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Part One
Fundamental
Principles of
Toothed Bodies
in Mesh

Before we can understand the future, we must learn about the past
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1
Introduction to the Kinematics
of Gearing

1.1 Introduction

A brief history of gearing and some established gear concepts are presented in this chapter
as an introduction to the development of a generalized kinematic theory for the design and
manufacture of gears. The primary objective is to familiarize the kinematician with gear termi-
nology in a format that is familiar to them (compatible with established kinematic theory) as
well as to introduce the gear specialist to some of the relevant kinematic concepts that are used
in developing a generalized methodology for the concurrent design and manufacture of gear
pairs. This approach includes the synthesis and analysis of the gear elements concurrently with
the design of the corresponding cutter elements used for their fabrication. These introductory
concepts will be built upon throughout this book to develop a generalized methodology based
on kinematic geometry for the integrated design and manufacturing of appropriate toothed
body to transmit a specified speed and load between generally oriented axes and the constraints
that may restrict implementation.

1.2 An Overview

An introduction to the complexities involved in the design and manufacture of toothed bodies
in mesh can be achieved by first examining the kinematic structure of conjugate motion
between parallel axes. One purpose of this chapter is to introduce the concept of toothed
wheels and demonstrate the basic kinematic geometry of toothed wheels in mesh as well as
their fabrication. This extended introduction is intended to establish a foundation that will be
used as a corollary to exemplify the intricacies of spatial gearing (namely, worm and hypoid
gearing). A similar introductory treatment on gears is presented in existing textbooks on
kinematics and machine design (e.g., Spotts, 1964; Martin, 1969; Shigley and Uicker, 1980;
Erdman and Sandor, 1997; Budynas and Nisbett, 2011). The elementary treatment provided
in these textbooks on kinematics and machine design is essentially based on the books by
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4 Kinematic Geometry of Gearing

Figure 1.1 South pointing chariot (reproduced by permission of Science Museum London/Science and
Society Picture Library)

Buckingham 1949 and Merritt (1971). Because of its practical importance, the design and
manufacture of toothed bodies continues to attract the attention of researchers in a variety
of fields (e.g., geometry, lubrication, dynamics, elasticity, material science, and computer
science). Dudley (1969) provides a brief account on the history of gears, and additional
information regarding the history of gears is provided by Cromwell (1884) and Grant (1899).
An overview on the design and manufacture of gears is presented by Dudley (1984) and Drago
(1988). Specialists in the gear industry have contributed to the second edition of Dudley’s
Gear Handbook edited by Townsend (1991). A more extensive and up-to-date analysis for the
design and manufacture of gears is provided by the following organizations:

� American Gear Manufacturers Association (AGMA)
� International Standards Organization (ISO)
� Deutsches Institute für Normung (DIN)
� Japanese Gear Manufacturers Association (JGMA)
� American National Standards Institute (ANSI)
� British Gear Association (BGA)

One of the earliest documented geared devices is the South Pointing Chariot. A model of
a South Pointing Chariot is depicted in Figure 1.1. The function of this device is to serve
as a mechanical compass in crossing the Gobi dessert. The statue atop of the wheeled cart
maintains a constant direction of pointing independent of the cart track. Various claims to
the date of the device range from 2700 bc to 300 ad. Heron of Alexandria devised many
mechanical systems involving mechanisms (some geared). Example systems include special
temple gates, mechanized plays, coin-operated water dispensers, and the aeolipile. Leonardo
da Vinci is one of the most celebrated designers of all times. Da Vinci is credited with the
various sketching of gears in Figure 1.2.

Norton (2001) credits James Watt as the “first” kinematician for documenting the coupler
motion of a four-link mechanism. This documentation was part of his effort to achieve long
strokes on his steam engine. More noted is Euler (father of involute gearing) and his analytical
treatment of mechanisms. Yet, Reuleaux is considered the “father” of modern kinematics for
his text Theoretical Kinematics. Reuleaux defined six basic mechanical components (namely,
a link, wheel, cam, screw, ratchet, and belt). A gear can be considered a manifestation of the
wheel, cam, and screw.
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Figure 1.2 Gear sketches by da Vinci (reproduced by permission of Biblioteca Nacional)

Geared devices remain vital components in many machine systems today. As a result, the
field of gearing endures an extensive pedigree and can require a devoted apprenticeship to mas-
ter the subject. Due to the nature of the evolution of gearing, current research and practice, have
for the most part, built on concepts charted by nineteenth century geometricians. These contri-
butions include modern concepts in kinematic synthesis and analysis, methods of manufacture,
analysis of vibrations and noise, the development and integration of tribological behavior into
the field of gearing, and the widespread availability of digital computers. Improvements in the
field of gearing can be achieved by directing new energies toward these areas. In order to give
the field of gearing a new genesis, gears (special toothed bodies) are classified in general as
elements of a mechanism that are used to control an input/output relationship between two
axes via surfaces in direct contact. As this manuscript evolves the discrepancies, limitations,
inconsistencies, different design philosophies, and the need for new technology within the gear
community will become more apparent and the concept of a gear will take on a new identity.
The primary goal of this manuscript is to provide the gear designer with new technology and
simultaneously provide the gear designer with a practical and unified approach to design and
manufacture general toothed bodies. This unified approach provides the analytical foundation
to better establish a correlation between theory and practice for generalized gear design and
manufacture. It is written with the assumption that the reader has access to the numerous texts
which illustrate traditional methods of gear design and manufacture.

1.3 Nomenclature and Terminology

An essential and important aspect of gear design and manufacture is to identify a nomenclature
that distinguishes different phenomena with as few symbols as possible. Currently, each of the
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Figure 1.3 Two cylindrical wheels (friction wheels) in line contact. An applied force F exists between
the two wheels in order to facilitate motion transmission

different gear types (planar, bevel, hypoid,1 worm, and worm gears) utilize a nomenclature
applicable to the particular gear type. The vernacular of a gear specialist can be misleading and
confusing for the novice and may require clarification among gear specialists. Also, due to the
interdisciplinary nature of gear, design and manufacture some of the established nomenclature
within each discipline becomes nebulous. An attempt is made here to adhere to standard
“gearing” nomenclature whenever possible.

The purpose of toothed wheels is to transmit uniform motion from one axis to another
independent of the coefficient of friction that exists between the teeth in mesh. Grant was
one of the first to document a treatise on toothed wheels in mesh (1899). He reveals that
at the close of the nineteenth century the design and manufacture of toothed bodies was
becoming more analytical, and less of a craft. As the design and manufacture of toothed
wheels became more analytical the nomenclature and terminology attained more significance.
The following are some of the common terms presently used in the gear community, and
additional nomenclature and terminology will be established throughout this book as the
analysis of toothed bodies in mesh increases.

Pitch radius: When two cylindrical wheels (input and output wheel) are in line
contact as shown in Figure 1.3, the radii of the input and output cylinders are
referred to as the pitch radii upi and upo, respectively. Two cylinders are in
line contact when the two axes of rotation are parallel. As the two cylinders
rotate, there is no slippage at the line of contact. Motion transmission via two

1 The phrase Hypoid Gear Drive is a trademark of Gleason Works. Other forms of similar gear drives not fabricated
by Gleason are referred to as simply hypoid gears or skew axis gears. The term hyperboloidal gears is used frequently
in this manuscript when referring the theoretical development of spatial gearing where current methods for the design
and fabrication of hypoid gears are not applicable.
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cylinders (friction wheels) in contact is limited by the applied radial force F and
the coefficient of friction that exists between the two cylinders.

Number of teeth: In order to maintain a desired speed ratio between two axes of
rotation, an integer number of teeth N must exist on each wheel. The combination
of the number of teeth on each wheel and the size of the two cylinders determine
the load-carrying capacity of the toothed wheels in mesh.

Transverse surface: For motion transmission between parallel axes, a transverse
surface of any plane is perpendicular to the axis of rotation. The transverse surface
is used to parameterize toothed wheels.

Pitch circle: The pitch circle is the intersection between a cylindrical wheel and
a transverse surface. The pitch circle is used as a reference for which many
calculations are based. The radius of the input pitch circle is upi, and the radius of
the output pitch circle is upo.

Diametral pitch: The diametral pitch Pd is a rational expression for the number
of teeth N divided by twice the pitch radius u: Pd = N/2u. The purpose for
introducing such an immeasurable quantity is to specify tooth sizes using integer
values. It is customary for SI designated standards to use the module m instead of
the diametral pitch Pd to specify gear tooth sizes, where Pd = 1/m. The diametral
pitch is always the same for two gears in mesh. Accordingly, Pd = Ni/2upi =
No/2upo = (Ni + No)/2E, where the center distance E = upi + upo. The possibility
of specifying an irrational I/O relationship is alleviated by defining the pitch radii
in terms of the diametral pitch. Pd < 20 is considered coarse pitch; afterward fine
pitch (Pd ≤ 20).

Transverse pitch: The transverse or circular pitch pt is an irrational expression
for the circumferential distance along the pitch circle between adjacent teeth:
pti = 2πupi/Ni = pto = 2πupo/No = π/Pd.

