
Chapter 2
Introduction to Isotope Effect

2.1 The Nucleons and its Constituents

An atom consists of an extremely small, positively charged nucleus (see Fig. 2.1)
surrounded by a cloud of negatively charged electrons. Although typically the nucleus
is less than one ten-thounsandth the size of the atom, the nucleus contains more than
99.9% of the mass of the atom. Atomic nucleus is the small, central part of an
atom consisting of A-nucleons, Z-protons, and N-neutrons (Fig. 2.2). The atomic
mass of the nucleus, A, is equal to Z + N. A given element can have many different
isotopes, which differ from one another by the number of neutrons contained in
the nuclei [1, 2]. In a neutral atom, the number of electrons orbiting the nucleus
equals the number of protons in the nucleus. As usually nuclear size is measured
in fermis (1 fm = 10−15 m, also called femtometers). The basic properties of the
atomic constituents can be read in Table 2.1.

As we can see from Table 2.1, protons have a positive charge of magnitude e =
1.6022 × 10−19 C (Coulombs) equal and opposite to that of the electron. Neutrons
are uncharged. Thus a neutral atom (A, Z) contains Z electrons and can be written
symbolically as A

Z XN (see also Fig. 2.2). Here X is chemical symbol and N is neutron
number and is equal N = A − Z. The masses of proton and neutron are almost the
same, approximately 1836 and 1839 electron masses (me), respectively. Apart from
electric charge, the proton and neutron have almost the same properties. This is why
there is a common name of them: nucleon. Both the proton and neutron are nucleons.
As we well know the proton is denoted by letter p and the neutron by n. Chemical
properties of an element are determined by the charge of its atomic nucleus, i.e., by
the number protons (electrons). It should be added, that although it is true that the
neutron has zero net charge, it is nonetheless composed of electrically charged quarks
(see below), in the same way that a neutral atom is nonetheless composed of protons
and electrons. As such, the neutron experiences the electromagnetic interaction. The
net charge is zero, so if we are far enough away from the neutron that it appears to
occupy no volume, then the total effect of the electric force will add up to zero. The
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Fig. 2.1 Structure within the atom. If the protons and neutrons in this picture were 10 cm across,
then the quarks and electrons would be less than 0.1 mm in size and the entire atom would be about
10 km across (after http://www.lbl.gov/abc/wallchart/)

Fig. 2.2 Atomic
nomenclature

movement of the charges inside the neutrons does not cancel, however, and this is
what gives the neutron its nonzero magnetic moment.

Each of the atomic constituents a spin 1/2 in units of � (= h/2π ) and is an example
of the class of particles of half-integer spin known as fermions. Fermions obey the
exclusion principle of Pauli, which determines the way electrons can occupy atomic
energy states. The same rule applies, as will be shown below, to nucleons in nuclei.
Associated with the spin is a magnetic dipole moment. Compared with the magnetic
moment of electron, nuclear moment is very small. However, they play an important

http://www.lbl.gov/abc/wallchart/
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Table 2.1 The basic properties of the atomic constituents

Particle Charge Mass (u) Spin (�) Magnetic moment (JT−1)

Proton e 1.007276 1/2 1.411×10−26

Neutron 0 1.008665 1/2 −9.66×10−27

Electron −e 0.000549 1/2 9.28×10−24

role in the theory of nuclear structure. It may be surprising that the uncharged neu-
tron has a magnetic moment. This reflects the fact that it has an underlying quark
substructure (see, e.g. [3]), consisting of charged components. Electron scattering off
these basic nuclear constituents (proton and neutron) makes up for the ideal probe to
obtain a detailed view of the internal structure. A very detailed analysis using the best
available data has been carried out recently by Kelly [4]; these data originate from
recoil or target polarizations experiments. In Fig. 2.3 the proton charge and magne-
tization distribution are given. What should be noted is the softer charge distribution
compared to the magnetic one for proton. These resulting densities are quite similar
to Gaussian density distributions that can be expected starting from quark picture
(for details, see below) and, at the same time more realistic than the exponential
density distributions [5–10]. The neutron charge and magnetization are also given
in Fig. 2.3. What is striking is that magnetization distribution resembles very closely
the corresponding proton distribution. Since scattering on neutrons normally carries
the larger error, the neutron charge distribution is not precisely fixed. Nonetheless,
one notices that the interior charge density is balanced by a negative charge density,
situated at the neutron surface region, thereby making up for the integral vanishing
of the total charge of the neutron.

We should recall from atomic physics that the quantity e�/2m is called magneton.
For atomic motion we use the electron mass and obtain the Bohr’s magneton μB =
5.7884×10−5 eV/T. Putting in the proton mass we have the nuclear magneton μN =
3.1525×10−8 eV/T. Note that μN � μB owing to the difference in the masses, thus
under most circumstances atomic magnetism has much larger effects than nuclear
magnetism. Ordinary magnetic interactions of matter (ferromagnetism, for example)
are determined by atomic magnetism.
We can write

μ = gl lμN (2.1)

where gl is the g-factor associated with the orbital angular momentum l. For protons
gl = 1, because neutrons have no electric charge; we can use Eq. (2.1) to describe
the orbital motion of neutrons if we put gl = 0. We have thus been considering only
the orbital motion of nucleons. Protons and neutrons, like electrons, as mentioned
above also have intrinsic or spin magnetic moments, which have no classical analog
but which we write in the same form as Eq. (2.1):

μ = gssμN (2.2)
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Fig. 2.3 Comparison between charge (ρch) and magnetization (ρm ) for the proton (a) and neutron
(b). Both densities are normalized to

∫
drr2ρ(r) = 1 (after [5–7])

where s = 1/2 for protons, neutrons, and electrons (see Table 2.1). The quantity gs
is known as the spin g-factor and is calculated by solving a relativistic quantum
mechanics equation (see, also [8–10]). For free nucleons, the experimental values are
far from the expected value for point particles: proton–gs = 5.5856912±0.0000022
and neutron −gs = 3.8260837 ± 0.0000018.

2.1.1 Mass and Nuclear Binding Energy

Inside a nucleus, neutrons and protons interact with each other and are bound within
the nuclear volume under the competing influences of attractive nuclear and repulsive
electromagnetic forces. This binding energy has a direct effect on the mass of an atom.
It is therefore not possible to separate a discussion of nuclear binding energy; if it
were, then nucleon would have masses given by Zm p + Zmn and the subject would
hardly be of interest.

As is well known, in 1905, Einstein presented the equivalence relationship
between mass and energy: E = mc2. From this formula, we see that the speed
of light c is very large and so even a small mass is equivalent to a large amount
of energy. This is why in nuclear physics it is more convenient to use a much
smaller unit called megaelectronvolt (1 MeV = 1.602 × 10−13 J). On the atomic
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scale, 1 au is equivalent to 931.5 MeV/c2, which is why energy changes in atoms
of a few electron volt cause insignificant changes in the mass of atom. Nuclear
energies, on the other hand, are millions of electron volts and their effects on
atomic mass are easily detectable. For example, the theoretical mass of 35

17Cl is
17×1.00782503+18×1.00866491 = 35.28899389 amu. Its measured (see below)
mass is only 34.96995 amu. Therefore, the mass defect and binding energy of 35

17Cl
are

� = 0.32014389 amu.

EB = 0.32014389 × 931.5

35
= 8.520 MeV/nucleon (2.3)

and in common sense the binding energy is determined by next relation

EB = Zm p + Nmn − B/c2 (2.4)

where B/c2 is the actual nuclear mass.
As we can see, the binding energy of the atoms of most elements have values

ranging from about 7.5 to 8.8 MeV [11]. The binding energy per nucleon rises slightly
with increasing mass number and reaches a maximum value for 62Ni. Thereafter the
binding energies decline slowly with increasing mass number. The binding energies
of the atoms of H, He, Li, and Be are lower than the binding energies of the other
elements (see, also Fig. 2.5 below).

