, which was handcrafted for
English phrase chunking, by adding six templates specifically designed for
Portuguese phrase chunking.

Based on the above, it can be concluded that the human driven construction of
good template sets is a bottleneck on the effective use of the TBL approach.

2.3 Entropy Guided Template Generation

The main propose of ETL is to overcome the TBL bottleneck. In this section, we
explain the strategy for automatic template generation employed by ETL. The tem-
plate generation process is entropy guided. It uses information gain (IG) in order to
select the feature combinations that provide good template sets. IG, which is based
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Fig. 2.2 Entropy
guided transformation
learning

on the data entropy, is a key measure for many feature selection strategies. The ETL
algorithm is illustrated in the Fig. 2.2.

The template generation strategy employed by ETL uses decision trees (DT)
induction to obtain entropy guided feature selection. The most popular DT learning
algorithms [27, 30] use the IG measure in their feature selection step. Moreover,
most DT induction algorithms are efficient in terms of CPU and memory usage
[30]. Hence, they provide a quick way to obtain entropy guided feature selection.
However, DT algorithms that use IG are usually ineffective to deal with high dimen-
sional features. Therefore, in ETL, we developed an effective way to handle high
dimensional features. ETL also enables the inclusion of the current classification
feature in the generated templates. This kind of feature, which changes during the
learning process, is not used in ML algorithms like DTs.

The remainder of this section is organized as follows. First, we review the IG
measure and the DT learning method. Next, we show how to automatically generate
templates from decision trees. Next, we present the ETL true class trick, which
enables the generation of templates that use the current classification feature. Finally,
we detail how ETL handles high dimensional features.

2.3.1 Information Gain

Information gain is a statistical measure commonly used to assess feature relevance
[7, 15, 26]. IG is based on the Entropy concept, which characterizes the impurity of
an arbitrary collection of examples. Given a training set T whose examples assume
classes from the set C . The entropy of T relative to this classification is defined as

H(T ) = −
|C|∑

i=1

PT (ci ) log2 PT (ci ) (2.1)
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Fig. 2.3 Decision tree
learning

where ci is a class label from C , |C | is the number of classes and PT (ci ) is estimated
by the percentage of examples belonging to ci in T .

In feature selection, information gain can be thought as the expected reduction in
entropy H(T ) caused by using a given feature A to partition the training examples
in T . The information gain I G(T, A) of a feature A, relative to an example set T is
defined as

IG(T, A) = H(T ) −
∑

v∈V alues(A)

|Tv|
|T | H(Tv) (2.2)

where Values(A) is the set of all possible values for feature A, and Tv is the subset
of T for which feature A has value v [24]. When using information gain for feature
selection, a feature A is preferred to feature B if the information gain from A is
greater than that from B.

2.3.2 Decision Trees

Decision tree induction is a widely used machine learning algorithm [26]. Quinlan’s
C4.5 [27] system is the most popular DT induction implementation. It recursively
partitions the training set using the feature providing the largest information gain.
This results into a tree structure, where the nodes correspond to the selected features
and the arc labels to the selected feature values. After the tree is grown, a pruning
step is carried out in order to avoid overfitting.

In Fig. 2.3, we illustrate the DT induction process for Portuguese POS tagging.
Here, the five selected features are: pos[0], the POS tag of the current word;
pos [−1], the POS tag of the previous word; pos[1], the POS tag of the next
word; pos [−2], the POS tag of the word two before; and word [−1], the previous
lexical item. The feature values are shown in the figure as arc labels.

We use the C4.5 system to obtain the required entropy guided selected features.
We use pruned trees in all experiments shown here.
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Fig. 2.4 Decision tree template extraction

2.3.3 Template Extraction

In a DT, the more informative features appear closer to the root. Since we just want
to generate the most promising templates, we combine first the more informative
features. Hence, as we traverse the DT from the root to a leaf, we collect the features
in this path. This feature combination provides an information gain driven template.
Additionally, paths from the root to internal nodes also provide good templates.

It is very simple to obtain these templates from C4.5’s output. From the given
DT, we eliminate the leaves and the arc labels. We keep only the tree structure and
the node labels. Next, we execute a depth-first traversal of the DT. For each visited
tree node, we create a template that combines the features in the path from the root
to this node. Figure 2.4 illustrates the template extraction process. In this figure, the
template in bold is extracted from the tree path in bold.