Addendum circle: The addendum circle is a hypothetical circle in the transverse
surface whose radius is the outermost element of any tooth. The addendum is the
region between the pitch circle and the addendum circle. The amount by which the
radius of the addendum circle exceeds the radius of the pitch circle is expressed
in terms of an addendum constant a: ua = up + a/Pd. The active region of the gear
tooth that lies in the addendum is referred to as the gear face.

Dedendum circle: The dedendum circle is a hypothetical circle in the transverse
surface whose radius is the innermost element between adjacent teeth. The deden-
dum is the region between the pitch circle and the dedendum circle.

Center line: The two points in the transverse plane where the two axes of rotation
for the input and the output wheel intersect, the transverse plane are instant centers.
The line connecting these two instant centers is the center line. When the two axes
of rotation are skew, the center line is the single line perpendicular to the two axes
of rotation.

Center distance: The distance along the center line between the two axes of
rotation is the center distance. This length is sometimes referred to as the interaxial
distance.
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Line of action: The line that passes through the point that is coincident with the
two teeth in mesh and also perpendicular to the two teeth is the line of action.

Pitch point: The pitch point is the intersection between the center line and the line
of action.

Clearance: The distance along the center line between the dedendum of one gear
and the addendum of its mating gear is the clearance. Like the dedendum and
addendum, the clearance is defined in terms of the clearance constant c and the
diametral pitch Pd.

Tooth width: The distance along the pitch circle between adjacent profiles of a
single tooth is the tooth width tt.

Tooth space: The distance along the pitch circle between two adjacent teeth is the
tooth space ts. The sum of the tooth width tt plus the tooth space ts must be equal
to the transverse pitch pt (i.e., pt = tt + ts).

Backlash: The amount the tooth space of one gear exceeds the tooth width of its
mating gear. AGMA recommends that the face width b be proportional to tooth
size. This is accomplished via the following AGMA recommendation:

9

Pd
≤ b ≤ 14

Pd

Pressure angle: The included angle between the common tangent between the two
pitch circles and the line of action.

IPS: A US customary system of measurements based on length, force, and time
whose units are inches, pounds, and seconds, respectively.

CGS: A SI system of measurements based on length, mass, and time whose units
are centimeters, grams, and seconds, respectively.

1.4 Reference Systems

Three distinct coordinate systems are used to parameterize the geometry of a gear pair. The
three distinct Cartesian coordinate systems are

1. (X, Y , Z) fixed to the ground,
2. input (Xi, Y i, Zi) attached to the driving or input wheel, and
3. output (Xo, Yo, Zo) attached to the driven or output wheel.

Each reference frame is a conventional right-handed Cartesian coordinate system as depicted
in Figure 1.4. The zi-axis of the input reference frame (axis of rotation for the input body) is
collinear with the Z-axis of the fixed reference frame. The distance E between the two axes
of rotation is a fixed distance directed along the positive X-axis of the stationary reference
frame. The zo-axis of the output reference frame (axis of rotation for the output body) is
perpendicular to the X–Y plane of the fixed reference frame. Associated with each of the
two Cartesian coordinate systems (xi, yi, zi) and (xo, yo, zo) are, respectively, two systems of
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Figure 1.4 Three Cartesian coordinates systems (X, Y , Z), (xi, yi, zi), and (xo, yo, zo) are used to
parameterize toothed wheels in mesh

curvilinear coordinates (ui, vi, wi) and (uo, vo, wo). The curvilinear coordinates (u, v, w) are
introduced to facilitate the parameterization of gear pairs and are indistinguishable from the
cylindrical coordinates (r, θ , z) for motion transmission between parallel axes. The special
curvilinear coordinates (u, v, w,) will be introduced in Chapter 3 where a single system of
curvilinear coordinates can be used to analyze the general case of toothed bodies in mesh.

1.5 The Input/Output Relationship

The relationship between the fixed coordinate system (X, Y , Z) and the input coordinate sys-
tem (xi, yi, zi) is defined by the net angular position vi about the input Z-axis as measured
from the fixed X-axis (see Figure 1.5). Similarly, the coordinate system (xo, yo, zo) is defined
by the net angular position vo about a line parallel to the Z-axis and located at a distance E
along the X-axis. The I/O relationship between the angular position vi of the input body to
that of the position (angular or linear) vo of the output body is defined as the transmission
function. The instantaneous gear ratio g is the ratio between the instantaneous angular displace-
ment dvo of the output and the corresponding instantaneous angular displacement dvi of the
input; thus,

g ≡ dvo

dvi
= Instantaneous angular displacement of the output body

Instantaneous angular displacement of the input body
. (1.1)

Here, the differential displacements dvi and dvo refer to an instantaneous change in angular
positions vi and vo, respectively. The displacements dvi and dvo are angular displacements
about the zi and zo axes, respectively. The angular speeds ωi and ωo are, respectively, the
angular displacements dvi and dvo per unit time dt. For uniform motion transmission between
fixed axes, the transmission function is linear and its slope is a constant equal to the gear
ratio. When this occurs the gear ratio is also defined by the ratio N i /No of gear teeth. This
ratio is defined to accommodate non-circular gears and is the reciprocal of the gear ratio used
by AGMA.
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Figure 1.5 Basic terminology for toothed wheels in mesh

The zi-axis of the input moving reference frame and the zo-axis of the output moving frame
are parallel for two external gears in mesh. The I/O relationship g is negative in this case for
two external gears in mesh. Although the majority of gears are external gears, it is convenient
to plot the I/O relationship g as positive for both two external gears and internal–external gears
in mesh with clarification on the gear type (namely, external–external or external–internal).
The elements of a gear pair are usually identified as either the gear or pinion, where the pinion
is the smaller of the two gears.2 It is possible in special circumstances regarding a hypoid gear
pair that the pinion is physically larger than the gear and yet have fewer teeth! The reason for
this phenomenon will be presented in Chapter 5. Use of “gear” and “pinion” to identify two
gears in mesh does not explicitly indicate if the gear pair is used for speed increasing or speed
decreasing. As a result, trailing subscripts “i” and “o” are added to identify the input and output

2 In Spanish, “pinion” translates to piñón and “gear” to Catalina or Catherine (literally, gear is engrenage when
simply referring to a generic “gear” element). Interestingly, St. Catherine of Alexandria has become emblematic for
wheelwrights, machinist, and mechanical engineers. St. Catherine was condemned in 305 ad by the pagan emperor
Maximian (305–313) for her confessed faith in Christianity. Accounts of this event vary, but one version is that a
special machine consisting of wheels and axles was devised to shred Catherine. Another version is that a rack- and
pinion-related device was used to stretch and torture Catherine. Both versions involve wheels and torture to discourage
the spread of Christianity. St. Catherine was invested by the Catholic Church and celebrated on November 25.



P1: TIX/XYZ P2: ABC
JWST162-c01 JWST162-Dooner February 20, 2012 9:41 Printer Name: Yet to Come Trim: 244mm×168mm

Introduction to the Kinematics of Gearing 11

End radius

Edge radius

Top round

Fillet region

Figure 1.6 Edge radius, end radius, and top round reduce nicks and burrs encountered in shipping and
handling prior to assembly

respectively. Neither subscript is used in certain situations where a notation is applicable to
both the input and the output gears.

The simplest scenario of toothed wheels in mesh is motion transmission between parallel
axes. Depicted in Figures 1.5 and 1.6 is some terminology used to describe toothed wheels. In
general, gear designers parameterize gear teeth in a plane. This same planar parameterization
is also applied to analyze bolts and nuts, presses, rotary compressors, and planar four-bar
linkages. Since motion transmission between parallel axes can be adequately illustrated in a
plane perpendicular to the axis of rotation it is commonly referred to as planar motion. The
ease of visualizing planar motion attributes to its usage.

1.6 Rigid Body Assumption

Initially, when analyzing the kinematic geometry of toothed bodies in mesh, it is assumed
that the bodies in mesh are rigid although they will inevitably deform depending on the
transmitted load. These deformations are accounted for by the compliance of the housing
used to support the bearings, the deflections in the bearing supports, the bending and torsional
displacements in the gear blanks and shafts, and the deflection of the teeth relative to the gear
blank. The assumption of rigid bodies not only simplifies analysis but also necessary in order
to initially determine the geometry of the toothed bodies in mesh. The elastic deformations are
subsequently calculated and compensated for by profile modifications such as profile relief and
crowning of the teeth. Due to errors encountered in manufacturing, assembly, and operation of
a gear pair, the amount of profile modification varies for each gear type and is generally based
on experience. If the proper modifications are not incorporated then the smooth transmission
of motion from one axis to another can no longer be expected to occur, and the gear teeth will
be subjected to impulsive loading producing higher stresses and noise.