The measurement of nuclear masses occupies an extremely important place in
the development of nuclear physics. Mass spectrometry (see, e.g. [12–15]) was the
first technique of high precision available to the experimenter, since the mass of a
nucleus increases in a regular way with the addition of one proton or neutron. In
mass spectrometers, a flux of identical nuclei (ions), accelerated to a certain energy,
is directed to a screen (photoplate) where it makes a visible mark. Before striking the
screen, this flux passes through magnetic field, which is perpendicular to velocity of
the nuclei. As a result, the flux is deflected to certain angle. The greater the mass, the
smaller the angle. Thus, measuring the displacement of the mark from the center of
the screen, we can find the deflection angle and then calculate the mass. The example
of a mass spectrum of different isotopes of krypton is shown in Fig. 2.4. From the
relative areas of the peaks it can determine the abundance of the stable isotopes of
krypton (for details see [12–15]).

Relative masses of nuclei can also be determined from the results of nuclear
reactions or nuclear decay. For example, if a nucleus is radioactive and emits an
α-particle, we know from energy conservation that its mass must be greater than that
of decay products by the amount of energy released in the decay. Therefore, if we
measure the letter, we can determine either of the initial or the final nuclear masses if
one of them is unknown. An example of this is presented briefly below. At present we
shall illustrate some typical reactions, bridging the gap between “classical” methods
and the more advanced “high-energy” types of experiments [4–7].
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Fig. 2.4 A mass-spectrum analysis of krypton. The ordinates for the peaks at mass positions 78
and 80 should be divided by 10 to show these peaks in their true relation to the others (after [11])

Fig. 2.5 The binding energy per nucleon B/A as a function of the nuclear mass number A
(after [16])

The possible, natural decay processes can also be brought into the class of reaction
processes with the conditions: no incoming light particle α and Q > 0. We list them
in the following sequence:

α-decay:
A
Z XN →A−4

Z−2 YN−2 +4
2He2 (2.5)
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Table 2.2 Masses of electron, nucleons and some nuclei (after [11])

Particle Number of protons Number of neutrons Mass (MeV)

e 0 0 0.511
p 1 0 938.2796
n 0 1 939.5731
2
1H 1 1 1876.14
3
1H 1 2 2808.920
3
2He 2 1 2808.391
4
2He 2 2 3728.44
7
3Li 3 4 6533.832
9
4Be 4 5 8392.748
12
6 C 6 6 11174.860
16
8 O 8 8 14895.077
238
92 U 92 146 221695.831

β-decay:
A
Z XN →A

Z−1YN+1 + e+ + νe (p → n-type) (2.6)

A
Z XN →A

Z+1YN−1 + e− + νe (n → p- type) (2.6′)

A
Z XN+e− + e− →A

Z−1YN+1 + νe (e−-capture) (2.6′′)

Here e−, e+, νe and νe are electron, positron, neutrino and antineutrino.
γ -decay:

A
Z X∗

N →A
ZXN + hν (2.7)

Here X∗ is excited nuclei. Nuclear fission:

A
Z XN →A1

Z1
YN1 +A2

Z2
UN2 + x·n. (2.8)

Since mass and energy are equivalent (see Einstein formula above), in nuclear
physics it is customary to measure masses of all particles in the units of energy
(MeV). Examples of masses of subatomic particles are given in Table 2.2.

As was noted above, nuclear binding energy increases with the total number of
nucleons A and, therefore, it is common to quote the average binding energy per
nucleon (B/A). The variation of B/A with A is shown in Fig. 2.5. Several remarkable
features are immediately apparent. First of all, the curve is relatively constant except
for the very light nuclei. The average binding energy of most nuclei is, to within
10%, about 8 MeV per nucleon. Second, we note that the curve reaches peak near
A = 60, where the nuclei are most tightly bound, light and very heavy nuclei are
containing less bound nucleons. Thus, the source of energy production in fusion of
light nuclei or fusion of very heavy nuclei can be source of energy [16, 17].

The interactions between two nucleons (NN) is one of the central questions in
physics and its importance goes beyond the properties of nuclei. Nucleons can com-
bine to make four different few-nucleon systems, the deuteron (p + n), the triton
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Fig. 2.6 Coulomb potential
used for defining the nuclear
radius R

(p + 2n), the helion (2p + n) and the α-particle (2p + 2n) (see, e.g. [18–21]). These
particles are grouped together because they are stable (excluding from the radioactive
triton which has a half-life of about 12 years and so may be treated as a stable entity
for most practical purpose), have no bound excited states (except the α-particles
which have two excited states at about 20 and 22 MeV), and are frequently used as
projectiles in nuclear investigations. The absence of stable particles of mass of five
provides a natural boundary between few nucleon systems and heavier nuclei [20].
Few nucleon systems provide the simplest systems to study nuclear structure. The
deuteron provides important information about the nucleon–nucleon interaction.
Below we have indicated a few of the properties of the N–N force:

1. At short distances it is stronger than the Coulomb’s force; the nuclear force can
overcome the Coulomb’s repulsion (see also Fig. 2.6) of protons in the nucleus.

2. At long distances, of the order of atomic sizes, the nuclear force is negligibly
feeble. The interaction among nuclei in a molecule can be understood based only
on the Coulomb’s force.

3. Some fundamental particles are immune from the nuclear force. At present time
we have no evidence from atomic structure, for example, that electrons feel the
nuclear force at all.

4. The N–N force seems to be nearly independent of whether the nucleons are neu-
trons or protons. As is well known this property is called charge independence.

5. The N–N force depends on whether the spins of the nucleons are parallel or
antiparallel.

6. The N–N force includes a repulsive term, which keeps the nucleons at a certain
average separation.

7. The N–N force has a noncentral or tensor component. This part of the force does
not conserve orbital angular momentum, which is a constant of the motion under
central forces.
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2.2 Manifestation Isotope Effect in Condensed Matter

Studies of vibrational properties of crystals containing impurities (defects of various
type [22]) were described in detail in a number of excellent review [23, 24]. The
main characteristics of a phonon spectrum are the dispersion relation ω (−→q ) and the
frequency distribution function g(ω) [25]. Both are mainly determined in experiments
on the scattering of thermal neutrons, provided it turns out to be possible to separate
coherent and incoherent scattering [26]. An important role of neutrons in studying
lattice dynamics is related to the fact that the energy of thermal neutrons (kBT ∼
10−1 − 10−2 eV) is of the same order as the energy of phonons. At the same time
their de Broglie wavelength is comparable with the interatomic distance in crystals
[27, 28].

The simplest defects in a crystalline lattice that distort its translational symmetry
are isotopes of the elements forming a crystal. If the impurity concentration (iso-
topes) in a crystal is high enough that the interaction between impurity atoms (ions)
plays an important role, such a system is called a mixed crystal with a various degree
of disorder. There are two types of disordered systems: disordered alloys (isotopic
mixtures) or mixed crystals and glassy substances, which possess a more pronounced
spatial disorder than configurational disorder. The first theoretical dynamic model of
mixed crystals was a linear chain, which represented the development of the virtual
model (Nordheim, 1931; Pant and Joshi, 1969 (see, e.g. [47])). Despite its simplicity,
this model adequately described general features of lattice dynamics of mixed alkali-
halide crystals. This model uses two independent force constants f0 and f′0, which are
obtained, as a rule, from the observed frequencies of LO phonons in pure substances,
according to the expression f = ω2mM/2(m+M), where m and M (M′) are masses
of crystal-forming particles. The dependence of the force constant on concentration
was described by equation F = f0x − ( f ′

0 − f0)x by assuming a linear dependence of
f0

(
f ′
0

)
on concentration x (see, also [22] and references therein). A more complex

concentration dependence of the force constant was considered in detail in com-
prehensive reviews [29–33], where the cluster model and isodisplacement model in
lattice dynamics, based on the Coherent Potential Approximation (CPA) or averaging
of the T-matrix, were also described.

