
Chapter 2
A Complex Model of Snake Robot Locomotion
on Planar Surfaces

The underlying theme of this book is analytical approaches aimed at increasing our
understanding of snake robot locomotion. The mathematical model of the snake
robot is the basis for these analytical studies, which means that the analysis relies
heavily on the form and complexity of the model. In this chapter, we employ first
principles to derive a mathematical model of the kinematics and dynamics of a snake
robot with N links moving on a horizontal and flat surface. The links of the robot
are influenced by ground friction forces which propel the motion. Due to the many
degrees of freedom of the robot and the dynamical couplings between the links,
the resulting model will turn out to be quite complex. We will eliminate some of
this complexity by partially linearising the model. This is achieved by introducing
a change of coordinates which enables us to partition the model into an actuated
part (the joint angles of the snake robot) and an unactuated part (the position and
orientation of the snake robot). Through an input transformation, we are then able to
linearise the actuated part of the model. However, even the partially linearised model
contains complex terms which make model-based controller design and analysis
challenging. Throughout this book, we will therefore refer to the model developed
in this chapter as the complex model of the snake robot.

In Chap. 4, the complex model will be analysed in order to deduce several fun-
damental properties of snake robot dynamics. Some of these properties will be in-
strumental in the development of a simplified model of the snake robot in Chap. 6,
where we propose a model that captures only the ‘essential’ part of the dynamics of
the complex model. In Part II of this book, which considers snake robot locomotion
in cluttered environments, the complex model will be extended to include contact
forces from external obstacles in the environment around the snake robot.

The chapter is organised as follows. The relation between this chapter and pre-
vious literature is briefly discussed in Sect. 2.1. Section 2.2 introduces some basic
notation that will be used throughout the book. The parameters that characterise the
snake robot are presented in Sect. 2.3. The kinematics of the snake robot is described
in Sect. 2.4, while two different ground friction models are presented in Sect. 2.5.
The model of the snake robot dynamics is presented in Sect. 2.6, is partitioned into
an actuated and an unactuated part in Sect. 2.7, and is transformed to a simpler form
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through partial feedback linearisation in Sect. 2.8. Finally, the chapter is summarised
in Sect. 2.9.

2.1 The Relation Between This Chapter and Previous Literature

Mathematical models of planar snake robot dynamics have previously been devel-
oped from first principles in Ma (2001), Saito et al. (2002), and the initial form of
the model presented in this chapter is developed using the same approach as in these
works. The notation and the ground friction models considered in this chapter are,
however, different from the works in Ma (2001), Saito et al. (2002). Moreover, the
expression for the linear velocity of individual links given in (2.13a) is novel to this
work. The two main novel features of the results presented in this chapter in relation
to previous literature are the change of coordinates, which enables us to partition the
model into an actuated and an unactuated part (see Sect. 2.7), and the subsequent
partial feedback linearisation of the model (see Sect. 2.8). Due to the complexity of
the nonlinearised model of the snake robot, much of the model analysis presented
in Chap. 4 would not have been feasible without the model transformation.

2.2 Basic Notation

The following notation is used throughout this book:

• The operator sgn(·) produces a vector containing the sign of each individual ele-
ment of its argument.

• The operator diag(·) produces a diagonal matrix with each individual element of
its argument along its diagonal.

• The sinus and cosine operators, sin(·) and cos(·), are vector operators when their
argument is a vector and scalar operators when their argument is a scalar value.

• We will use subscript i to denote element i of a vector (see Table 2.1 below).
When parameters of the links (joints) of the snake robot are assembled into a
vector, we associate element i of this vector with link i (joint i).

• Symbols representing a vector or a matrix are indicated with a bold font.
• The matrix Ik represents the k × k identity matrix, and 0i×j represents the i × j

matrix of zeros.
• A vector related to link i of the snake robot is either expressed in the global coor-

dinate system or in the local coordinate system of the link (see Fig. 2.1). This is
indicated by superscript global or link, i, respectively. If not otherwise specified,
a vector with no superscript is expressed in the global coordinate system.