1.7 Mobility

Earlier in this chapter gears were described as elements of a mechanism. Reuleaux (1876)
defines a mechanism as a closed kinematic chain where one of its links is held stationary.
The stationary link or ground is usually indicated by feathered marks as shown in Figure
1.7a. The mobility M or the degree of freedom (dof) of a mechanism refers to the number
of independent parameters that must be specified to uniquely determine the configuration or
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Figure 1.7 Two mechanisms where (a) has mobility one and (b) has zero mobility

arrangement of the remaining links within the mechanism. One task of a kinematician is to
specify the configuration of a mechanism given the independent parameters. The mechanism
shown in Figure 1.7a has no mobility (over constrained), whereas the special mechanism
shown in Figure 1.7b has mobility one. The difference between the two mechanisms is that
the links 2 and 3 in Figure 1.7a are connected by a pin, whereas the two links 2 and 3 in
Figure 1.7b are tangent to one another at point c. A mechanism with zero or less mobility is
a structure or truss. The concept of mobility is important and far reaching when considering
toothed bodies in mesh. First, a brief discussion regarding planar three link 1-dof mechanisms
is discussed; then, later in Chapter 5 the more general case of a five link 1-dof mechanism
will be discussed. More insight on mobility is found in many textbooks on mechanisms and
kinematics (e.g., Hunt, 1978; Shigley and Uicker, 1980; Edman and Sandor, 1997).

The analysis of mechanisms involves identification of the types of motion that may exists
between two objects. The displacement or change in position of a point relative to a fixed
coordinate system is defined as absolute displacement. The displacement or change in position
and orientation of an object relative to a fixed coordinate system is defined as vehicular
displacement. The displacement of a point relative to another moving coordinate system is
defined as relative displacement.

Depicted in Figure 1.8 is a movable lamina 2 (planar body) relative to the fixed coordinate
system (X, Y , Z). Three independent parameters X2, Y2, and θz2 are used to specify the position

Figure 1.8 Fixed coordinate moving coordinate systems
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and orientation of this movable lamina with respect to the fixed coordinate system (X, Y , Z). The
mobility m or freedom of the lamina 2 relative to the fixed coordinate system (X, Y , Z) is three:

1. A translation �X2 in the X-direction
2. A translation �Y2 in the Y-direction
3. A rotation �θ z2 about the Z-axis

Planar displacement can be parameterized by a linear combination of the above three displace-
ment and that at any instant the displacement of lamina 2 can be reduced to a rotation about
a fixed line parallel to the Z-axis (Theorem of Chasles). The point where this axis of rotation
intersects the X–Y plane is the instant center of rotation for the moving lamina 2. By restricting
the movable lamina 2 depicted in Figure 1.7b to only rotations about the Z-axis, the mobility
of lamina 2 relative to (X, Y , Z) reduces to one (i.e., a rotation without translation). Similarly,
restricting the movable lamina 3 depicted in Figure 1.7b to only rotations about a line parallel
to the Z-axis (and located a distance E along the positive X-axis) also restricts the mobility
of lamina 3 relative to (X, Y , Z) to one. Rosenauer and Willis (1953) define the connection
between two bodies according to its mobility M. If the mobility between two bodies is one
then it is a lower pair, and if the mobility is greater than one then it is a higher pair. Thus, the
connection between body 2 and ground as well as the connection between body 3 and ground
both comprise lower pairs.

In order to assess the mobility of the three link mechanism shown in Figure 1.7b, it is
necessary to determine the freedom or mobility that exists between bodies 2 and 3. There
cannot exists any relative motion along the line of action l at the point of contact if contact is
maintained between bodies 2 and 3. The mobility between bodies 2 and 3 increases to two (a
higher pair) by restricting the relative displacement between bodies 2 and 3 to rotations about
a point of the line of action l. The relative mobility between the links of a planar mechanism
is given by the planar mobility criterion (Hunt, 1978)3:

M = 3(n − k − 1) +
k∑

j=1

fj, (1.2)

where m is the mobility, n is the number of bodies, k is the number of joints, and f j is the
freedom at each joint. The above mobility criterion is frequently referred to as Grübler’s
mobility criterion and is a special form of a more general mobility criterion to be discussed
in Chapter 5. Applying the above mobility criterion to the three link mechanism depicted in
Figure 1.7, the mobility becomes

M = 3(3 − 3 − 1) + (1 + 1 + 2) = 1.

In this case, there are three elements or bodies: two gear elements and a fixed housing element.
There are also three joints: one between each of the gear elements and the fixed housing thus
comprising a total of two joints, and a third one at the point of contact between the two gear
elements. The latter joint has 2 dof. Thus, the three link mechanism is a 1-dof mechanism. In
other words, as one of the gears rotate, the other gear must rotate according to Equation (1.1).

3 The number of independent parameters to determine rigid body motion in d-dimensional space is d(d + 1)/2. In
3D space, 3(4)/2 or 6 independent parameters are necessary to uniquely define position and orientation.



P1: TIX/XYZ P2: ABC
JWST162-c01 JWST162-Dooner February 20, 2012 9:41 Printer Name: Yet to Come Trim: 244mm×168mm

14 Kinematic Geometry of Gearing

Caution should be exercised when using the above mobility relation. Misleading or wrong
results can occur for special geometries and overconstraints. The above relation treats all joints
as active and does not consider idle dof or redundant constraints.

1.8 Arhnold-Kennedy Instant Center Theorem

A point that is common to two planar bodies in motion that has the same absolute velocity
is referred to as an instant center of rotation. A transverse section of a three link mechanism
is shown in Figure 1.9. The intersections between the two axes of rotation zi and zo for the
two bodies shown in Figure 1.9 and a transverse surface (the X–Y plane) are referred to as
the instant centers of rotation ¢i and ¢o, respectively. Using the special notation “¢i” and “¢o”
to represent axes of rotation by points is valid for motion transmission between parallel axes.
Here, the absolute velocities between the fixed coordinate system (X, Y , Z) and the centers
of rotation ¢i and ¢o corresponding to the two moving coordinate systems) and (xo, yo, zo),
respectively, are zero, thus instant centers. Since the zi-axis of the input Cartesian coordinate
system (xi, yi, zi) is coaxial with the Z-axis of the fixed Cartesian coordinate system (X, Y ,
Z), the point coordinates of the instant center ¢i relative to the fixed coordinate system are
determined by (X, Y , Z) = (0, 0, 0). The transverse surface is defined by the X–Y plane of the
fixed Cartesian coordinate system (X, Y , Z). The zo-axis of the output Cartesian coordinate
system (xo, yo, zo) is perpendicular to the X–Y plane and intersects the positive X-axis at a
distance E from the origin; thus, the coordinates of the instant center ¢o relative to the fixed
coordinate system are determined by (X, Y , Z) = (E, 0, 0).

Uniform motion transmission between two parallel axes is possible only if the line of
action passes through a fixed point ¢irp known as the pitch point. The subscript “irp” signifies
that ¢irp is the instantaneous rotation pole. The locus of pitch points (relative to the input
coordinate system) for each angular position vi of the input determines the input’s pitch curve

Figure 1.9 Two bodies in direct contact for motion transmission between parallel axes
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or centrode. Likewise, the locus of pitch points (relative to the output coordinate system) for
each angular position vo of the output determines the output’s pitch curve or centrode. For
uniform motion, transmission the pitch curves become circles whose radii upi and upo depends
on the magnitudes of the I/O relationship g and the center distance E.

Illustrated in Figure 1.9 are the input and output bodies, the line of action l, the point
of contact c, and the pitch point for the two bodies in contact. In the majority of gearing
applications, the position ¢irp of the pitch point p remains invariant for each angular position
vi; nonetheless, circumstances can exists (see Appendix C) where the position of the pitch
point p varies for the different input positions vi. Two “planar” curves in direct contact are
conjugate if the line of action l passes through the desired pitch point for each angular position
vi of the input. In general, the line of action does not have to pass through the desired pitch
point ¢irp as will be explained in Chapter 5.

Two toothed wheels in mesh are in effect two links of a three link 1-dof mechanism. Bodies
2 and 3 depicted in Figure 1.9 are in mesh. The input body is one link, the output body is
another link, and ground or the hypothetical link connecting the two axes of rotation is the third
link. Considering the toothed wheels in mesh as a three link 1-dof kinematic chain, any one
of the three links may be held stationary. The process of holding stationary different links of
a kinematic chain is known as inversion. Although the absolute motion of the three link 1-dof
kinematic chain is different depending on which link is held stationary, the relative motion
between the three links remains unaltered. Knowledge of the relative displacements between
two elements of a mechanism is necessary for its design (both kinematic and structural). It is
important to understand that the relative motion (planar in this case) between the three links
necessary to define a gear pair can be obtained from the special vector loop equation:

dv12¢12 + dv23¢23+dv31¢31 = 0, (1.3)

where dv12 ¢12 is the relative angular displacement of body 2 with respect to body 1 (i.e., an
angular displacement dv12 about point ¢12), dv23 ¢23 is the relative angular displacement of
body 3 with respect to body 2, and dv31 ¢31 is the relative angular displacement of body 1
with respect to body 3. Body 1 represents ground or the fixed reference system, body 2 is the
input body, and body 3 is the output body. By holding stationary link 1 then its displacement is
always zero and can also be specified using the vector loop Equation (1.3). That is, the relative
displacement of body 2 with respect to body 1 plus the relative displacement of body 3 with
respect to body 2 plus the relative displacement of body 1 with respect to body 3 must always
sum to zero for the closed three link 1-dof kinematic chain.