2.2.1 Isotope Effect in Phonon Spectra

a. First-order Raman Spectra

In view of the obvious mass dependence of phonon frequencies, dynamic lattice
properties have been studied intensively, mainly by Raman scattering. In addition
to changes in the average atomic mass, mass fluctuation due to isotopic disorder
as will be shown below also affects phonon frequencies and line-widths. Elemental
semiconductors (C, Si, Ge, α-Sn) with diamon-like structure are an ideal object to
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study the isotopic effects by the method of the Raman scattering. At the present time
the high-quality isotopically enriched indicated crystals are also available. In this
part we describe our understanding of the first-order Raman spectra of the isotope-
mixed elemental and compound semiconductors (CuCl, GaN, GaAs) with zinc-blend
structure.

The materials with diamond structure discussed here have a set of threefold-
degenerate phonons (frequency ω0) at the centre (

−→
k = 0, 
-point) of the Brillouin

zone (BZ) (see, also [26]). These phonons are Raman active but infrared inactive
[34]. Let us consider the case of Ge, with the five isotopes [35–37]. The uninitiated
will ask himself whether one should see five phonons (or more if he knows that there
are two atoms per primitive cell (PC)) corresponding to the five different masses, or
only one corresponding to the average mass. The reason why the Raman spectrum
(see, Fig. 2.7) of natural Ge does not show the local modes of the individual iso-
topes is that the scattering potentials for the phonons due to the mass-defects (mass
fluctuations) are too small to induce bound states (i.e., Anderson localization of the
phonons [38, 39]). Really a three-dimensional crystal fluctuations in the parameters
of the secular equation lead to localization if these fluctuation (measured in units
of frequency, i.e., (�M/M)ω0) are larger than the bandwidth of the corresponding
excitations. For optical phonons in Ge this bandwidth is ∼100 cm−1 (see, e.g. [40])
while (�M/M)ω0 ≤ 0.4×300 = 12 cm−1). Hence no phonon localization (with lines
corresponding to all pairs of masses) is expected, in agreement with the observation
of only line at 304 cm−1 (∼80 K) for natural Ge.

Figure 2.7a demonstrates the dependence of the shape and position of the first-
order line of optical phonons in germanium crystals on the isotope composition at
liquid nitrogen temperatures [36, 37]. The lines in these spectra are fully resolved
instrumentally (the experimental resolution was better than 0.1 cm−1) and their width
is caused by homogeneous broadening. The centroid of the Raman line shifts follow-
ing relation ω0 ∼ M−1/2. This behavior is expected within harmonic approximation.
Additional frequency shifts are observed [41] for the natural and alloy samples which
arise from their isotope mass disorder. This additional shift is 0.34 ± 0.04 cm−1 in
natural Ge and 1.06 ± 0.04 cm−1 (Fig. 2.8) in the 70/76Ge alloy sample, which has
nearly the maximum isotopic disorder possible with natural isotopes.

As it is well known, the natural diamond exhibits a single first-order Raman’s
peak at ωLTO (
) = 1332.5 cm−1. Figure 2.7b shows the first-order Stokes Raman
spectra for several samples with different isotope ratios [43]. The Raman energy
is found to increase continuously, but nonlinear, with decreasing x. The energy dif-
ference between the extreme compositions is 52.3 cm−1, which is consistent with
the isotope mass ratio. Analogous structures of first-order light scattering spectra
and their dependence on isotope composition has now been observed many times,
not only in elementary Si [44] and α-Sn [45], but also in compound CuCl and GaN
semiconductors (for more details see reviews [45–47]). Already this short list of
data shows a large dependence (see, also Fig. 2.8) of the structure of first-order light
scattering spectra in diamond as compared to other crystals (Si, Ge).

Figure 2.9 compares the composition of the Raman frequency in the VCA and
CPA according to Hass et al. [48] and Spitzer et al. [49]. The present Raman data
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Fig. 2.7 a First-order Raman
scattering spectra in Ge with
different isotope contents
[36, 37]; b First-order Raman
scattering spectra in isotopi-
cally mixed diamond crystals
12C13

x C1−x . The peaks A, B,
C, D, E, and F correspond to
x = 0.989; 0.90; 0.60; 0.50;
0.30; and 0.001 [43]

in Fig. 2.9 are in excellent agreement with those of Chrenko [50] and Hanzawa
et al. [43]. Both sets of data exhibit a pronounced bowing (nonlinearity) relative
to the VCA that is described very well by CPA. Hass et al. concluded that the
bowing is a direct consequence of the scattering due to isotopic disorder. Similar
nonlinearity are observed in many other properties of alloy systems (e.g., the band
gaps of semiconductor alloys and isotope-mixed crystals [51]. The deviation from
linearity is approximately 5 cm−1near the middle of the composition range. This is
much larger than the experimental uncertainties (about the size of the data points)
and should certainly be considered if the Raman frequency is to be used as a measure
of isotopic composition (for details see [26]).
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Fig. 2.8 Raman frequency
as a function of the average
mass, measured at 10 K,
for isotopically enriched
and disordered Ge samples.
The solid line is a calculation
with ω = 2595,73/

√
M cm−1

(after [41])

The measured Raman linewidth (Fig. 2.9b) is larger near the center of the compo-
sition range than near the end points. The variation is not symmetric in x and (1 − x)
and the maximum width occurs at approximately 70% at 13C. The CPA curves rep-
resent intrinsic contributions to the Raman linewidth due to the disorder-induced
broadening of the zone-center optic mode. The observed widths, according to Hass
et al. [48], contain additional contributions due to instrumental resolution (∼1.8 cm−1)
and anharmonic decay [47, 51]. The anharmonic broadening of the Raman line has
been calculated for diamond by Wang et al. [45] to be on the order of 1 cm−1 at
300 K. Contributions other than disorder thus account well for the observed widths
near x = 0 and 1. Assuming that such contributions are reasonably constant across
the entire composition range, we see that both CPA calculations account very well
for the qualitative trend in the data, including the peak near x = 0.7.

Detail calculations of the self-energy and the first-order Raman lineshape were
performed by Spitzer et al. [49]. They obtained a qualitative agreement with experi-
mental results. Comparing the Raman lineshape of Ge and C, the presence of a large
isotopic broadening for diamond, contrary to the small broadening observed for Ge
should be noted. The reason lies in the fact that

−→
k = 0 is not the highest point

of the phonon dispersion relation in the case of diamond [52]. This maximum lies
somewhat off

−→
k = 0, resulting in a nonvanishing density of states at ω0, consider-

ably larger than that found from relation Nd ∼ Re
(
ω0 − ω + i�ω0

2

)1/2
[46]. This

density of states is strongly asymmetric about ω0, a fact which yields an asymmetric
phonon lineshape [49]. This asymmetry also results in a lopsided dependence of



2.2 Manifestation Isotope Effect in Condensed Matter 19

Fig. 2.9 a Disorder-induced shift of the Raman phonon of diamond as a function of the 13C
concentration. The open symbols are Raman experimental data , whereas the asterisks correspond
to ab initio calculations. The solid line is a fit with Eq. (2.40) for n = 2, 3 to all experimental
data [60]. The dotted and dot–dashed lines represent the fits to theoretical values obtained from
ab initio and CPA calculations, respectively (after [69]); b Disorder-induced broadening of the
Raman phonon of diamond as a function of the 13C concentration. The filled circles have been
obtained from the Raman data by taking into account the corresponding instrumental resolutions
and substracting the anharmonic broadening 
anh ≈ 2cm−1 (FWHM). The solid line is a fit with
Eq. (2.40) for n = 2, 3 to these points [60]. The dotted and dot–dashed lines are the corresponding
fits to the values obtained from ab initio and CPA calculations, respectively (after [69])

the linewidth versus concentration (Fig. 2.9), which disagrees with the symmetric
dependence expected from the proportionality to mass fluctuation parameter g [22].