2.3 The Parameters of the Snake Robot

The snake robot consists of N rigid links of length 2l interconnected by N − 1
motorised joints. The width of each link is not considered in the model. All N links
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Table 2.1 Parameters that characterise the snake robot

Symbol Description Vector

N The number of links

l Half the length of a link

m Mass of each link

J Moment of inertia of each link

θi Angle between link i and the global x axis θ ∈ R
N

φi Angle of joint i φ ∈ R
N−1

(xi , yi ) Global coordinates of the CM of link i X,Y ∈ R
N

(px,py) Global coordinates of the CM of the robot p ∈R
2

ui Actuator torque on link i from link i + 1 u ∈R
N−1

ui−1 Actuator torque on link i from link i − 1 u ∈R
N−1

(fR,x,i , fR,y,i ) Ground friction force on link i fR,x, fR,y ∈ R
N

(hx,i , hy,i ) Joint constraint force on link i from link i + 1 hx,hy ∈ R
N−1

−(hx,i−1, hy,i−1) Joint constraint force on link i from link i − 1 hx,hy ∈ R
N−1

have the same mass m and moment of inertia J = 1
3ml2. The total mass of the snake

robot is therefore Nm. The mass of each link is uniformly distributed so that the
link CM (centre of mass) is located at its centre point (at length l from the joint at
each side). In the following subsections, the kinematics and dynamics of the snake
robot will be modelled in terms of the mathematical symbols described in Table 2.1
and illustrated in Figs. 2.1 and 2.2. We will make use of the following vectors and
matrices:

A =

⎡
⎢⎢⎣

1 1
· ·

· ·
1 1

⎤
⎥⎥⎦ ∈ R

(N−1)×N,

D =

⎡
⎢⎢⎣

1 −1
· ·

· ·
1 −1

⎤
⎥⎥⎦ ∈R

(N−1)×N,

e = [1, . . . ,1]T ∈R
N, E =

[
e 0N×1

0N×1 e

]
∈ R

2N×2,

sin θ = [sin θ1, . . . , sin θN ]T ∈R
N, Sθ = diag(sin θ) ∈ R

N×N,

cos θ = [cos θ1, . . . , cos θN ]T ∈ R
N, Cθ = diag(cos θ) ∈R

N×N,

sgn θ = [sgn θ1, . . . , sgn θN ]T ∈ R
N, θ̇2 = [

θ̇2
1 , . . . , θ̇2

N

]T ∈R
N.

The matrices A and D represent, respectively, an addition and a difference matrix,
which will be used, respectively, for adding and subtracting pairs of adjacent ele-
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Fig. 2.1 The kinematic
parameters of the snake robot

Fig. 2.2 Forces and torques
acting on each link of the
snake robot

ments of a vector. Furthermore, the vector e represents a summation vector, which
will be used for adding all elements of an N -dimensional vector. The remaining vec-
tors and matrices have been defined above since they appear several times during the
development of the model.

2.4 The Kinematics of the Snake Robot

The snake robot moves on a horizontal and flat surface, and has N + 2 degrees of
freedom (N link angles and the planar position of the robot). The following defini-
tions are illustrated in Fig. 2.1.

Definition 2.1 (Link angle) The link angle of link i ∈ {1, . . . ,N} of the snake robot
is denoted by θi ∈ R and is defined as the angle that the link forms with the global
x axis with counterclockwise positive direction.

Definition 2.2 (Joint angle) The joint angle of joint i ∈ {1, . . . ,N − 1} of the snake
robot is denoted φi ∈ R and is defined as

φi = θi − θi+1. (2.1)

Note the distinction between link angles and joint angles. A link angle is the
orientation of a link with respect to the global x axis, while a joint angle is the dif-
ference between the link angles of two neighbouring links. We will quite frequently
assemble the link angles and the joint angles in the vectors θ = [θ1, . . . , θN ]T ∈ R

N

and φ = [φ1, . . . , φN−1]T ∈ R
N−1, respectively.
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The snake robot has no explicitly defined orientation since there is an indepen-
dent link angle associated with each link. We can still obtain a measure of the head-
ing of the robot as follows (this approach is also considered in e.g. Hatton and
Choset 2009a; Hu et al. 2009):

Definition 2.3 (Heading) The heading (or orientation) of the snake robot is denoted
by θ ∈ R and is defined as the average of the link angles, i.e. as

θ = 1

N

N∑
i=1

θi . (2.2)