The displacement dv12 ¢12 of the input body with respect to ground is denoted dvi ¢i, the
displacement dv13 ¢13 (where dv13 ¢13 = − dv31 ¢31) of the output body with respect to ground
is denoted dvo ¢o, and the displacement dv23 ¢23, denoted dvirp ¢irp, is the relative displacement
of the output body with respect to the input body. The subscript irp is used to indicate ¢irp

is the instantaneous rotation pole between bodies 2 and 3. The instantaneous angular speeds
ωi and ωo are extracted from the angular displacements dvi and dvo, respectively, by dividing
Equation (1.3) through by the incremental change in time dt, where ωi = dvi/dt and ωo =
dvo/dt. Hunt (1978), Bottema and Roth (1979), and Phillips (1984) each present a more general
treatment on the closure of general kinematic chains.

In order for two pitch circles to rotate without slippage at the point of contact (for two
circles in mesh the point of contact and the pitch point are coincident), the absolute velocity of
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the point of contact on bodies 2 and 3 must be the same relative to the fixed coordinate system
(X, Y , Z). An important theorem from planar kinematics is the Arhnold-Kennedy instant center
theorem: for three rigid bodies 1, 2, and 3 in mesh, the instant centers ¢12, ¢23, and ¢31 between
bodies 1 and 2, bodies 2 and 3, and bodies 3 and 1 all lie on a straight line. Applying the
Arhnold-Kennedy instant center theorem to toothed wheels in mesh reveals that the pitch point
(instant center ¢irp) must always lie on the line connecting the two wheel’s center of rotation.
In a mathematical sense, the linear combination of the two points ¢i and ¢o must be a third
point ¢irp on the line connecting the two points ¢i and ¢o.

Before the coordinates dvirp ¢irp of the instant center can be determined using Equation
(1.3), it is beneficial to first parameterize the instant centers ¢i and ¢o in terms of the special
point coordinates ¢i = (W i; 0, 0, 0) and ¢o = (Wo; E, 0, 0). The special coordinates for the
instant centers ¢i and ¢o are supplemented by introducing the additional reference parameters
W i and Wo where W i = Wo = 1. Introducing the additional reference parameters W i and
Wo to describe the instant centers ¢i and ¢o, respectively, enables ¢irp to be obtained by
simply summing the special point coordinates ¢i and ¢o. The special coordinates used to
uniquely define the position of a point are known as homogeneous point coordinates. This is
demonstrated diagrammatically in Figure 1.10. The sum of the two points ¢1 and ¢2 results in
a third point ¢3. Without the additional reference parameters W1 and W2, the sum of the two
points (X1, Y1, Z1) and (X2, Y2, Z2) yields a third point (X1 + X2, Y1+Y2, Z1+ Z2) on the line
l3. By introducing the reference parameters W1 and W2, the sum of the two points ¢1 and ¢2

becomes a third point on the line l3 as well as the line l12. Depending on the ratio

√
W 2

1 + X2
1 + Y 2

1 + Z2
1 :

√
W 2

2 + X2
2 + Y 2

2 + Z2
2 ,

the sum ¢1+ ¢2 is always a third point ¢3 on the line l12 connecting the two points ¢1 and ¢2.
Initially, the use of the special point coordinates ¢i and ¢o to determine the instant center or
pitch point ¢irp might appear unnecessary. The advantage for implementing such an approach

Figure 1.10 The sum of the two points p1 and p2 using homogeneous coordinates is a third point ¢3

on the line l12
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to determine the instant center is that an analogous approach is used to determine the spatial
equivalence of the pitch point as will be demonstrated in Chapter 3.

Application of the Arhnold-Kennedy instant center theorem indicates that the pitch point
or instant center dvirp¢irp must lie on line which passes through the two centers ¢i and ¢o of
rotation (this is the fixed X-axis). The scaling or weighting factors dvi and dvo determine the
location of ¢irp on this line. The radius upi or the distance along the fixed X-axis from the origin
of the fixed coordinate system (X, Y , Z) is the magnitude of dvirp¢irp. Solving the vector loop
Equation (1.3) for the pitch point dvirp¢irp yields (where g is negative for two external gears)

dvirp¢irp = −dvi(¢i − g¢o) = dvi(1 − g; gE, 0, 0). (1.4)

The magnitude of dvirp¢irp from the origin of the fixed coordinate system (X, Y , Z) is the radius
upi of the input centrode for each angular position vi where

upi = E
g

g − 1
, (1.5a)

and the radius upo of the output centrode for each angular position vi is

upo = E − upi = −E

g − 1
. (1.5b)

Recognize that when the I/O relationship g = 1 that the denominators of Equations (1.5a) and
(1.5b) both vanish and the pitch point for the gear pair is infinitely located.

The fact that the instant center must lie on the line connecting the two wheels’ center of
rotation will be demonstrated synthetically. As shown in Figure 1.9, the point of contact c is
a general point in the transverse plane. The absolute velocity Vci of the point c coincident
with the input body must be perpendicular to the line connecting c and the instant center ¢i.
Similarly, the absolute velocity Vco of c coincident with the output body must be perpendicular
to the line connecting c and the instant center ¢o. Thus, the absolute velocities are not collinear.
Unless the point of contact c lies on the line connecting the two instant centers ¢i and ¢o, it
cannot be a pitch point. In order for two conjugate surfaces to remain in mesh, the component
of the absolute velocities along the line of action l must be identical, otherwise rigid bodies 2
and 3 become separated.

The velocity of the point on the input body coincident with the point of contact c can be
resolved into two components: one component V⊥ci is perpendicular to the line of action l
and another component V‖ci parallel to l. Similarly, the velocity of the point on the output
body coincident with the point of contact c can also be resolved into two components: one
component V⊥co is perpendicular to the line of action l and another component V‖co parallel
to l. In order for the two teeth to remain in contact the two components V‖ci and V‖co must be
equal. The difference in the two perpendicular components V⊥ci −V⊥co is the relative sliding
Vs between the two teeth. The cyclic behavior of the relative sliding is a source of vibrations
and noise. The presence of friction at the point of contact c causes the line of action of the net
force $w

4 (the net force $w is the sum of the force along the common normal between the teeth
in contact plus the frictional force) between the input and output to no longer pass through
the desired pitch point p. During the engagement of gear teeth, lubricant is rapidly displaced

4 The dollar symbol “$” is used to indicate a line, whereas the cents symbol “¢ ” refers to a point. It is a series of
points that determine a line analogous to the convention that an amount of “cents” define a “dollar.”
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within the contact zone. Due to the friction forces at the contact, the product of speed and
torque put into the system does not equal the product of speed and torque extracted from the
gear system (i.e., To �= T i/g). The difference T iωi − Toωo due to friction at the contact is what
is generally known as the mesh losses.

1.9 Euler-Savary Equation for Envelopes

Another important theorem from planar kinematics that can be useful in analyzing toothed
bodies in mesh is the Euler-Savary equation. In planar kinematics, there exist several forms
of the Euler-Savary Equation.5 The Euler-Savary Equation for envelopes reveals a limitation
on the relative gear tooth curvature. Motion transmission between two axes by gear elements
is produced by two surfaces in direct contact. It was discussed in Section 1.9 regarding the
Arhnold-Kennedy instant center theorem that conjugate motion exists when the line of action
l intersects the desired pitch point p between the input and output and the instantaneous gear
ratio g = ωo/ωo bodies is g = upi/upo. This result is used to establish the planar Euler-Savary
equation for envelopes. Additional information of the spatial analog to the planar Euler-Savary
equation is presented in Appendix J.

Determination of the relative gear tooth curvature �κ between two planar involute gear teeth
is demonstrated prior to presenting the relative gear tooth curvature between two generalized
gear teeth. Depicted in Figure 1.11 are two involute gear teeth in mesh. The radius of the input
pitch circle is Ri, whereas Ro is the radius of the output pitch circle. ρ i and ρo are the radii of
curvature for the input and output gear teeth, respectively. Projecting the pitch radii Ri and Ro

onto the contact normal yields

ρi = Ri sin φ (1.6a)

ρo = Ro sin φ, (1.6b)

where φ is the angle between the pitch circle tangency and the tooth contact normal. For planar
curves, the curvature κ and radius of curvature ρ are reciprocals (i.e., κ = 1/ρ); thus, relative
gear tooth curvature �κ can be expressed as follows:

�κ =
(

1

ρi
+ 1

ρo

)
(1.7a)

or

�κ =
(

1

Ri
+ 1

Ro

)
1

sin φ
, (1.7b)

where
Ri radius of input pitch circle,
Ro radius of output pitch circle, and
φ pressure angle.