Thus, depicted in Figs. 2.7–2.9 experimental results are testified the nonlinear
dependence Raman frequency shift on the isotope concentration.

b. Second-order Raman Spectra

The second-order Raman spectra for a natural and isotope-mixed crystals of diamond
were investigated by Chrenko [50] and Hass and cowokers [48]. Second-order Raman
spectra for the synthetic diamonds are shown in Fig. 2.10 . The second-order spectra
were measured by Hass and cowokers with slightly lower resolution (∼4 cm−1 ) than
the first-order spectra because of the much lower count rate. The results of Hass et al.
for 1.1 at. % 13C agree well with previous measurements for natural diamond [53].
The spectra for 0.07 and 99 at % 13C also look similar, if one ignores the shifts that
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Fig. 2.10 Second-order
Raman spectra for synthetic
diamond with identicated
compositions at room temper-
ature (after [48])

occur as a result of differences in M. More significant differences are observed for
the more heavily mixed crystals: the 34.4 and 65.7 at % 13C results are noticeably
broader and do not appear to exhibit the sharp peak near the high-frequency cutoff. As
was shown above, it is this peak at the top of the second-order spectrum (2667 cm −1

for 1.1. at % 13C) that has been the subject of intense controversy. Chrenko [50] also
examined the second-order spectra of his samples and claims that he was able to see
this peak at all composition except 68 % 13C. His measurements may have been of
somewhat higher resolution than in paper of Hass et al. but it is clear that even in his
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89 at % 13C spectrum (which is the only raw data presented), some broadening of
this peak has occurred.

The IR absorption in mixed crystals can change in two ways, depending on the
concentration: one-mode and two-mode (see, for example, review Elliott et al. [30]).
In the case of one-mode behavior, the spectrum always exhibits a single band whose
maximum gradually shifts from one extreme position to another. The two-mode
behavior corresponds to the presence of two bands in the spectrum, which are char-
acteristic for each of the components of a mixed crystal. As the concentration of
components changes, these bands shift, and their intensities undergo a strong redis-
tribution. In principle, the same system can exhibit different types of behavior at
the opposite ends [29]. This classification is only a qualitative one, and it is sel-
dom realized in its pure form (for details see review [22]). The appearance of the
localized mode in the limit of the isolated defect is considered the most important
necessary condition for the two-mode behavior of phonons (and also for electrons
[32]). In review of Elliott et al. [30], a simple quantitative criterion was suggested for
determining the type of behavior of the IR absorption in a crystal of NaCI type [32].
Because the square of the frequency of the TO (
) phonon is inversely proportional
to the reduced mass of the unit cell M, the shift caused by the defect is equal to

� = ω2
T O(l − M̄/M̄ ′) (2.9)

This shift is compared in paper of Elliott and others with the width of the phonon
optical zone. This width in the parabolic dispersion approximation, neglecting the
acoustic branches, is equal to

W = ω2
T O

ε0 − ε∞
ε0 + ε∞

. (2.10)

The localized or gap mode appears provided |�| > W/2. However, as was noted
by Elliott et al. [30], in order for the two peaks to be retained up to a concentration
of about 0.5, the stricter condition of |�| > W should be satisfied. The substitution
of numerical values into (2.9) and (2.10) shows that the relation

|�| >
1

2
W (2.11)

for LiH (LiD) is always valid, because |�| = 0.44ω2
T O and W = 0.58ω2

T O . This
means that the localized mode should be observed at low concentrations. This con-
clusion agrees with the experimental data described above (Fig. 26 in Ref. [22]).
As for the second theoretical relation |�| > W, as noted above, for LiH (LiD) crys-
tals, the reverse relation W > |�| is always valid [54, 55]. We will consider this ques-
tion in more detail in review [22]. Figure 2.11 shows the second-order Raman spectra
of mixed LiHx D1−x crystals at room temperature [54, 55]. Along with the proper-
ties of Raman spectra at high concentrations discussed in the review of Plekhanov
[56], note also that as the hydrogen concentration further increases (x > 0.15), the



22 2 Introduction to Isotope Effect

Fig. 2.11 Second-order Raman spectra of mixed LiHx D1−x crystals excited at λ + 488.0 nm at
room temperature, x = 0.0 (1); x = 0.42 (2); x = 0.76 (3); x = 1 (4). The arrows show the bands
corresponding to LO(
) phonons (after [54, 55])

intensity of the 2LO (
) phonon peak in a LiD crystal decreases, while the inten-
sity of the highest frequency peak in mixed LiHx D1−x crystals increases. The latter
peak is related to the renormalized LO (
) modes in a mixed crystal. Thus, com-
parison of Raman spectra 1 and 2 in Fig. 2.11 shows that in the concentration range
of 0.1 < x < 0.45, the Raman spectrum exhibits LO (
) phonon peaks of a pure
LiD and mixed LiHx D1−x crystal. A further increase in x > 0.45 is accompanied
by two effects observed in the Raman spectra of mixed crystals. The first effect is
manifested in a substantial rearrangement of the acousto-optical part of the spectrum
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Fig. 2.12 Mirror reflection
spectra of crystals: 1-LiH;
2-LiHx D1−x ; 3-LiD at 4,2 K.
Light source without crystals,
curve 4 (after [57])

(spectra 1–3 in Fig. 2.11), and the second one consists in a further blue shift of the
highest frequency LO (
) phonon peak. This peak shifts up to the position of peak 12
in the spectrum of a pure LiH crystal [56]. This is most clearly seen from comparison
of spectra 2 and 4 in Fig. 2.11 ( for details see reviews [22, 56]).

2.2.2 Renormalization of Electron (Exciton) States

In this section we will briefly discuss the variation of the electronic gap (Eg) and
exciton binding energy of insulating and semiconducting crystals with isotope com-
position. As is well known isotopic substitution only affects the wavefunction of
phonons; therefore, the energy values of electron levels in the Schrödinger equation
ought to have remained the same. This, however, is not so, since isotopic substitution
modifies not only the phonon spectrum, but also the constant of electron–phonon
interaction. It is for this reason that the energy values of purely electron transition
in molecules of hydride and deuteride are found to be different. This effect is even
more prominent when we are dealing with a solid [57]. Intercomparison of absorp-
tion spectra for thin films of LiH and LiD at room temperature [58] revealed that the
long-wave maximum (as we know now, the exciton peak) moves 64.5 meV toward
the shorter wavelengths when H is replaced with D.

The mirror reflection spectra of mixed and pure LiD crystals cleaved in liquid
helium are presented in Fig. 2.12. For comparison, on the same diagram we have
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Fig. 2.13 Binding energy of
Wannier–Mott excitons as a
function of reduced mass of
ions. Based on values of the
reduced mass of ions for 6LiH;
6LiD; 7LiH; 7LiD and 7LiT
(after [57])

also plotted the reflection spectrum of LiH crystals with clean surface. All spectra
have been measured with the same apparatus under the same conditions. As the
deuterium concentration increases, the long-wave maximum broadens and shifts
toward the shorter wavelengths. As can clearly be seen in Fig. 2.12, all spectra exhibit
a similar long-wave structure. This circumstance allows us to attribute this structure
to the excitation of the ground (1s) and the first excited (2s) exciton states. The energy
values of exciton maxima for pure and mixed crystals at 2 K are presented in Table 21
of Ref. [51]. The binding energies of excitons Eb, calculated by the hydrogen-like
formula, and the energies of interband transitions Eg are also given in Table 21 of
Ref. [51].

Going back to Fig. 2.12, it is hard to miss the growth of �12 , [57], which in the
hydrogen-like model causes an increase of the exciton Rydberg with the replacement
of isotopes (see Fig. 2.13). When hydrogen is completely replaced with deuterium,
the exciton Rydberg (in the Wannier–Mott model) increases by 20% from 40 to 50
meV, whereas Eg exhibits a 2% increase, and at 2 ÷ 4.2 K is �Eg = 103 meV. This
quantity depends on the temperature, and at room temperature is 73 meV, which
agrees well enough with �Eg = 64.5 meV as found in the paper of Kapustinsky
et al. [58].