The local coordinate system of each link is fixed in the CM of the link with x

(tangential) and y (normal) axes oriented such that they are aligned with the global
x and y axis, respectively, when the link angle is zero. The rotation matrix from the
global frame to the frame of link i is given by

Rglobal
link,i =

[
cos θi − sin θi

sin θi cos θi

]
. (2.3)

The global frame position p ∈R
2 of the CM (centre of mass) of the robot is given

by

p =
[
px

py

]
=

[
1

Nm

∑N
i=1 mxi

1
Nm

∑N
i=1 myi

]
= 1

N

[
eT X

eT Y

]
, (2.4)

where e was defined in Sect. 2.3, (xi, yi) are the global frame coordinates of the
CM of link i, X = [x1, . . . , xN ]T ∈ R

N , and Y = [y1, . . . , yN ]T ∈ R
N . We define

the velocity of the snake robot along its forward direction as follows:

Definition 2.4 (Forward velocity) The forward velocity of the snake robot is de-
noted by vt ∈ R and is defined as the component of the CM velocity ṗ along the
current heading θ , i.e. as

vt = ṗx cos θ + ṗy sin θ. (2.5)

Remark 2.1 Subscript t in the forward velocity vt denotes tangential. The simplified
model of the snake robot presented in Chap. 6 makes a clear distinction between
the forward velocity vt and the sideways velocity vn of the robot. We have chosen
to denote the forward velocity in the complex model by vt to maintain a similar
notation as in the simplified model.

The connection between link i and link i + 1 at joint i ∈ {1, . . . ,N − 1} must
comply with the two holonomic constraints
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xi+1 − xi = l cos θi + l cos θi+1, (2.6a)

yi+1 − yi = l sin θi + l sin θi+1. (2.6b)

Using the notation from Sect. 2.3, we can write the joint constraints for all the links
of the robot in matrix form as

DX + lA cos θ = 0, (2.7a)

DY + lA sin θ = 0. (2.7b)

We can now express the position of the individual links as a function of the CM
position and the link angles of the robot by combining (2.4) and (2.7a)–(2.7b) into

TX =
[−lA cos θ

px

]
,

TY =
[−lA sin θ

py

]
,

(2.8)

where

T =
[

D
1
N

eT

]
∈R

N×N. (2.9)

It can be shown that

T−1 = [
DT

(
DDT

)−1 e
]
, (2.10)

which enables us to solve (2.8) for X and Y according to

X = T−1
[−lA cos θ

px

]
= −lKT cos θ + epx, (2.11a)

Y = T−1
[−lA sin θ

py

]
= −lKT sin θ + epy, (2.11b)

where K = AT (DDT )−1D ∈ R
N×N , and where DDT is nonsingular and thereby

invertible. The linear velocities of the links are found by differentiating (2.11a) and
(2.11b) with respect to time, which gives

Ẋ = lKT Sθ θ̇ + eṗx, (2.12a)

Ẏ = −lKT Cθ θ̇ + eṗy . (2.12b)

By manually investigating the structure of each row in (2.12a) and (2.12b), it can be
verified that the linear velocity of the CM of link i in the global x and y directions
is given by

ẋi = ṗx − σiSθ θ̇, (2.13a)

ẏi = ṗy + σiCθ θ̇ , (2.13b)
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where

σi =
[
a1, a2, . . . , ai−1,

ai + bi

2
, bi+1, bi+2, . . . , bN

]
∈R

N, (2.14a)

ai = l(2i − 1)

N
, bi = l(2i − 1 − 2N)

N
. (2.14b)

2.5 The Ground Friction Models

2.5.1 The Friction Models and Their Role in This Book

As will become apparent in Chap. 4, a planar snake robot achieves forward propul-
sion on a flat surface by continuously changing its body shape to induce ground
friction forces that propel the robot forward. The ground friction model is therefore
an important part of the dynamics of the snake robot.

During planar locomotion, it is of great advantage to the propulsion of the snake
robot that the ground friction forces on the links are anisotropic, which means that
the friction coefficient describing the friction force in the tangential direction of a
link (parallel to the link, i.e. along link x axis) is different from the friction coeffi-
cient describing the friction force in the direction normal to the link (perpendicular
to the link, i.e. along link y axis). This friction property is exhibited by biological
snakes, as was explained in the description of biological snakes in Sect. 1.2, and is
also assumed in the majority of published research on snake robots, as described
in the literature review of Sect. 1.3. We therefore include anisotropic friction con-
ditions in the friction model of the snake robot. The importance of this friction
property will be investigated in more detail in Chap. 4.