5 Felix Savary (1797–1841) was a student and professor at the Ecole Polytechnique. His interests included astronomy
and geodesy. Savary worked with Andre Marie Ampere and is credited with an ability to focus intensely and this skill
seems to have been influential on Ampere and his research. Kinematics as a separate science was defined by Ampere.
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Figure 1.11 Two pitch circles in contact

Equating the above expression establishes a unique relation among the pressure angle φ,
the pitch radii Ri and Ro, and the relative gear tooth curvature �κ . This relation is known
as the Euler-Savary equation for envelopes. Regardless of the radii of tooth curvature ρ i and
ρo, the relative gear tooth curvature �κ depends solely on pitch radii Ri and Ro and pressure
angle φ. The above relation for relative gear tooth curvature is for cylindrical gears with spur
type gear teeth. Further, this relation is valid only for contact at the pitch point.

1.10 Conjugate Motion Transmission

Initially toothed bodies began as pegged wheels depicted in Figure 1.12. As loads and speeds
increased, the idea of pegged wheels no longer sufficed. The speed fluctuations due to the non-
conjugate behavior were sources of dynamics which eventually led to tooth failure. Craftsmen
or wheelwrights modified these pegged wheels to reduce the dynamics, and these modifica-
tions eventually evolved into the modern tooth profile. The Arhnold-Kennedy instant center
theorem (Section 1.8) was presented to demonstrate that uniform motion transmission between
two parallel axes exists if the line of action between the two bodies in mesh passes through

Figure 1.12 Primitive gears originated as pegged wheels
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a fixed point; the pitch point. The mechanization of the eighteenth century required gears to
operate at higher speeds and sustain higher loads. Thus the pegged wheel gave way to the cast
iron gear that cannot tolerate nonconjugate motion. Included in the advancing gear technology
was also the concept of interchangeability between different gear pairs.

1.10.1 Spur Gears

Analytical treatment of toothed wheels produced many forms of conjugate tooth profiles.
Initially, an arbitrary profile was chosen for one body and the mating or conjugate profile
for the other body was determined by satisfying the Arhnold-Kennedy instant center theorem
(Equation (1.4)) (Reuleaux, 1876). This type of analysis led to many impractical profile forms
which were eventually abandoned. Reuleaux (1876) provides an excellent treatment regarding
the kinematics of early tooth profiles, their methods of synthesis, and how they evolved. Three
forms of conjugate tooth profiles that have received universal recognition are

1. the cycloidal tooth profiles,
2. the involute tooth profiles, and more recently
3. the circular-arc tooth profiles.

Currently, the procedures used to obtain coordinates for each of the above three forms of
candidate tooth profiles are different. Tooth forms where the profile remains parallel to the
generators of the pitch surface are defined as spur gears. It is necessary to investigate multiple
transverse surfaces to determine if a gear has spur-type teeth.

So far a single transverse section has been used to illustrate conjugate motion. However, in
order to physically transmit power from one axis to another, the toothed wheels must be of
finite thickness (i.e., an infinite number of transverse sections). What is the tooth shape for
each transverse section that will ensure conjugate motion? The simplest and most immediate
solution is that the tooth shape remains invariant for each transverse surface. By introducing
a family of tooth profiles each parallel to one another, the pitch point is no longer a point but
instead becomes a line comprised many pitch points. At each instant, the locus of the pitch
points comprise a line parallel to the axes of rotation zi and zo. Conjugate motion continues
provided the line of action intersects the locus of pitch points. Spur gear can also be determined
by recognizing that the line of action is perpendicular to the locus of pitch points. The pitch
curves are no longer curves in this case but are instead pitch cylinders as shown in Figure 1.13.

Figure 1.13 Two cylindrical wheels in mesh
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Figure 1.14 Lines of contact with a spiral tooth on a cylindrical wheel

1.10.2 Helical and Crossed Axis Gears

One feature of spur-type gears is that the initial contact between two teeth is independent of the
axial position along the axis of rotation. The initial engagement of two teeth is a line segment
parallel to both axes of rotation. As the two gears mesh, this line of contact remains parallel
to the locus of pitch points. The length of this line segment of contact between two spur-type
gears does not change in magnitude during the mesh cycle. A more favorable engagement
between gear teeth would be for the teeth to gradually enter into line contact. This is achieved
by inducing an angular offset between each transverse section. When this occurs toothed
wheels are said to be helical or spiral. The term helical is usually associated with cylindrical
gearing whereas spiral is associated with bevel and hypoid gearing. In pursuit of developing
a unified approach, the term spiral is used to identify nonspur tooth forms. An example of a
spiral tooth on a cylindrical pitch surface is shown in Figure 1.14. The line segment of contact
is no longer parallel to the locus of pitch points. Contact between spiral gears begins as an
infinitesimal line segment (point contact). As contact progresses the line segment increases
in length to a certain limit, then propagates across the tooth surface, and finally decreases in
length. This is illustrated by the various line segments shown if Figure 1.14.

The axial displacement dwi (or instantaneous lead dLi) of the line segment of contact must
be the same for any radius ui. The only way to achieve an instantaneous invariant lead dL′

i is
for the spiral angle ψ i to change for each radius ui. If the instantaneous lead dL′

i is not constant
for each transverse section then the axial displacement dwi associated with each radius ui will
be different and the gear teeth would bind or become locked. Shown in Figure 1.15 is the

Figure 1.15 The relationship among the radius ui, the angular displacement dvi, the instantaneous lead
dLi, and the spiral angle ψ i
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Figure 1.16 Double spiral or herringbone gears

radius ui, an angular offset dvi, the spiral angle ψ i, and the instantaneous lead dL′
i. In order to

preserve an instantaneous invariant lead dL′
i, the spiral angle ψ i for each radius ui becomes

ψi = tan−1 ui

dL′
i

. (1.8)

The amount of angular displacement dvi between successive transverse profiles depends on
the axial displacement dwi and the instantaneous lead dL′

i. Typically, the instantaneous lead
dL′

i is defined in terms of the spiral angle ψρi associated with the pitch radius uρi, where
10◦ < |ψpi| < 30◦. For example, the angular offset �v between the two axial position w1 and
w2 is (ψpi is constant)

�v = (w1 − w2) tan ψpi

upi
. (1.9)

If a pitch spiral angle ψpi = 20◦ exists on the input gear then the pitch spiral angle ψpo for
the output gear must be ψpi = −20◦. Otherwise the two axes of rotation zi and zo cannot be
parallel. When the two spiral angles ψpi and ψpo are not equal and opposite, then the included
angle between the input axis zi and the output axis zo becomes ψpi + ψpo. Two cylindrical
gears in mesh are referred to as crossed axis cylindrical gears or nonenveloping gears when
the shaft angle is nonzero (i.e., 
 �= 0).

Spur gears are special spiral gears where the spiral angle ψpi is zero. Usually, the spiral angle
ψpi is constant for cylindrical gears. The freedom to arbitrarily choose the spiral angle ψpi

and still satisfy conjugate motion does not exist for motion transmission between nonparallel
axes as will be discussed later. One aspect of spiral gears is that an axial thrust is produced,
and hence, an increase in the contact force that must exists between the two surfaces in mesh
in order to transmit the same load. One method of balancing or eliminating the axial thrust
produced by spiral gears is to use herringbone gears that incorporate two equal and opposite
spiral angles on each gear. The sign of the spiral angle determines the hand. Looking along
the gears axis of rotation, if the spiral angle is positive then the gear is said to have a left
hand. Illustrated in Figure 1.16 are two herringbone gears or gears that incorporate equal and
opposite hands. Each transverse surface of a pair of spiral cylindrical gears is equivalent to a
transverse section of a pair of spur cylindrical gears.

1.11 Contact Ratio

At least one pair of teeth must come into contact before the adjacent pair of teeth in contact
become separated in order to sustain conjugate motion for toothed wheels in mesh. It can be
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Figure 1.17 Gear pair with single contact and double contact

seen in Figure 1.17a that one pair of teeth is in contact and that in Figure 1.17b two pair of
teeth are in contact. The number of teeth in contact at any given instant is referred to as the
engagement factor. A measure of the average number of teeth in contact is the total contact
ratio m. The total contact ratio is the sum of two components; the transverse contact ratio mt

and the axial contact ratio ma. Figure 1.18 is used to illustrate the transverse contact ratio. For
example, if the transverse contact ratio mt is 1.3 then the average number of teeth in contact
is between one and two. In this case one pair of teeth is in contact for 70% of the mesh cycle
and two pairs of teeth are in mesh for the remaining 30%. Similarly, if the transverse contact
ratio is 2.1 then three pairs of teeth are in contact for 10% of the mesh cycle and two pairs
of teeth are in contact for the remaining 90% of the mesh cycle. If the transverse contact
ratio mt = 0.75 and the axial contact ratio ma is 0.35 then the total contact ratio m is 0.75 +
0.35 = 1.1; thus, conjugate motion can only be achieved through a combination of transverse
and axial displacement of the line segment of contact.