The dependence of the exciton binding energy on the isotope mass presents in
Fig. 2.13. From Fig. 2.13 we see that when hydrogen is completely replaced with
deuterium, the binding energy of the exciton exhibits a 20% increase from 42 to
52 meV [51]. It is easy to see that in the model of virtual crystal the binding energy
of the exciton in LiT crystals must be equal to 57 meV (see Fig. 2.13). Hence it
follows that in the linear approximation the isotopic dependence of binding energy
of Wannier–Mott excitons may be expressed as

Eb = Eb(0) (1 + γ ) , (2.12)
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where Eb(0) is purely the coulombic binding energy of the exciton (in the frozen
lattice), which in our case is equal to 31.5 meV, and the angular coefficient is
β = 12.18 meV/M, where M is the reduced mass of ions of lithium and hydro-
gen (deuterium, tritium) ions; γ = βM/Eb (0) (see also Plekhanov [51]). From the
standard equation for the Coulomb’s binding energy of the exciton

Eb = e4μ

�2ε2∞
, (2.13)

we get the dimensionless constant of the Coulomb’s interaction:

η2 = Eb (0)

�ωLO
= 0.47. (2.14)

Comparing the value of η2 = 0.47 and the constant of Fröhlich exciton–phonon
interaction g2 = 0.33 [51] we see that they are close enough. This implies that both
the Fröhlich and the Coulomb interactions between electrons (holes) and LO phonons
in exciton must be treated with equal attention, as has already been emphasized
in Klochikhin’s paper [59]. This paper deals from the start with ‘bare’ electrons
and holes, and all renormalizations are calculated in the two-particle configuration.
Such an approach enables us to avoid the considerable difficulty which arises when
polarons [60] are used as start-up particles. This difficulty is primarily associated
with the fact that the momentum of each particle is conserved when the particles
are treated separately, whereas it is the center-of-mass momentum that is conserved
when a pair moves as a whole. As demonstrated in Klochikhin [59], this approach
also makes it possible to calculate the higher order corrections to the exciton–phonon
interaction. It was also shown that the use of the pole parts of polaron Green functions
in place of complete expressions leads to a situation when the corrections of the order
of η2g2 and g4 to the potential energy are lost because the corrections to the vertex
parts and Green functions cancel out. The quantity lost is of the same order (g2) as
the correction to the residue but has the opposite sign [60]. The approach developed
in Klochikhin [59] allowed the calculation of corrections of the order η2g2 and g4,
the latter is comprised of the correction to the Fröhlich vertex and the correction
to the Green functions in the exciton–phonon loop. It is important that the latter
have opposite sign and cancel out exactly in the limit Eb � �ωLO. As a result,
because of the potential nature of the start-up Coulomb interaction, the correction to
the Coulomb’s vertex of the order η2g2 does not vanish. As a result, the following
expression was obtained in Klochikhin’s paper for the binding energy Eb of Wannier–
Mott exciton when Eb � �ωLO (the spectrum of exciton remains hydrogen like):

Eb = �ωLO

[
η2−g2+η2g2 (c + v)

2

]2

(2.15)
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where c, v = (mc,v/μ)1/2, and mc, mv are the electron and hole masses. Now Eb
depends explicitly on g2 (the Fröhlich constant of exciton–phonon interaction), and
hence depends on the isotopic composition of the lattice, whereas the standard
expression for the binding energy Eb = �ωLO

(
η2−g2

) = e4μ/ε2
0 �

2, which
describes the exciton spectrum of many semiconductors accurately enough, exhibits
no dependence on the isotopic effect. In the case of Eq. (2.15) the exciton spectrum
remains hydrogen like. When the higher order corrections are taken into account,
Eq. (2.15) becomes

Eb = e4μ

2ε0�2

[

1 + g2ε0
mc+mv

ε∞
+g4 ε0

ε∞

(

ζ1+ζ2
1−ε∞

ε0

)

(mc+mv)

]

. (2.16)

The order-of-magnitude evaluation of the coefficients ζ1, ζ2 gives ζ1 ≈ 0.15 and
ζ2 ≈ 0.02; when g2(mc + mv) � 3.3, the correction of the order η2g4 is much
less than the term of the order η2g2 (see, e.g. [51] and references therein). Setting
mv/mc = 3.5 and g2/η2 = I − ε0/ε∞, and (ε∞/ε0) = (ωTO/ωLO) = 1/3.5) , in paper
[59] it was found that Eb (theor) = 48 and 42 meV for LiD and LiH, respectively.
Comparing these results with the experimental values (see Table 21 of Ref. [51]) we
observe good agreement between theory and experiment. Hence follows a natural
conclusion that the isotopic dependence of the exciton binding energy is primarily
due to the Fröhlich interaction mechanism between excitons and phonons.

The single-mode nature of exciton reflection spectra of mixed crystals LiHx D1−x

agrees qualitatively with the results obtained with the virtual crystal model (see
e.g. Elliott et al. [30]; Onodera and Toyozawa [61, 62]), being at the same time its
extreme realization, since the difference between ionization potentials (�ζ ) for this
compound is zero. According to the virtual crystal model, �ζ = 0 implies that �Eg =
0, which is in contradiction with the experimental results for LiHx D1−x crystals. The
change in Eg caused by isotopic substitution has been observed for many broad-gap
and narrow-gap semiconductor compounds.

All of these results are documented in Table 21 of Ref. [51], where the varia-
tion of Eg, Eb, is shown at the isotope effect. We should highlight here that the
most prominent isotope effect is observed in LiH crystals, where the dependence of
Eb = f (CH) is also observed and investigated. To end this section, let us note that
Eg decreases by 97 cm−1 when 7 Li is replaced with 6Li.

Further, we will briefly discuss of the variation of the electronic gap (Eg) of
semiconducting crystals with its isotopic composition. In the last time, the whole row
of semiconducting crystals were grown. These crystals are diamond, copper halides,
germanium, silicon, CdS, and GaAs. All numerated crystals show the dependence
of the electronic gap on the isotope masses (see, reviews [60, 96]).

Before we complete the analysis of these results we should note that before these
investigations, studies were carried out on the isotopic effect on exciton states for
a whole range of crystals by Kreingol’d et al. (see, also [51]). First, the following
are the classic crystals Cu2O [63, 64] with the substitution 16O → 18O and 63Cu
→ 65Cu. Moreover, there have been some detailed investigations of the isotopic
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effect on ZnO crystals , where Eg was seen to increase by 55 cm−1 (16O → 18O) and
12 cm−1 ( at 64Zn → 68Zn) [65, 66]. In [67] it was shown that the substitution of a
heavy 34S isotope for a light 32S isotope in CdS crystals resulted in a decrease in the
exciton Rydberg constant (Eb), which was explained tentatively by the contribution
from the nearest electron energy bands, which however are absent in LiH crystals.

More detailed investigations of the exciton reflectance spectrum in CdS crystals
were done by Zhang et al. [68]. Zhang et al. studied only the effects of Cd substitu-
tions, and were able to explain the observed shifts in the bandgap energies, together
with the overall temperature dependence of the bandgap energies in terms of a two-
oscillator model provided that they interpreted the energy shifts of the bound excitons
and n = 1 polaritons as a function of average S mass reported as was noted above,
earlier by Kreingol’d et al. [67] as shifts in the bandgap energies. However, Krein-
gol’d et al. [67] had interpreted these shifts as resulting from isotopic shifts of the
free exciton binding energies (see, also [51]), and not the band gap energies, based
on their observation of different energy shifts of features which they identified as
the n = 2 free exciton states (for details see [67]). The observations and interpre-
tations, according Meyer at al. [69], presented by Kreingol’d et al. [67] are difficult
to understand, since on the one hand a significant bandgap shift as a function of the
S mass is expected [68], whereas it is difficult to understand the origin of the rela-
tively huge change in the free exciton binding energies which they claimed. Meyer
et al. [69] reexamine the optical spectra of CdS as function of average S mass, using
samples grown with natural Cd and either natural S (∼95% 32S), or highly enriched
(99% 34S). These author observed shifts of the bound excitons and the n = 1 free
exciton edges consistent with those reported by Kreingol’d et al. [67], but, contrary
to their results, Meyer et al. observed essentially identical shifts of the free exciton
excited states, as seen in both reflection and luminescence spectroscopy. The reflec-
tivity and photoluminescence spectra in polarized light (

−→
E ⊥ −→

C ) over the A and B
exciton energy regions for the two samples depicted in Fig. 2.14. For the

−→
E ⊥ −→

C
polarization used in Fig. 2.14 both A and B excitons have allowed transitions, and
therefore reflectivity signatures. Figure 2.14 also reveals both reflectivity signatures
of the n = 2 and 3 states of the A exciton as well as that of the n = 2 state of the B
exciton.