Note that anisotropic ground friction properties are typically implemented by
mounting passive wheels along the body of the snake robot, but can also be achieved
by equipping the underside of each link of the robot with edges, or grooves, that run
parallel to each link (see e.g. Saito et al. 2002). If a snake robot does not have
anisotropic ground friction properties, which is the case if the ground friction force
on each link is independent of the link orientation with respect to its direction of
motion, the links are said to have isotropic ground friction properties. This will
typically be the case when the links of the snake robot are completely smooth in
all directions. Note also that a snake robot with a completely smooth outer surface
will still have anisotropic “friction” properties when it is swimming under water
due to the higher drag forces in the direction normal to each link compared to in the
tangential link direction (see e.g. Boyer et al. 2006; McIsaac and Ostrowski 2003a).

We consider two different ground friction models in this book, i.e. a Coulomb
friction model and a viscous friction model. The Coulomb friction model, which as-
sumes that the ground friction force on a link is proportional to the weight of the link,
is more accurate (from a physical point of view) than the viscous friction model,
which assumes that the ground friction force on a link is proportional to the velocity



46 2 A Complex Model of Snake Robot Locomotion

of the link. However, during planar locomotion, we conjecture that the anisotropic
friction property of the links, which is independent of the choice of Coulomb or vis-
cous friction, is the decisive factor of the motion. In other words, we conjecture that
the motion of the snake robot is qualitatively (although not quantitatively) similar
with anisotropic viscous friction as with anisotropic Coulomb friction. The viscous
friction model is, however, less complex than the Coulomb friction model, which
makes the viscous model more suitable for control design and analysis purposes. In
this book, we will therefore mostly assume that the ground friction is viscous.

In the following, we first present the Coulomb friction model and subsequently
the viscous friction model. In both models, the ground friction force on link i is
assumed to act on the CM of the link only and is denoted by

fR,i = fglobal
R,i =

[
fR,x,i

fR,y,i

]
∈R

2. (2.15)

The friction forces on all links are written in matrix form as

fR =
[

fR,x

fR,y

]
∈R

2N, (2.16)

where fR,x = [fR,x,1, . . . , fR,x,N ]T ∈ R
N and fR,y = [fR,y,1, . . . , fR,y,N ]T ∈ R

N

contain the friction forces on the links in the global x and y directions, respectively.

2.5.2 A Coulomb Friction Model

The coefficients describing the Coulomb friction force in the tangential (along link
x axis) and normal (along link y axis) directions of a link, respectively, are denoted
by μt and μn, respectively. We define the Coulomb friction force on link i in the

local link frame, flink,i
R,i ∈ R

2, as

flink,i
R,i = −mg

[
μt 0
0 μn

]
sgn

(
vlink,i
i

)
, (2.17)

where vlink,i
i ∈ R

2 is the link velocity expressed in the local link frame, and g is
the gravitational acceleration constant. Using (2.3), we can express the global frame
Coulomb friction force on link i in the form of (2.15) as

fR,i = fglobal
R,i = Rglobal

link,i flink,i
R,i

= −mgRglobal
link,i

[
μt 0
0 μn

]
sgn

(
vlink,i
i

)

= −mgRglobal
link,i

[
μt 0
0 μn

]
sgn

((
Rglobal

link,i

)T
[
ẋi

ẏi

])
. (2.18)



2.5 The Ground Friction Models 47

By performing the matrix multiplication in (2.18) and assembling the forces on all
links in matrix form, we can rewrite the global frame Coulomb friction forces on
the links in the form of (2.16) as

fR =
[

fR,x

fR,y

]
= −mg

[
μtCθ −μnSθ

μtSθ μnCθ

]
sgn

([
Cθ Sθ

−Sθ Cθ

][
Ẋ
Ẏ

])
∈R

2N. (2.19)

2.5.3 A Viscous Friction Model

Similar to the Coulomb friction model, we assume that the viscous ground friction
forces act on the CM of the links only. We present the viscous friction model for the
different cases of isotropic versus anisotropic viscous friction since these two cases
are analysed separately in Chap. 4.