Load sharing exists as gear teeth mesh. One common assumption is the ISO 6336 standard
for metal spur gears. This assumption is that a pair of teeth support 1/3 of the total transmitted
load at the instant of engagement and this distribution of load increases to 2/3 the total

Figure 1.18 Contact ratio
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Figure 1.19 1/3-3/3-1/3 and 2/5-4/5-5/5 rule

transmitted load at the instant the adjacent set of teeth are disengaging. The load distribution
is increased to 3/3 or 100% of the total when the gear teeth are the only set in mesh. This
loading is known as the 1/3-/2/3-3/3 rule (also exists the 2/5-3/5-5/5 rule). This phenomenon
is illustrated in Figure 1.19. Gears with large difference in compliance typically do not follow
this assumption (e.g., a plastic gear in mesh with a metal gear).

1.11.1 Transverse Contact Ratio

The transverse contact ratio is a dimensionless measure between the mesh cycle and the angle
subtended by the transverse pitch. The angle subtended by the transverse pitch is defined as
the total arc of action. The total arc of action is further decomposed into the angle of approach
and the angle of recess.

The strength of the teeth depends on the tooth size. If the transmitted force is high, it
is necessary to incorporate large teeth (small diametral pitch Pd) such that the teeth do not
fracture. Also, as the diametral pitch Pd decreases the gear size must increase (i.e., an increase
in pitch radii upi and upo) to maintain mt ≥ 1. It is generally desirable to keep the pitch radii upi

and upo as small as possible in order to reduce the size and weight of the gears and thus reduce
the tangential velocity of the pitch point or pitch line velocity. One of the adverse features of
toothed wheels with small diametral pitch is the variation in compliance or change in bending
stress (and hence deflection of the point of contact) as the point of contact traverses the mesh
cycle. An increase in diametral pitch Pd reduces the variation in compliance as teeth mesh. For
these reasons, gears with small diametral pitch gears are generally used to transmit large loads
at low speeds where the change in compliance is not of primary importance. As the speed of
operation for gears in mesh increases the change in compliance gives rise to higher vibrations
and noise. High transverse contact ratios mt are obtained by increasing the diametral pitch Pd,
increasing the addendum constant, or decreasing the pressure angle φ.

Illustrated in Figure 1.18 is transverse contact ratio mt = 1.3. The number of teeth in mesh
is an integer and the change in load distribution among teeth in mesh is more significant for
low transverse contact ratios. Near integer contact ratios require special attention due to the
short duration of contact and affects the dynamic behavior of toothed bodies in mesh. The
benefits of these phenomena necessitates exactly when teeth engage and disengage.
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1.11.2 Axial Contact Ratio

In cylindrical gears with a nonzero spiral angle ψpi (i.e., helical gears), the length or face width
F of a gear determines the angular offset between the two transverse surfaces that determine
the end planes of the gear. It was discussed in Section 1.10.2 that the initial engagement
between two teeth depends upon the transverse surface defined by the axial position wi and
that conjugate motion can be achieved by allowing the line segment of contact to propagate
along an axis parallel to the locus of the pitch points. The transverse pitch pti is the distance
along the pitch circle (within a transverse surface defined by a constant axial position wi)
between adjacent teeth. Similarly, the axial pitch pai is the distance between adjacent teeth in
the direction of the axis of rotation zi (within an axial surface define by a constant angular
position vi). Provided the spiral angle ψpi is constant, the axial pitch is expressed in terms of
the transverse pitch:

pai = pti

tan ψpi
. (1.10)

The axial contact ratio mai or face contact ratio is the face width divided by the axial pitch;
hence,

mai = F

pai
. (1.11)

Provided ψpi = − ψpo, then the axial contact ratio is the same for both the input and output.
The axial contact ratio differs from the transverse contact ratio in that the transverse contact
ratio depends upon both the input and output gear whereas the axial contact ratio does not.
In general, two gears with different axial contact ratios cannot mesh with one another. An
exception is for crossed axes cylindrical gearing (i.e., the included angle 
 �= 0). Why this
occurs will be explained in Chapter 5. Finally, the total contact ratio mtot is the sum of the
transverse contact ratio mti and the axial contact ratio mai:

mtot = mti + mai. (1.12)

If the total contact ratio is always greater than two then the gear pair is referred to as one with a
high contact ratio. This is usually achieved by increasing the addendum. Anytime the transverse
contact ratio mti is greater than zero then the contact between the two gears is a line segment.

1.12 Backlash

The amount the tooth spacing exceeds the tooth width is referred to as backlash, which is used
to prevent the nondriving side of gear teeth from contact and is usually specified in terms of
length. Backlash is also needed to accommodate tooth deflections, thermal expansion of the
gear pair, foreign material in the lubricant, as well as errors in the manufacture, assembly, and
operation of gears in mesh. Gears with zero backlash, or antibacklash gears, are sometimes
incorporated in gear systems if the input or driver gear frequently changes direction of rotation.

Backlash may be measured along the pitch circle or measured perpendicular to the tooth
surface using a feeler gauge. If the normal tooth width tni is determined in a manner similar to
the normal pitch pni then the backlash δB becomes

δB = pni − 2t. (1.13)
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Figure 1.20 Antibacklash gears

Backlash is a measure of the amount of angular displacement �vi that must accompany a
change in direction of rotation and depends upon the entire gear topology and not just a single
transverse surface. A dimensionless backlash value of zero implies that the tooth thickness is
equal to the tooth space. A value of one implies that the tooth width tti is zero. It is customary
that backlash is achieved by equal reductions in tooth thickness between the input and the
output. Backlash is also important in finishing operations such as shaving, honing, burnishing,
and inspection.

With backlash, there is a small angle that the input gear can rotate without contacting or
imparting a load to the output or mating gear element. This angular region is referred to as
the deadband zone as depicted in Figure 1.20. The concept of antibacklash gears is when the
input gear changes directions of rotation there is no deadband zone. This can be achieved by
introducing two gear pairs for a single drive as depicted later. One gear pair is the primary
drive and the other gear pair is the secondary drive. One output elements of the primary
and secondary drives are rigidly connected, whereas the input elements of the primary and
secondary drives are torsionally loaded via a spring element. The deflections of gear bodies,
shafts, and housing all contribute to the change in compliance during a change in direction
of rotation. The deadband zone is not eliminated but reduced with such antibacklash gears.
Also, the depicted antibacklash gears experience a decrease in efficiency due to the primary
and secondary meshes.

1.13 Special Toothed Bodies

Situations exists where the “pitch surfaces” and the “axodes” are not the same. An interesting
form of this situation emerges when synthesizing toothed bodies for motion transmission
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Figure 1.21 Special tooth bodies

where the I/O relationship g = −1. For this special case, the line of action and the plane
containing the two axes of rotation are parallel and, hence, intersect at infinity. From Equation
(1.6), the input pitch radius upi becomes infinite (i.e., upi = Eg/(g − 1) = ∞). The use of two
external toothed bodies in mesh to produce the I/O relationship g = 1 was developed at the
Bauman Institute in Moscow. Depicted in Figure 1.21 is a planar view of two such toothed
bodies. The gears must be helical where the helix angles are both of the same hand. Conjugate
motion between the two toothed bodies is sustained by axial displacement of the point of
contact. The point of contact changes position (both transverse and axial) with a change in
direction of rotation. One difference between a rack and pinion and the two external gears
shown in the Figure 1.21 is that the pitch radius upo for the rack is infinite and the pitch point is
finitely located, whereas for the two external gears the pitch radius upo for the output is finite
and the pitch point is located at infinity. These gear forms experience high tooth loads and are
not common for high torques and speeds.

Another special gear form is intermittent gearings. Such gears are used as counting mecha-
nisms. The gear pair begins as a conventional gear pair. The input gear has at least one tooth
as an ordinary gear tooth designed for continuous rotation. Shown in Figure 1.22 is a 1:1 gear
pair with 20 teeth originally. The gears are modified to enable the output gear to rotate 1/10

Figure 1.22 Intermittent gearing
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Figure 1.23 Microgears (reproduced by permission of Sandia National Laboratories)

of a revolution for 1/10 revolution of the input gear. The output gear is locked against rotation
during the remainder of the input gear rotation as illustrated in Figure 1.22. The single tooth
on the input gear meshes with each space on the output gear. Such gears result in a velocity
jump at tooth engagement and disengagement between the input gear and the output gear.

1.13.1 Microgears

Microgears derive their name from micrometer (i.e., 10−6 m). Their applications are with
Micro-Electro-Mechanical Systems (MEMS) in the United States or Micro-Systems Tech-
nology (MST) outside the United States. In general, MEMS range from millimeters up to a
centimeter. Depicted in Figure 1.23 are microgears. MEMS typically operate at greater speeds
than macromachines due to their reduced size and inertia. MEMS origins are with the elec-
tronics industry and the fabrication of Integrated Circuits. Their low cost result form the batch
fabrication techniques developed. Silicon is currently the material most commonly used in
MEMS. Metals, polymers, and ceramics can also be employed in MEMS.