In Table 2.3 Meyer et al. summarized the energy differences �E = E (Cd34S) − E
(CdnatS), of a large number of bound exciton and free exciton transitions, measured
using photoluminescence, absorption, and reflectivity spectroscopy, in CdS made
from natural S (CdnatS, 95% 32S) and from highly isotopically enriched 34S (Cd34S,
99% 34S) [51]. As we can see, all of the observed shifts are consistent with a single
value, 10.8 ± 0.2 cm−1. Several of the donor bound exciton photoluminescence
transitions, in paper [69] can be measured with high accuracy, reveal shifts which
differ from each other by more than the relevant uncertainties, although all agree
with the 10.8 ± 0.2 cm−1 average shift. These small differences in the shift energies
for donor bound exciton transitions may reflect a small isotopic dependence of the
donor binding energy in CdS. This value of 10.8±0.2 cm−1 shift agrees well with the
value of 11.8 cm−1 reported early by Kreingol’d et al. [67] for the Bn=1 transition,
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Fig. 2.14 a Reflection spec-
tra in the A and B excitonic
polaritons region of CdnatS
and Cd34S at 1.3 K with inci-
dent light in the

−→
E ⊥ −→

C . The
broken vertical lines connect-
ing peaks indicate measured
ene rgy shifts reported in
Table 2.3. In this polariza-
tion, the n = 2 and 3 excited
states of the A exciton, and
the n = 2 excited state of the
B exciton, can be observed.
b Polarized photolumines-
cence spectra in the region
of the An=2 and An=3
free exciton recombination
lines of CdnatS and Cd 34S
taken at 1.3 K with the

−→
E

⊥ −→
C . The broken verti-

cal lines connecting peaks
indicate measured energy
shifts reported in Table 2.3
(after [69])

particularly when one takes into account the fact that enriched 32S was used in that
earlier study, whereas Meyer et al. have used natural S in place of an isotopically
enriched Cd32 S (for details see [51, 69]).

Authors [69] conclude that all of the observed shifts arise predominantly from
an isotopic dependence of the band gap energies, and that the contribution from any
isotopic dependence of the free exciton binding energies is much smaller. On the
basis of the observed temperature dependencies of the excitonic transitions energies,
together with a simple two-oscillator model, Zhang et al. [68] earlier calculated such
a difference, predicting a shift with the S isotopic mass of 950 μeV/amu for the A
exciton and 724 μeV/amu for the B exciton. Reflectivity and photoluminescence
study of natCd32S and natCd34S performed by Kreingol’d et al. [67] shows that for
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Table 2.3 The energy shifts of all of the transitions studied in [56] are given in terms of the Cd34S
minus the Cdnat S energy, �E

Transition Method �E (cm−1)

I2 PL 10.6 ± 0.1
Iz
2 PL 11.1 ± 0.1

Ia
2 PL 10.6 ± 0.1

An=1 (
6) A‖ 10.8 ± 0.2
An=1 (
L

5 ) PL 11.0 ± 0.2
An=1 (
L

5 ) R⊥ 10.9 ± 0.2
An=2 PL‖ 11.3 ± 0.4
An=2 PL⊥ 11.1 ± 0.4
An=2 R⊥ 10.2 ± 0.5
An=3 PL‖ 11.8 ± 1.1
An=3 PL⊥ 10.9 ± 0.6
An=3 R⊥ 10.7 ± 0.6
Bn=1 (
1) R‖ 10.9 ± 0.3
Bn=1 (
L

5 + 
T
5 ) R⊥ 10.6 ± 0.4

Bn=2 R‖ 9.4 ± 1.2
Bn=2 R⊥ 9.8 ± 1.2
Cn=1 (
1) R‖ 15 ± 6
Cn=1 (
5) R⊥ 14 ± 5

The methods used were photoluminescence spectroscopy (*PL) and reflection spectroscopy (R).
For measurements made using polarized light, the ‖ or ⊥ specifies the orientation of the E vector
vesus the c axis

anion isotope substitution the ground state (n = 1) energies of both A and B excitons
have a positive energy shifts with rate of ∂E/∂MS = 740 μ eV/amu. Results of Meyer
et al. [69] are consistent with a shift of ∼710μeV/amu for both A and B excitons.
Finally, it is interesting to note that the shift of the exciton energies with Cd mass is
56μeV/amu [68], an order of magnitude less than found for the S mass.

In concluding this part we should note that recent high-resolution spectroscopic
studies of excitonic and impurity transition in high-quality samples of isotopically
enriched Si have discovered the broadening of bound exciton emission (absorption)
lines connected with isotope-induced disorder as well as depend on their binding
energy on the isotope mass [70–75]. The last effect was early observed on the bound
excitons in diamond [56, 51], and earlier on the free excitons [76] in LiHx D1−x

mixed crystals (see, e.g. [77] and references therein).

2.3 Isotope Low-Dimensional Structure

The advances in epitaxial thin film homo and hetero-structures synthesis, which
have been achieved through a variety of epitaxial techniques [78–80], have led
to a vast array of new solid-state structures with many fascinating properties
(see, e.g. [81–83]). Isotope hetero-structures has been studied only in last two
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decades [81–89]. In combination with the well-established neutron transmutation
doping (NTD [90]) technique, isotope hetero-structures appear to represent a family
of solid-state structures, which offer new possibilities and numerous advantages over
the traditional multilayer structures (see above). The formation of a doped isotope
multilayer structure can be broken down into two independent steps: growth of the
structure with isotopically pure or deliberately mixed layers and selective doping
with the NTD process [93–95]. The formation of an isotope multilayer structure
differs from the traditional methods in only that isotopically pure and deliberately
mixed sources must be used, and, the most important, that no dopants are introduced
during the growth process. The absence of any dopants during the growth process
automatically eliminates all dopant-induced effects including autodoping and dopant
interdiffusion between adjacent layers [88]. In principle all the established epitaxial
techniques can be applied to the growth of isotope multilayer structures. The only
requirement is the availability of semiconductor grade pure isotopes. The doping of
an isotope heterostructures is achieved with the NTD [90] techniques after growth
process has been completed. The NTD technique is isotope selective and therefore
it can be used superlatively for the creation of the low-dimensional structure. The
cross-section for thermal neutron capture and the subsequent nuclear processes of
practically every stable isotope of all elements have been measured, studied, and
documented (see also [90] and references therein).

As we all know breaking the crystal translational symmetry without strongly
influencing its electronic band structure can be done by means of a modification in
the mass of one or more atoms composing the crustal. Without translational symme-
try, the wave vector conservation requirements can be circumvented. Ideal models for
most studies of elementary excitations are represented by isotopically pure crystals.
A new field offering interesting physical studies is opened with the growth of iso-
topically tailor-made single crystals. The translational symmetry operations can be
removed in part by artificial fabricating isotopic superlattice in which layers of two
isotopically enriched materials alternate periodically. MBE of isotopically controlled
germanium has enabled studies of low-dimensional phonons in isotope superlattice
[86–89] and quantum dots [91].