2.3.4 True Class Trick

TBL learning can access intermediate results of the classification process as a feature.
Moreover, due to the iterative nature of the error correction approach adopted by
TBL, the information in the current classification feature becomes more precise
throughout the rule application process. For instance, when applying TBL to NLP
tasks, one usual feature is the current classification of the words within a context
window. This behavior is very desirable for NLP tasks, where local classification
dependencies play an important role. In order to explore this TBL property in the
ETL approach, the current classification feature must be available for selection in
the template generation process. We include this feature by providing the DT learner
with the initial and true classification of the words. We call this strategy as the true
class trick.
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When creating DT examples, we use the following information as the value of
the current classification features: (1) the initial class label for the target word; and
(2) the true class label for the neighbor words. Using the true class labels for the
neighbor words produce better results, since they contain a precise information. This
reflects what the TBL algorithm finds in the context window after some iterations.
At this point, the total number of remaining errors is small, dispersed and spread
throughout the data. Hence, around an incorrectly classified word is very likely that
all the words are correctly classified. Using the true class labels for the target word
is not allowed, since it would imply the use of the task solution as an input feature.

The use of the true class labels at training time is a general modeling strategy. It
is usual for algorithms that do not have access to intermediate classification results,
such as DT and support vector machines (SVM). For instance, when training an
AdaBoost system for SRL, Surdeanu et al. [31] use the true class labels of the left
side words. At test time, they use the class labels predicted by the classifier, since
the classification is done in a left to right fashion. Kudo and Matsumoto [19] use a
similar strategy when applying SVM for Phrase Chunking. The advantage of TBL
over these algorithms is that, by default, it has access to the current classification of
the words in both left and right sides, both at training and at test time. Furthermore,
the ETL true class trick allows the effective use of this TBL property.

2.3.5 High Dimensional Features

High dimensional features are characterized by having a large number of possi-
ble values. For instance, the feature words in a text is high dimensional, since it
can assume thousands of different values. This kind of feature is ineffective when
information gain is used as the feature informativeness measure. IG has a bias that
favors high dimensional features over those with a few values [24]. Since we use
information gain in the ETL method, through DT learning, we must overcome this
problem.

Although the C4.5 system uses the IG ratio measure to avoid the IG bias, the
use of high dimensional features is still ineffective. When these features are present
in the training set, usually the C4.5 system does not make use of them. Therefore,
we include a preprocessing step. This step consists in pruning the high dimensional
features in order to retain only their most informative values.

Let T be a training set that contains the high dimensional feature A. For each
value v that A assumes in T , we compute its individual information gain using the
following equation.

I G(T, A, v) = H(T ) − |Tv|
|T | H(Tv) (2.3)

where H(T ) is the entropy of the training set T , Tv is the subset of T for which
feature A has value v, and H(Tv) is the entropy of the subset Tv. After the individual
IGs are computed, we sort the feature values in decreasing order of IG. Let SV be
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Table 2.1 ETL Template
evolution

Phase Template set

1 pos [0]
2 pos [0] pos [−1]

pos [0] pos [1]
3 pos [0] pos [−1] pos [1]

pos [0] pos [−1] word [−1]
4 pos [0] pos [−1] pos [1] pos [−2]

the set containing the top z IG values. Then, for each example in T whose value for
A is not in SV , we replace that value by a common dummy value. Observe that z is
a parameter of the ETL algorithm.

Note that this preprocessing is used only at the DT learning stage. All feature
values are maintained at the transformation rule learning stage.

2.4 Template Evolution

TBL training time is highly sensitive to the number and complexity of the applied
templates. Curran and Wong [6] argued that we can better tune the training time
versus templates complexity trade-off by using an evolutionary template approach.
The main idea is to apply only a small number of templates that evolve throughout
the training. When training starts, templates are short, consisting of few feature
combinations. As training proceeds, templates evolve to more complex ones that
contain more feature combinations. In this way, only a few templates are considered
at any point in time. Nevertheless, the descriptive power is not significantly reduced.

ETL provides an easy scheme to implement the template evolution strategy. First,
we partition the learned template set by template size. Let Tk be the template set
containing all templates of size k, where k = 1, ..., K and K equals to the largest
template size. Next, we split the TBL step into K consecutive phases. In phase k,
TBL learns rules using only templates from Tk . For instance, using the tree shown in
Fig. 2.4, we have four TBL training phases. In Table 2.1, we show the template sets
used in the four TBL phases when the tree shown in Fig. 2.4 is used.

Using the template evolution strategy, the training time is decreased by a factor
of five for the English phrase chunking task. This is a remarkable reduction, since
we use an implementation of the fastTBL algorithm [25] that is already a very fast
TBL version. Training time is a very important issue when modeling a system with
a corpus-based approach. A fast ML strategy enables the testing of different mod-
eling options, such as different feature sets. The efficacy of the rules generated by
ETL template evolution is quite similar to the one obtained by training with all the
templates at the sametime.
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2.5 Template Sampling

Although the template evolution strategy produces a significant speedup in the ETL
training time, it has a poor performance when it is necessary to learn all the possible
rules at each consecutive TBL phase. If an excessive number of rules are learned in
the earlier phases, the posterior phases will have just a few errors to correct. However,
the main problem is that the templates of the earlier phases are very simple and may
generate poor rules if all the rules with positive score are learned. Therefore, in cases
where it is necessary to learn the largest rule set possible, template evolution is not
suitable. On the other hand, in many cases this is not a problem. Usually, in order to
avoid overfitting, we only learn rules whose score is at least two.