One application involving MEMS is with accelerometers. MEMS accelerometers have
replaced conventional accelerometers for crash air-bag deployment systems in automobiles.
An important aspect of MEMS involves friction and wear. It is reported that wear is the
dominate failure mode in MEMS devices (Ananthasuresh, 2004). This increased wear is
attributed to size. Friction and wear are surface related. Area is related to length squared and
volume is related to length cubed. Decreasing the dimension by a factor of 10, the surface area
decreased by a factor of 100 and the volume decreases by a factor of 1,000.

1.13.2 Nanogears

Nanogears derive their name from nanometer (i.e., 10−9 m). The principle here differs from
both macromachinery and micromachinery. These molecule-sized gears can be made from
pipes of carbon atoms with benzene atoms attached to the outside of the pipe to form the
teeth. The shape of the teeth are not critical as with macrogears. Depicted in Figure 1.24
is a nanogear. Based on simulations, nanogears (one-billionth of a meter in diameter) can
rotate at 100 billion turns per second or six trillion RPM. Nanomachines based on gear are
futuristic.
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Figure 1.24 Nanogears (reproduced by permission of IMM)

1.14 Noncylindrical Gearing

Cylindrical gearing is a degenerate form of general spatial gearing. The purpose here is to
discuss noncylindrical forms of toothed bodies for motion transmission. Due to the complexity
of noncylindrical gears, the kinematic geometry of such gears is less developed. The highly
successful implementation of hypoid, bevel, and worm gearing is attributed to much experience
and the manner in which they are produced. Consequently, much of the information used for
their design and manufacture are based on experience and is referred to as gear art. A
distribution of the various gear types produced is presented in Figure 1.25.

1.14.1 Hypoid Gear Pairs

In the general theory of constant speed gearing, hypoid gearing is the most general gear type
where worm, bevel, and planar gearing are special cases. Current methods of gear design and
manufacture do not enable the special cases to be analyzed using general hypoid gear tech-
nology. There are numerous publications on this subject because of its practical importance.
Wildhaber (1946a, 1946b, 1946c, 1946d, 1946e, 1946f) contributed to the foundation for
bevel and hypoid gear design and manufacture in the first half of the twentieth century. Litvin
and Fuentes (2004) offers a comprehensive account of the design and manufacture of hypoid
gears. Minkof-Petrof (1983) and Shtipelman (1978) have contributed to the design of hypoid
gears, but both have limited their work to uniform motion transmission between fixed axes.

Figure 1.25 Distribution of gear types
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Figure 1.26 Hypoid gears enable a single input to drive multiple outputs

Dyson (1969) gives an in-depth approach to the topological analysis of surfaces in contact,
but he never delves into the kinematics of motion or the manufacture of gears. Chen (1978)
uses the “calculus of rotations” to investigate conjugate surfaces of gear pairs.

The widespread use of hypoid gears for power transmission originated with the automobile
at the beginning of the twentieth century and are currently used in many other forms of trans-
portation including tractors, earth moving equipment, and construction equipment. Hypoid
gears are used as intermediate means to transmit power from the engine to the rear drive
wheels. Initially, an overall lower center of mass for the automobile (and hence stability) was
obtained by requiring that the pinion or input axis remain below the axis of the drive wheels.
Another feature of hypoid gears is that their circumferential pitch can be adjusted for a given
gear ratio by choice of the axial contact ratio. This is verified by recognizing that for hypoid
and worm gears that the gear ratio g is not equal to the ratio of radii. The smaller of the two
gears (usually the input or pinion) is subjected to the higher torque, thus a judicious choice
for the axial contact ratio results in a larger input gear and hence decreases the stresses within
the gear teeth. The adverse effect of increasing the size of the input gear is an increase in axial
thrust. Other applications for hypoid gearing occur in industry where single input multioutput
right angle drives are necessary where the input shaft cannot intersect the driven or output
shafts (see Figure 1.26). The relative motion inherent to hypoid gearing can be beneficial,
provided it enhances fluid film development in the mesh. This relative motion increases wear
and tends to polish the contacting surfaces under certain conditions. This polishing effect can
increase efficiency over time as well as reduce pitting, wear, and surface fatigue.

1.14.2 Worm Gears

The general case where both the center distance E and the shaft angle 
 are nonzero is referred
to a hypoid gears. A case of hypoid gears has already been encountered in Section 1.7.1 for
the special case of crossed cylindrical gears. Another special case of hypoid gears in mesh is
for worm and worm gears. Like hypoid gears, the most common occurrence for worm gearing
is when the included angle 
 is π /2 radians. The smaller of the two gears is referred to as the
worm and the larger is referred to as the worm wheel. This popular and useful form of gearing
is sometimes referred to as globodial gearing and can be found in the following applications:

� Window regulating devices in both houses and automobiles
� Electric mixers, can openers, and food processors (namely, house appliances)
� The steering mechanism in automobiles and heavy equipment
� Large reducers used in industrial applications
� Nonback-drivable or self-locking positioning devices
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High spiral angles necessary for the desired gear ratio are reflected in increased thrust loads
and usually require special thrust bearings for support. The relative sliding encountered in the
contact can produce high temperatures within the contact and impose additional demands on
the lubricants.

Kinematically, the design and manufacture of worm gearing differs from cylindrical and
hypoid gearing. As such, the nomenclature established for the synthesis and analysis of this
special form of gearing also differ from cylindrical and hypoid gearing. Worm gearing is
further classified as nonenveloping, single enveloping, or double enveloping according to the
shape of the reference pitch surfaces. Nonenveloping gears are the simplest form of worm
gearing and is the name given to crossed cylindrical gears in mesh. Nonenveloping gears
have low power-to-weight ratio and are used mainly for motion transmission between skew
axes. An increase in power-to-weight ratio is achieved by arbitrarily fabricating a cylindrical
worm and using an identically shaped cutter to manufacture the mating worm wheel using a
generation-type process. This common form of worm gearing is referred to as single enveloping
worm gearing. An intrinsic characteristic of this type of gear fabrication is that conjugate
action between the worm and worm wheel is guaranteed. A third form of worm gearing that
approximates the methods for motion transmission between skew axes presented in this book
is double-enveloping worm gears. Like single-enveloping gears, conjugate action is ensured
as a result of the generation-type process.

A worm and worm gear are special hypoid gears, where the two reference pitch surfaces in
mesh are symmetric about the throat. This is a special region due to the variation in the radius of
the reference pitch surface. Illustrated in Figure 1.27 is a worm pitch surface double-enveloping
gear drive. This worm pitch surface is a doubly ruled surface. That is, the pitch surface can
be defined using two sets of generators: a primary and secondary generators. The shape of the
pitch surface depends on these generators where the distance and angle between the generator
and axis or rotation define the shape of the hyperboloid worm. Depicted in Figure 1.28 is the
hyperboloidal worm and worm wheel mesh. Here, there are two hyperboloidal pitch surfaces
tangent to each other along the primary generator: the worm and the worm wheel. This primary
generator also defines our worm wheel pitch surface. Gear mesh occurs along this primary
generator. In the special case of orthogonal worm and worm wheel (90◦ shaft angle), the
two pitch surfaces (both hyperboloids) are tangent to each other along two separate lines: the
primary generator and the secondary generator. Gear mesh can exists along both generators.
As a result, additional restrictions exist for the number of starts, the lead, and the tooth shape
to avoid interference along the secondary generator.

Figure 1.27 Doubly ruled worm pitch surface
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Figure 1.28 Worm gearing

1.14.3 Bevel Gears

The transmission of motion between two parallel axes is a special case of motion transmission
between two generally disposed axes. Another special case of motion transmission between
two axes is when the distance E is zero (i.e., intersecting axes). Motion transmission between
two intersecting axes is commonly referred to as bevel gearing, where the most common
occurrence is when the included angle 
 is π /2 radians. It has been demonstrated that the path
of contact, contact ratio, start of active profile (SAP), end of active profile (EAP), and tooth
curvature depend on the tooth profile in a transverse plane for cylindrical gear elements. In
order to extend these principles to also parameterize bevel gears, it is necessary to introduce
a conical pitch or base surface and a spherical transverse surface. An “octoid” or “8”-shaped
path exists on a transverse spherical surface when rolling a crown rack on the base cone. The
apex of the base cone and the crown rack are coincident with the sphere’s center. In order to
utilize existing knowledge and understanding of planar gearing, equivalent planar gears are
defined using Tredgold’s approximation (see Grant, 1899; Buckingham, 1949; Figliolini and
Angeles, 2005) by projecting the gear teeth onto a “back cone” as illustrated in Figure 1.29.
One limitation of employing such a procedure is encountered when designing bevel gears for
a particular application (e.g., high I/O relationships |g|). Like planar gears, bevel gears can be
either spur or spiral. The specification of tooth properties for bevel gears is based on the heel
or outer radius.