In this paragraph we describe the results of Raman measurements on novel kind of
heterostructures, a series of isotopic superlattice’ of germanium and silicon [86–91].
These samples represent an excellent model system to study the vibrionic properties
of superlattice because the electronic structure should be affected only weakly by
changes in the isotopic mass (see, e.g. reviews [60, 96]).

Since these changes are the only difference between the superlattice’ constituents,
Raman spectroscopy is the only non-destructive method to investigate their structural
properties. Experimental data are compared with the results of planar force-constant
model [86]. Let us consider the case of Ge, with the five isotopes of it [29]. The
readers will ask themselves one should see five phonons (or more if they know that
there are two atoms per primitive cell), corresponding to the five different masses,
or only one corresponding to the average mass. We all know that the latter is true.
The transition from the average mass vibrations to those localized at all possible
pairs is an example of the Anderson localization phenomenon [38, 39], which is
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Fig. 2.15 Schematics of Si
isotope superlattices. Thick-
ness of each isotope layer
are 1.1; 1.6; and 3.2 for
28Si8/30Si8; 28Si12/

30Si12
and 28Si24/

30Si24 samples,
respectively. Low index
denotes the thickness of
each isotope layer in atomic
monolayers, each 0.136 nm
thick (after [92])

observed in Raman experiments on LiHx D1−x system (for details see [47]). In a
three-dimensional crystal, fluctuations in the parameters of the secular equation lead
to localization (measured in units of frequency, i.e. (�M/M)ω0) are larger than the
bandwidth of the corresponding excitations. For optical phonons in Ge this bandwidth
is 100 cm−1 while (�M/M)ω0 � 0.04 × 300 = 12cm−1 (see also above). Hence no
phonon localization (with lines corresponding to all pairs of masses) is expected, in
agreement with the observation of only one line at 304 cm−1 (at 77 K) for natural
Ge (see Fig. 2.7). For comparison we indicate that the bandwidth in the LiHx D1−x

mixed crystal is more than 500 cm−1, therefore, the crystal and localized phonons
are coexist (for details see [47]).

In superlattice composed, for example, of n layers of 70Ge and m layers of
76Ge repeated periodically, one would expect to find optical modes localized or
nearly localized in each of two constituents. Schematics of Si isotope superlattice
are depicted in Fig. 2.15 [92]. Koijma et al. have grown three kinds of silicon iso-
tope superlattice (28Sin/30Sin , with n = 8, 12 and 24) using the solid-source MBE
technique [79, 97]. In this paper n denotes the thickness of each isotope layer in
atomic monolayers, each 0.136 nm thick. The periodicity, i.e., the number 28Si/30Si
pair layers stacked vertically, is 80, 50, and 30 for n = 8, 12, and 24 samples, respec-
tively. The resulting total thickness of the superlattice is 160–200 nm (see, Fig. 2.15).
The source for the 28 Si layer is actually natSi which is composed of 92.2% 28Si. The
source for the 30Si layer is a single Si crystal isotopically enriched to 30Si(∼98.74%
[93–95]). In MBE, individual effusion cells equipped with crucibles made of high
purity tantalum. The crucible are temperature is maintained at 1400◦ C for a growth
rate of ∼0.01 nm/s. The base pressure of the vacuum is 5×10−10 torr and the pressure
during growth is ∼10−9 Torr Fig. 2.15.

As was shown [98], the E versus k dispersion of phonons in the superlattice is zone
folded due to the new periodicity, na, introduced by the (28Si)n–(30Si)n unit where a
is the periodicity of the bulk Si. Because Raman spectroscopy, to first order, probes
phonons situated at k ∼ 0 in the dispersion relation, while only one longitudinal
optical (LO) phonon peak is observed with bulk Si, multiple LO phonon peaks
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Fig. 2.16 Raman spectra of
the 28Sin/30Sin samples with
n = 8, 12 and 24 (after [92])

should appear for isotope superlattice due to the zone folding or phonon localization
(see, e.g. [99]). Figure 2.16 shows the Raman spectra of Si superlattice. As expected,
many peaks are observed on the shoulders of the large nat Si substrate LO peak around
523.5 cm−1. The wave numbers of the identified peaks are indicated in Fig. 2.16 for
comparison with theoretical predictions fulfilled in the planar bond-charge model for
Si (see [100]). As was shown in paper [93–95] theoretical curves are not smooth due
to anticrossings. In general, the agreement between the experimental and theoretical
results is excellent, except for the one detail: while LO1 (28Si) peaks in n = 12 and
24 samples are hidden in the large substrate peak, the LO1 (28Si) peak is observed
experimentally for the n = 8 sample and its position deviates from the calculation
(for details see Fig. 4 in [92]).

Raman spectra of a serial of isotopic 70(Ge)74
n (Ge)n superlattice with 2 ≤ n ≤ 32

(8 ≤ n ≤ 24) was published in papers [87, 88]. Three modes could be observed (see
Fig. 2.17) for the 70(Ge)74

16(Ge)8 “as-grown” superlattice as theoretically predicted
[86]. We should underline that the excellent agreement between results of papers
[87, 88].

In concluding this paragraph we should stressed that isotopic superlattice rep-
resents an excellent model system for the investigation of confinement of optical
phonons. Both frequencies and relative intensities of the measured spectra are in
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Fig. 2.17 a Experimental Raman spectra of a (70Ge)16(74Ge)16 superlattice for different annealing
steps at 500◦C. b Calculated Raman spectra for the same superlattice using the same parameters
(after [88])

good agreement with calculations based on a planar bond-charge model and the
bond-polarizability approach (for details see [93–95].

2.4 Excitons and Biexcitons in Quantum Dots

When a semiconductor (insulator) of direct bandgap Eg is shone with near-bandgap
light, electron-hole pairs are created. If the electron and the hole were noninteracting
only photon energies �ω > Eg would be absorbed and Eg would be the absorption
edge. The Coulombic electron-hole interaction greatly modifies this picture. The
electron-hole attraction gives rise to bound states of the relative motion of the exciton.
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The appearance of intense, narrow absorption lines below the fundamental absorption
edge is the manifestation of these bound states.

In the case of confined systems for electrons and holes, such as quantum wells
(QWs), quantum wires (QWRs) and quantum dots (QDs), the excitonic effects are
much more important than in bulk solids. In effect, as will be shown below, the
binding energy of the electron- hole systems forming an excitons are much higher
in quantum confined systems than in the case of solids, and, therefore, the excitonic
transitions can be observed even at temperatures close to room temperature, as closed
to the bulk case for which low temperatures are needed. This makes the role played
by excitons in many optoelectronic devices of nanoscale very important.

It is perhaps easier to deal with a finite barrier quantum dot (QD) with spherical
rather than cuboid symmetry. The approach is rather similar to that derived earlier
for the circular cross-section quantum wire (QWr). Given the spherical symmetry
of the potential, then the wave function would also be expected to have spherical
symmetry, hence the Schrödinger equation for a constant effective mass could be
written (see, e.g. [101, 103])

− �
2

2m∗ (
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 )�(r) + V (r)�(r) = Er�(r), (2.17)

where the index on Er has been added just to indicate that this energy is associated
with the confinement along the radius. In this case:

r =
√

x2+y2+z2. (2.18)

The transition can be made from Cartesian (x, y, z) to spherical polar coordinates,
in effect just r, in the same way above. Using Eq. (93) of Ref. [102], each of the three
Cartesian axes gives an equation of the following form:

∂2

∂x2 �(r) = 1

r

∂

∂r
�(r) − x2

r3

∂

∂r
�(r) + x2

r2

∂2

∂r2 �(r) (2.19)

Therefore, the complete ∇2�(r) is given by:

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)

�(r)

= 3

r

∂

∂r
�(r) − (x2+y2+z2)

r3

∂

∂r
�(r) + (x2+y2+z2)
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∂2

∂r2 �(r). (2.20)

and (
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)