Isotropic Viscous Friction

The isotropic viscous friction force on link i in the global x and y directions is
proportional to the global frame velocity of the link given by (2.13a) and (2.13b),
and is written in the form of (2.15) as

fR,i = fglobal
R,i = −c

[
ẋi

ẏi

]
= −c

[
ṗx − σiSθ θ̇

ṗy + σiCθ θ̇

]
, (2.20)

where c is the viscous friction coefficient. The friction forces on all links are easily
expressed in the form of (2.16) as

fR =
[

fR,x

fR,y

]
= −c

[
Ẋ
Ẏ

]
= −c

[
lKT Sθ θ̇ + eṗx

−lKT Cθ θ̇ + eṗy

]
, (2.21)

where we have used the expression for the link velocities given by (2.12a) and
(2.12b).

Anisotropic Viscous Friction

Under anisotropic friction conditions, a link has two viscous friction coefficients, ct

and cn, describing the friction force in the tangential (along link x axis) and normal
(along link y axis) directions of the link, respectively. We define the viscous friction
force on link i in the local link frame, flink,i

R,i ∈R
2, as

flink,i
R,i = −

[
ct 0
0 cn

]
vlink,i
i , (2.22)
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where vlink,i
i ∈R

2 is the link velocity expressed in the local link frame. Using (2.3),
we can express the global frame viscous friction force on link i in the form of (2.15)
as

fR,i = fglobal
R,i = Rglobal

link,i flink,i
R,i

= −Rglobal
link,i

[
ct 0
0 cn

]
vlink,i
i

= −Rglobal
link,i

[
ct 0
0 cn

](
Rglobal

link,i

)T
[
ẋi

ẏi

]
. (2.23)

By performing the matrix multiplication in (2.23), we get

fR,i = −
[
ct cos2 θi + cn sin2 θi (ct − cn) sin θi cos θi

(ct − cn) sin θi cos θi ct sin2 θi + cn cos2 θi

][
ẋi

ẏi

]
. (2.24)

By assembling the forces on all links in matrix form, we can rewrite the global frame
viscous friction forces on the links in the form of (2.16) as

fR =
[

fR,x

fR,y

]
= −

[
ct (Cθ )

2 + cn(Sθ )
2 (ct − cn)Sθ Cθ

(ct − cn)Sθ Cθ ct (Sθ )
2 + cn(Cθ )

2

][
Ẋ
Ẏ

]
∈ R

2N. (2.25)

Note that (2.25) reduces to (2.21) in the case of isotropic friction, i.e. where
ct = cn = c.

2.6 The Dynamics of the Snake Robot

The N + 2 degrees of freedom of the snake robot are defined by the link angles
θ ∈R

N and the CM position p ∈ R
2. We now present the equations of motion of the

robot in terms of the acceleration of the link angles, θ̈ , and the acceleration of the
CM position, p̈.

As illustrated in Fig. 2.2, link i ∈ {1, . . . ,N} is influenced by the ground friction
force fR,i ∈ R

2, which acts on the CM of the link, and also the joint constraint
forces −hx,i−1, −hy,i−1, hx,i , and hy,i , which keep the link connected to link i − 1
and link i + 1. The joint constraint forces are described in Table 2.1. Using first
principles, the force balance for link i in global frame coordinates is given by

mẍi = fR,x,i + hx,i − hx,i−1, (2.26a)

mÿi = fR,y,i + hy,i − hy,i−1. (2.26b)

The force balance equations for all links may be expressed in matrix form as

mẌ = fR,x + DT hx, (2.27a)

mŸ = fR,y + DT hy, (2.27b)
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where hx = [hx,1, . . . , hx,N ]T ∈ R
N and hy = [hy,1, . . . , hy,N ]T ∈ R

N . The link
accelerations may also be expressed by differentiating (2.7a) and (2.7b) twice with
respect to time, which gives

DẌ = lA
(
Cθ θ̇

2 + Sθ θ̈
)
, (2.28a)