Nevertheless, there are cases where the learning of the largest rule set is necessary.
For instance, when training an ensemble of classifiers using different training data
sets, overfitting can be beneficial. This is because, in this specific case, overfitting
can introduce diversity among the ensemble members. As an example, some DT
ensemble learning methods do not use pruning [1, 2, 17].

In our ETL implementation, we also include the template sampling functionality,
which consists in training the ETL model using only a randomly chosen fraction
of the generated templates. Besides being simple, this strategy provides a speed up
control that is very useful when multiple ETL models are to be learned.

2.6 Redundant Transformation Rules

As previously noticed by Florian [13], the TBL learning strategy shows a total lack
of redundancy in modeling the training data. Only the rule that corrects the largest
number of errors is selected at each learning iteration. All alternative rules that may
correct the same errors, or a subset of the errors, are ignored. This greedy behavior
is not a problem when the feature values tested in the alternative rules and the ones
tested in the selected rule always co-occur. Unfortunately, this is not always the case
when dealing with sparse data.

Florian includes redundancy in his TBL implementation by adding to the list of
rules, after the training phase has completed, all the rules that do not introduce error.
Florian shows that these additional rules improve the TBL performance for tasks
were a word classification is independent of the surrounding word classifications.

In our ETL implementation, we also include redundancy in the TBL step, but in
a different way. At each iteration, when the best rule b is learned, the algorithm also
learns all the rules that do not include errors and correct exactly the same examples
corrected by b. These redundant rules do not alter the error-driven learning strategy,
since they do not provide any change in the training data. Their inclusion is compatible
with the standard TBL framework, in the sense that applying the resulting rule set
for the training data results in the same number of errors, with or without redundant
rules. This kind of redundancy is more effective for low scored rules, since they are
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more likely to use sparse feature values and their selection is supported by just a few
examples.

For the four tasks presented in this work, the inclusion of redundant rules does not
improve the performance of single ETL classifiers. Actually, in some cases there is a
decrease in the classification performance. We believe this performance degradation
is due to a greater overfitting. Redundant rules increase the overfitting because more
information from the training set is included in the learned model. However, the
inclusion of redundancy improves the classification quality when several classifiers
are combined. Since overfitting can be beneficial when multiple classifiers are used.

2.7 Related Work

Liu et al. [20] present a method for automatic template generation that uses DT.
In their method, the tree-guided transformation-based learning (TTBL), two DT’s
are generated: one that uses all the examples and another that uses only the
examples wrongly classified by the initial classifier. They produce the template set by
extracting templates from the two trees. They use the second tree with the aim of pro-
ducing templates that focus on the errors in the initial classification. Liu et al. apply
the TTBL strategy to eliminate homograph ambiguity in a Mandarin text-to-speech
system. For this task, TTBL obtains results comparable to the ones of handcrafted
templates. TTBL is similar to ETL in the sense that they extract templates from DTs.
However, the ETL template generation process is more versatile, since it uses the
initial classification as an input feature. The ETL true class trick enables the use of
the current classification feature in an effective way. Moreover, ETL [8] has been
published earlier than TTBL [20].

An evolutionary scheme based on genetic algorithms (GA) to automatically
generate TBL templates is presented by Milidiú et al. [21, 22]. Using a simple genetic
coding, the generated template sets show an efficacy close to the one of handcrafted
templates. The main drawback of this strategy is that the GA step is computationally
expensive, since it is necessary to run the TBL algorithm in order to compute the
fitness for each individual of the population. If we need to consider a large context
window or a large number of features, it becomes infeasible.

Corston-Oliver and Gamon [5] present a combination of DTs and TBL. They
derive candidate rules from the DT, and use TBL to select and apply them. Their work
is restricted to binary features only. ETL strategy extracts more general knowledge
from the DT, since it builds rule templates. Furthermore, ETL is applied to any kind
of discrete features.

Carberry et al. [4] introduce a randomized version of the TBL framework. For
each error, they try just a few randomly chosen templates from the given template set.
This strategy speeds up the TBL training process, enabling the use of large template
sets. However, they use handcrafted templates and variations of them, which implies
that a template designer is still necessary.
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Hwang et al [18] use DT decomposition to extract complex feature combinations
for the weighted probabilistic sum model (WPSM). They also extract feature com-
binations that use only some nodes in a tree path. This is required to improve the
effectiveness of the WPSM learning. Their work is similar to ours, since they use
DT’s for feature extraction. Nevertheless, the ETL learned template set is simpler
than theirs, and is enough for effective TBL learning.
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