�(r) = 2

r

∂

∂r
�(r) + ∂2

∂r2 �(r). (2.21)

Substituting into the Schrödinger equation then:
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Fig. 2.18 The confinement
energy in a spherical GaAs
quantum dot surrounded by
a Ga0.8Al0.2As barrier (after
[103])

Fig. 2.19 The wave functions
of the three lowest energy
states in the 300 Å spherical
quantum dot (after [103])

− �
2

2m∗
(

2

r

∂

∂r
+ ∂2

∂r2

)

�(r) + V (r)�(r) = Er�(r). (2.22)

Such spherical symmetric Schrödinger equations have been investigated before
(see, e.g. [8–10]). The last equation, is numerically solved and Fig. 2.18 shows the
results of calculations of the three lowest energy levels of a spherical GaAs QD
surrounded by a finite barrier composed of Ga0.8Al0.2As, with a sharp boundary. In
fact, the formalism above, as that of the circular cross - section QWr, is applicable
for any radial potential profile V(r), e.g., it is also valid for diffused interfaces [103]
Again, the behavior of the energies as a function of the spatial dimension, as shown
in Fig. 2.18, is as expected in confined systems, namely the confinement energy
decreases as the size of the system increases. Figure 2.19 displays the corresponding
radial components of the wave functions. It can be seen that they all have a maximum
at the centre of the potential and that as the principal quantum number n increases,
then the number of nodes increases.
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Fig. 2.20 Spectrally resolved four-wave mixing at τ = 3 ps showing the heavy hole and light hole
biexcitons. Insert shows the four-wave mixing intensity of the heavy hole exciton and biexciton as
a function of delay (after [110])

In 1958, Moskalenko [104] and Lampert [105] suggested that in crystals besides
excitons more complex electronic quasi particles might exist, made up of three or
four carriers. The latter one, consisting of two electrons and two holes, is well known
as biexcitons or excitonic molecules [106]. As the density of excitons is increased,
biexcitons are formed by increasing the light intensity. Biexcitons can be generated
either through ordinary excitation of the crystal or by two-photon absorption each
photon having an energy

hν = Ex − EBxx

2
, (2.23)

where EBxx is the biexciton binding energy and Ex is the exciton energy

Ex = Eg − EBx + �
2k2

2mx
. (2.24)

In the last relation Eg is the bandgap energy, EBx is the exciton binding energy

and �2k2

2mx
is the kinetic energy with which an exciton moves through the crystal (see,

also [107]).
Compared to the bulk material, an increased stability of biexcitons due to the

two-dimensional carrier confinement is observed for typical III–V structures such as
GaAs/AlGaAs QWs [108–110] (see Fig. 2.20) or for wide bandgap II–VI materials
such as CdZnSe/ZnSe [111]. As a consequence of the enhanced biexciton binding
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Fig. 2.21 Left side Excitonic (X) and biexcitonic (X2) emission from two individual CdSe/ZnSe
SQDs for different excitation powers. The PL spectra shown in the lower panel are unpolarized, the
data presented in the upper panel represent linearly polarized PL spectra (πx and πy , respectively).
Right side Energy level scheme for the biexciton–exciton cascade in a QD (after [111])

energy, a variety of optical properties, such as the photoluminescence(PL) spectrum,
the optical gain or the four-wave mixing signal especially in wide bandgap II–VI
QWs are strongly influenced by biexcitons (see [111] and references therein).

Below we briefly review some results obtained from optical spectroscopy on
epitaxially grown single SQDs based on II–VI and II–N compounds. As was indicated
above the biexciton (XX or X2) is a four-particle state. In its lowest energy state
configuration, two electrons and two holes with antiparallel spins occupy the first
quantized state of the conduction and the valence band in the SQDs, respectively
(see, e.g. [112]) We should add that the QDs in the material systems described
here are quite small with diameters in the order of 10 nm and heights of a few nm.
The biexciton state is therefore a singlet state with a total spin of J = 0. Thus,
the exciton state X represents the final state for the biexciton recombination [113].
In II–VI semiconductors, as in III–V materials with a zincblende crystal lattice,
Coulomb interaction leads to positive biexciton binding energies (see Eq. (2.24)),
i.e., the energetic distance between XX (X2) and X smaller than the energy difference
between the first exciton state and the ground state. A typical optical fingeprint for
the X2 is therefore an additional PL line at the low energy side of the exciton emission
X that exhibits a strong (quadratic) dependence on the excitation power [107]. This
behavior is clearly visible in left panel of Fig. 2.21. At low excitation density, the PL
spectrum of CdSe/ZnSe SQDs consists of emission peaks stemming from exciton
recombination of two individual QDs. With rising excitation density additional lines
emerge, red shifted by about 24 meV with respect to the excitonic emission X, and
rapidly increasing in intensity, which can be attributed to biexciton emission X2.
The biexciton binding energy is obviously much larger than in III. As-based QDs
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Fig. 2.22 Left panel Transient PL spectra from a single CdSe/ZnSe QD showing the single exciton
X and the biexciton transition (here denoted by B = X2). Right panel Decay curves for the exciton
and the biexciton PL signal (for details see text) (after [111])

where a typical values of a few meV (∼2 meV [110]) have been determined (see,
also [108, 109, 114]). When having a closer look on the PL spectra presented in
Fig. 2.21, some more information can be extracted. One should have in mind that in
QDs, the light hole level is shifted to higher energies due to strain and confinement
and thus, excitons are formed between electrons and heavy holes. The ground state of
a heavy hole exciton in a SQD is a spin quadruplet, which can be by the z-component
(= component, according [111] in growth direction) of the total exciton spin Jz . If
the z-component of the electron spin, sz = ± 1/2, and the z-component of the total
angular momentum of the heavy hole jz = ± 3/2 are antiparallel, in such case, we
get Jz = sz + jz = ±2 (the dark exciton states [113]).

In II–VI QDs the energy difference �0 between bright and dark exciton states
that is given by the isotropic electron-hole interaction energy, amounts to about
1 meV and more which is nearly an order of magnitude larger than in InAs/GaAs
QDs [101]. As can be seen in Fig. 2.21, the exciton fine structure is reflected both in
the exciton and in the biexciton recombination: SQD1 does not show a significant
splitting of the exciton PL signal, while SQD2 exhibits a doublet with an energy
separation of almost 1 meV indicating a reduced QD symmetry. Exactly the same
behavior is observed in the corresponding biexciton lines. Moreover, the high energy
component of the X emission in SQD2 (πx polarized) corresponds to the low energy
component of the X2 emission and vice versa, in agreement with energy level scheme
(see Fig. 2.20). All these effects are easily accessible in wide bandgap II–VI QDs
because the characteristic energy splitting are significantly enhanced with respect to



2.4 Excitons and Biexcitons in Quantum Dots 39

III-As semiconductor QDs. We may expect more significant value of the exchange
splitting for exciton and biexciton states in QD of isotope-mixed crystals (see, also
[60, 93–95]). Thanks to the large biexciton binding energy, II–VI QDs were the first,
where the biexciton–exciton cascade could be traced directly in the time domain
on SQD level [115]. Figure 2.22 depicts transient PL spectra (left) of both emission
lines and the time-dependent intensity of the exciton and the biexciton signal (right
panel). The biexciton emission shows a monoexponential decay with a time constant
of 310 ps. The exciton reveals a more complex behavior: the onset of the exciton line
ids delayed, resulting in “plateau-like” characteristics of the exciton decay curve.
The excitation density according authors of this experiment was set to a value where
an average number of two electron-hole pairs per excitation pulse in the SQD was
generated. Model calculations taking into account the biexciton state, the bright, and
the dark exciton states and the “empty” QD (corresponding to a QD population with 2,
1 and 0 excitons, respectively) confirm that the exciton state is feeded by the biexciton
recombination causing the delayed onset and the “plateau-like” characteristics of the
exciton emission dynamics (for details see [101] and references therein).
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