DŸ = lA
(
Sθ θ̇

2 − Cθ θ̈
)
, (2.28b)

where the square operator of θ̇2 means that each element of θ̇ is squared (θ̇2 =
diag(θ̇)θ̇ ). We obtain the CM acceleration by differentiating (2.4) twice with respect
to time, inserting (2.27a) and (2.27b), and noting that the joint constraint forces, hx

and hy , are eliminated when the link accelerations are summed (i.e. eT DT = 0).
This gives

[
p̈x

p̈y

]
= 1

N

[
eT Ẍ
eT Ÿ

]
= 1

Nm

[
eT fR,x

eT fR,y

]
= 1

Nm
ET fR. (2.29)

This equation simply states, as would be expected, that the acceleration of the CM
of the snake robot equals the sum of the external forces acting on the robot divided
by its mass.

The torque balance for link i is given by

J θ̈i = ui − ui−1 − l sin θi(hx,i + hx,i−1) + l cos θi(hy,i + hy,i−1), (2.30)

where ui and ui−1 are the actuator torques exerted on link i from link i + 1 and
link i − 1, respectively. Hence, the torque balance equations for all links may be
expressed in matrix form as

J θ̈ = DT u − lSθAT hx + lCθAT hy. (2.31)

It now remains to remove the joint constraint forces from (2.31). Premultiplying
(2.27a) and (2.27b) by D, solving for hx and hy , and also inserting (2.28a) and
(2.28b) give

hx = (
DDT

)−1(
mlA

(
Cθ θ̇

2 + Sθ θ̈
) − DfR,x

)
, (2.32a)

hy = (
DDT

)−1(
mlA

(
Sθ θ̇

2 − Cθ θ̈
) − DfR,y

)
. (2.32b)

By inserting (2.32a) and (2.32b) into (2.31) and solving for θ̈ , we can finally rewrite
the model of the snake robot as

Mθ θ̈ + Wθ̇2 − lSθ KfR,x + lCθKfR,y = DT u, (2.33a)

Nmp̈ = Nm

[
p̈x

p̈y

]
=

[
eT fR,x

eT fR,y

]
= ET fR, (2.33b)

where fR is either the Coulomb friction force given by (2.19) or the viscous friction
force given by (2.25), and where
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Mθ = J IN + ml2SθVSθ + ml2Cθ VCθ , (2.34a)

W = ml2SθVCθ − ml2CθVSθ , (2.34b)

V = AT
(
DDT

)−1A, (2.34c)

K = AT
(
DDT

)−1D. (2.34d)

By introducing the state variable x = [θT ,pT , θ̇T , ṗT ]T ∈ R
2n+4, we can rewrite

the model of the snake robot compactly in state space form as

ẋ =

⎡
⎢⎢⎣

θ̇

ṗ

θ̈

p̈

⎤
⎥⎥⎦ = F(x,u), (2.35)

where the elements of F(x,u) are easily found by solving (2.33a) and (2.33b) for θ̈
and p̈, respectively.

2.7 Separating Actuated and Unactuated Dynamics

The model of the snake robot in (2.33a) and (2.33b) is rather complex for analysis
and control design purposes. We therefore seek a transformation which allows us to
write the model in a simpler form. Partial feedback linearisation of underactuated
systems (see e.g. Gu and Xu 1993; Spong 1994) consists of linearising the dynam-
ics corresponding to the actuated degrees of freedom of the system. We will employ
this methodology in the next section. However, before partial feedback linearisation
can be carried out, the model of the snake robot in (2.33a) and (2.33b) must be par-
titioned into two parts representing the actuated and unactuated degrees of freedom,
respectively. This partitioning is now carried out.

The acceleration of the CM of the snake robot, p̈, belongs to the unactuated part
since it is not directly influenced by the input, u. The acceleration of the link an-
gles, θ̈ , represents one unactuated degree of freedom and N − 1 actuated degrees of
freedom since there are N link accelerations (θ ∈ R

N ) and only N −1 control inputs
(u ∈R

N−1). However, it is not possible to partition the equation for θ̈ in (2.33a) into
an actuated and an unactuated part since the matrix DT in front of the control input
gives a direct influence between u and all the link accelerations. We therefore seek
a form of the model where there is a direct influence between u and only N − 1 link
accelerations. This is achieved by modifying the choice of generalised coordinates
from absolute link angles to relative joint angles. The generalised coordinates of the
model in (2.33a) and (2.33b) are given by the link angles, θ , and the CM position of
the snake robot, p. We now replace these coordinates with

qφ =
[
φ

p

]
∈R

N+2, (2.36)
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where φ = [φ1, . . . , φN−1, θN ]T ∈ R
N contains the N − 1 joint angles of the snake

robot and the absolute link angle, θN ∈ R, of the head link . The joint angles were
defined in Definition 2.2. The coordinate transformation between link angles and
joint angles is easily shown to be given by

θ = Hφ, H =

⎡
⎢⎢⎣

1 1 1 · · · 1 1
0 1 1 · · · 1 1
...

...

0 0 0 · · · 0 1

⎤
⎥⎥⎦ ∈ R

N×N. (2.37)

The model of the snake robot in the new coordinates is found by inserting (2.37)
into (2.33a). This gives

Mθ Hφ̈ + W diag(Hφ̇)Hφ̇ − lSθKfR,x + lCθKfR,y = DT u, (2.38a)

Nmp̈ = ET fR, (2.38b)

where we have used that θ̇2 = diag(θ̇)θ̇ = diag(Hφ̇)Hφ̇. Finally, we premultiply
(2.38a) with HT in order to achieve the desired form of the input mapping matrix
on the right-hand side by making the last of the N equations independent of the
control input. This enables us to write the complete model of the snake robot as

M(φ)q̈φ + W(φ, φ̇) + G(φ)fR(φ, φ̇, ṗ) = Bu, (2.39)

where

qφ =
[
φ

p

]
, (2.40a)

M(φ) =
[

HT Mθ (φ)H 0N×2
02×N NmI2

]
, (2.40b)

W(φ, φ̇) =
[

HT W(φ)diag(Hφ̇)Hφ̇

02×1

]
, (2.40c)

G(φ) =
⎡
⎣

−lHT SHφK lHT CHφK
−eT 01×N

01×N −eT

⎤
⎦ , (2.40d)

B =
[

IN−1
03×(N−1)

]
, (2.40e)

and where SHφ = Sθ and CHφ = Cθ .

Remark 2.2 It is interesting to note that premultiplying (2.38a) with HT both causes
the input mapping matrix B to attain a desirable form and produces a symmetrical
inertia matrix M. Had we left the model in the form of (2.38a) and (2.38b), the
inertia matrix would not have been symmetrical.



52 2 A Complex Model of Snake Robot Locomotion

The first N − 1 equations of (2.39) represent the dynamics of the relative joint
angles of the snake robot, i.e. the actuated degrees of freedom of the snake robot.
The last three equations represent the dynamics of the absolute orientation and po-
sition of the snake robot, i.e. the unactuated degrees of freedom. The model may
therefore be partitioned as

M11q̈a + M12q̈u + W1 + G1fR = u, (2.41a)

M21q̈a + M22q̈u + W2 + G2fR = 03×1, (2.41b)

where qa = [φ1, . . . , φN−1]T ∈ R
N−1 represents the actuated degrees of freedom,

qu = [θN,px,py]T ∈ R
3 represents the unactuated degrees of freedom, M11 ∈

R
(N−1)×(N−1), M12 ∈ R

(N−1)×3, M21 ∈ R
3×(N−1), M22 ∈ R

3×3, W1 ∈ R
N−1,

W2 ∈R
3, G1 ∈ R

(N−1)×2N , and G2 ∈R
3×2N .

Remark 2.3 M(φ) only depends on the relative joint angles of the snake robot and
not on the absolute orientation of the head link, θN . Formally, this is a result of the
fact that θN is a cyclic coordinate (Goldstein et al. 2002). Less formally, this is quite
obvious since it would not be reasonable that the inertial properties of a planar snake
robot be dependent on how the snake robot is oriented in the plane. We therefore
have that M = M(qa).

2.8 Partial Feedback Linearisation of the Model

Based on the partitioned model in (2.41a) and (2.41b), we are now ready to trans-
form the model of the snake robot to a simpler form through partial feedback lineari-
sation (see Gu and Xu 1993; Spong 1994) by introducing an input transformation
which linearises the dynamics of the actuated degrees of freedom in (2.41a). This
conversion greatly simplifies the controllability and stabilisability analysis of the
snake robot presented in Chap. 4. We will follow the approach presented in Rey-
hanoglu et al. (1999).

We begin by solving (2.41b) for q̈u as

q̈u = −M
−1
22 (M21q̈a + W2 + G2fR), (2.42)

where M22 is an invertible 3 × 3 matrix as a consequence of the uniform positive
definiteness of the system inertia matrix M(qa). Inserting (2.42) into (2.41a) gives

(
M11 − M12M

−1
22 M21

)
q̈a + W1 + G1fR − M12M

−1
22 (W2 + G2fR) = u. (2.43)

Consequently, the following linearising controller

u = (
M11 − M12M

−1
22 M21

)
u + W1 + G1fR − M12M

−1
22 (W2 + G2fR), (2.44)
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where u = [u1, . . . , uN−1]T ∈ R
N−1 is a new set of control inputs, enables us to

rewrite (2.41a) and (2.41b) as

q̈a = u, (2.45a)

q̈u = A(qφ, q̇φ) +B(qa)u, (2.45b)

where

A(qφ, q̇φ) = −M
−1
22 (W2 + G2fR) ∈R

3, (2.46a)

B(qa) = −M
−1
22 M21 ∈R

3×(N−1). (2.46b)

This model may be written in the standard form of a control-affine system by defin-
ing x1 = qa , x2 = qu, x3 = q̇a , x4 = q̇u, and x = [xT

1 ,xT
2 ,xT

3 ,xT
4 ]T ∈ R

2N+4. This
gives

ẋ =

⎡
⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x3
x4
u

A(x) +B(x1)u

⎤
⎥⎥⎦ = f(x) +

N−1∑
j=1

(
gj (x1)uj

)
, (2.47)

where

f(x) =

⎡
⎢⎢⎣

x3
x4

0(N−1)×1
A(x)

⎤
⎥⎥⎦ , gj (x1) =

⎡
⎢⎢⎣

0(N−1)×1
03×1

ej

Bj (x1)

⎤
⎥⎥⎦ , (2.48)

j ∈ {1, . . . ,N − 1}, ej denotes the j th standard basis vector in R
N−1 (the j th col-

umn of IN−1), and Bj (x1) denotes the j th column of B(x1). In literature that con-
siders control-affine systems, the vector f(x) is often called the drift vector field,
while the vectors gj (x1) are called the control vector fields.

Remark 2.4 We have used x to denote the state vector of the model (2.47) and
also the state vector of the model (2.35) even though these two state vectors are
not identical (the difference being the use of joint angles in (2.47) and link angles
in (2.35)). Several models of snake robot locomotion are presented in this book,
the presentation of which would be obscured by the introduction of a new symbol
to represent the state vector of each model. Since the various models are treated
separately, which means that it will always be clear from the context which elements
that are contained in the state x, we choose to denote the state vector in all models
by x.

Remark 2.5 The input transformation in (2.44) is nonsingular, which means that
results from analysis and control design based on the partially linearised model
in (2.47) are also applicable to the nonlinearised model in (2.35). This is obvious
since the behaviour of the model in (2.47) with a control law for u is identical to
the behaviour of the model in (2.35) with the control law for u transformed to u
according to (2.44).
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2.9 Chapter Summary

This chapter is summarised as follows:

• We have presented a mathematical model of a planar snake robot with N rigid
links interconnected by N − 1 motorised joints. The surface underneath the robot
was assumed to be flat and horizontal.

• We have developed two different ground friction models, i.e. a Coulomb friction
model given by (2.19) and a viscous friction model given by (2.25).

• The equations of motion of the snake robot in terms of the acceleration of the link
angles, θ̈ , and the acceleration of the CM position, p̈, are given by (2.33a) and
(2.33b).

• The equations of motion of the snake robot in terms of the acceleration of the joint
angles, φ̈, the acceleration of the head link angle, θ̈N , and the acceleration of the
CM position, p̈, are given by (2.41a) and (2.41b). In this model, the actuated
degrees of freedom of the snake robot are separated from the unactuated degrees
of freedom.

• With the input transformation in (2.44), the model of the snake robot is partially
feedback linearised to the simpler form given by (2.47). This form is more suit-
able for control design and analysis purposes.
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