Bevel gearing has much in common with hypoid gearing where the axial position wi is
much greater than the center distance E. When this occurs, the amount of axial displacement
relative to the transverse displacement of the reference pitch surface is approximately zero
and the reference pitch surfaces appear conical. Current methods as well as the machines
used for their design and manufacture are essentially the same as those employed for hypoid
gearing. Kinematically, the efficiency of conical gearing should exceed that of comparable
hypoid gearing as a result of the reduction in axial sliding between gear teeth in mesh. As
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Figure 1.29 Tregold’s method of transforming the analysis of motion transmission between intersecting
axes to that of parallel axes

expected, the choice to use either bevel or hypoid gearing depends on the particular application
and its corresponding restrictions. Currently, the use of bevel gearing (namely, spiral bevel
gears) is increasing as a result of many automotive manufacturer’s decision to switch from rear
wheel drive (RWD) to front wheel drive (FWD) automobiles. Independent of an automotive
manufacturer’s choice of either RWD or FWD, each automobile is equipped with a differential
to regulate the difference in wheel speeds during cornering where each differential consists
of conical gear elements (usually spur gears or straight bevel gears). Another important
application for bevel gearing is in the right angle drives for helicopters. Bevel gearing is
usually preferred over hypoid gearing for motion transmission between nonparallel axes due
to their added simplicity. Henceforth, they are more frequently employed than hypoid gears.
Although the kinematic geometry of bevel gearing is better understood than hypoid gearing,
bevel gear manufacture suffers many of the same difficulties currently encountered in the
manufacture of hypoid gears.

One special case of bevel gears is face gears. Face gears are bevel gears where the cone
angle is zero. This feature enables conventional cylindrical spur gears to mesh with a bevel
crown gear or face gear. Face gears are often used as a “substitute” for bevel gears. One benefit
of face gears is the decreased sensitivity to axial position of the pinion gear. One limitation
being a decrease in load-carrying capacity.

1.15 Noncircular Gears

The origin of toothed wheels as function generators is not known. mG (miniGears) of Padua
Italy produces a replica planet-tracking clock called the Astrarium that consists of ellipti-
cal gears (GearTechnology (2006)–Addendum May/June). The original Astrarium was built
by Giovanni Dondi circa 1360. Ollson (1953) reports that Leonardo da Vinci illustrated the
use noncircular gears to control the tension in crossbows. One of the first known publica-
tions concerning noncircular gears is by Holditch (1842). In his treatise on gearing, Grant
(1899) recommended that the most practical method of noncircular gear manufacture was to
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approximate the pitch curve with a circle (osculating circle) along the centerline of each tooth
and proceed to cut the tooth as would be done for circular gears. This method of noncircular
gear manufacture usually fails to ensure conjugate motion and is recommended for low-speed
operation.

Noncircular gears have received limited attention because few designers have recognized
their potential for use as elements of a mechanism and as a result very few gear manufacturers
are capable of fabricating such toothed bodies. Also, the limited success of applying noncircular
gears in practice can be attributed to the large amount of computations necessary for their
accurate design and manufacture. The majority of references are limited to the analysis of
noncircular gears between parallel axes. The only known published work regarding motion
transmission between intersecting axes is by Ollson (1959). In 1931, noncircular gear were used
to provide specialized motion in printing presses and other industrial machines (Gobler, 1939).
These gears rarely exhibited complete rotatability. The most common type of noncircular gears
are a pair of elliptical gears. Ollson (1953) uses the wealth of knowledge concerning elliptical
gears to demonstrate the design and manufacture of noncircular gears. Here, Ollson divides
the pitch curve into a number of segments, each of which are replaced by an equivalent
segment of an ellipse, then proceeds to demonstrate the design and manufacture of general
noncircular gears based upon the analysis of elliptical gears. Litvin (1956) also demonstrated
the design and manufacture of noncircular gear. Cunningham (1957) was one of the first
in the United States to publish a methodology to synthesize pitch curves for a general I/O
relationship. Bloomfield (1960), Benford (1968), Horiuchi (1988) and more recently Quintero
et al. (2007) have demonstrated the synthesis of pitch curves for noncircular gears. Al-Sabeeh
(1991) combines segments of circular gears to achieve speed variations.

One application of noncircular gear pairs is the motion specification for the loom slay
found in textile combing machines (Kowalczyk and Urbanek, 2003). A second application
of noncircular gears is the motion modification of a conventional forging die to reduce the
dwell time during forging. Doege et al. (2001) report a reduction in dwell time by 48% (from
75 ms to 39 ms) resulting in lower die temperatures. A third application involves noncircular
gears combined with links to perform a polishing motion (Liu et al., 2006). Other applications
involve continuous casting of steel using a nonsinusoidal motion (vs. conventional sinusoidal
motion) improves the surface quality of the cast product (see Liu et al. (2002)) as well
as variable pump flow (http://www.ovalasia.com.sg/index.php?option=displaypage&Itemid=
74&op=page&SubMenu).

The I/O relationship g (Equation (1.1)) for circular gears is constant. For noncircular gears,
the I/O relationship is no longer constant. An additional constraint for circular and noncircular
gear pairs is that the integral

∫ 2π

0
gdvi

must always be rational; otherwise, the output could not sustain an indefinite number of cycles
with the desired functional relationship. This is discussed in detail by Freudenstein (1962).
Similar to cam system design, the I/O relationship g for a pair of noncircular gears needs to
be as “smooth” as possible to minimize dynamics. The actual form of the I/O relationship g is
important when designing noncircular gears (more so for high angular speeds ωi). The integral
of the I/O relationship g is the angular position vo of the output for a given angular position vi
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Table 1.1 Relation between kinematic and time-based motion properties

Time Kinematic

Velocity gωi g
Acceleration g′ω2

i + gαi g′

Jerk g′′ω3
i + 3g′αiωi + gα̇i g′ ′

Snap g′′′ω4
i + 6g′′ω2

i αi + g′(α2
i + ωiα̇i) + gα̈i g′ ′ ′

Crackle g′′′′ω5
i + 10g′′′ω3

i αi + g′′ωi(13α2
i + 7ωiα̇i) + g′(3αiα̇i + 2ωiα̈i) + g

...
αi g′ ′ ′ ′

Pop — g′ ′ ′ ′ ′

Figure 1.30 A plot of the angular position vo, the velocity ratio g, and the kinematic acceleration g′ as
a function of the angular position vi of the input

of the input. A discontinuity in vo is paramount to specifying the impossibility that the output
be in two different angular positions simultaneously.

As defined in Section 1.4, the I/O relationship g is the change dvo in the angular position vo

of the output relative to the change dvi in angular position vi of the input; thus, g is also referred
to as the kinematic velocity. The derivative g′ of g with respect to the angular position vi is
denoted by the prime superscript and is referred to as the kinematic acceleration. The curvature
of the two centrodes in mesh is directly related to the kinematic acceleration g′. If g′ is too high
then the centrodes become pointed and are difficult to manufacture. Also, if the acceleration
g′ is high then the output torque is high and thus high loads exist between the teeth in mesh.
The second derivative g′′ of the velocity ratio g is referred to as the kinematic jerk. Subsequent
derivatives of the kinematic velocity are referred to as kinematic snap and kinematic crackle
and are denoted by additional prime superscripts.6 Table 1.1 provides the relation between
time-based motion properties and kinematic-based properties. Illustrated in Figure 1.30 are
sample plots for the position vo, the kinematic velocity v′

o or g, and the kinematic acceleration
v′′

o or g′ for circular and noncircular gear pairs, and a sketch of each of the two gear pairs are
shown in Figure 1.31. Although the functional relationship vo = f (vi) that defines the position
of the output gear element in terms of the input angular position, the kinematic velocity g

6 The terms “snap” and “crackle” (in addition to “pop”) to identify higher derivatives are attributed to Harvey Crane
[Tesar and Matthew, 1976] and the motion characteristics of disk cams.
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Figure 1.31 Gear pairs that satisfy the position, velocity, and acceleration curves depicted in Figure
1.30 are a circular gear pair (a) and a noncircular gear pair (b)

and the kinematic acceleration g′ are necessary to specify pitch curves and tooth profiles for
noncircular gear pairs.

Scroll gears are a special form of noncircular gear pairs where continuous rotation of the
input is not essential exists. One such example is illustrated in Figure 1.32. A scroll-type
gear were continuous rotation of both gear elements is presented in Figure 1.32. Additionally,
certain applications of noncircular gearing the load variation as a function of input angular
position can be significant. In such applications, a variable face width can be implemented to
better match instantaneous face width with load. Also depicted in Figure 1.32 is an example
of a variable face width noncircular gear pair.

Improvements in mechanism performance can be accomplished by extending the concepts
and analysis of toothed bodies such that they are not limited to gears as in contemporary
connotation. Utilizing toothed bodies to control displacement between two generally disposed
axes can render a valuable resource to the machine designer. Generalized function generators
incorporating toothed bodies can be synthesized to satisfy the optimal I/O relationship for a
specified task. Examples include

� recreational equipment designed to maximize the use of human output (bicycles, rowing
machines, compound bows, rehabilitation devices, etc.),

� coordinated steering for automobiles (use of noncircular gears to achieve coordinated or
Ackerman steering), and

� manufacturing processes requiring sequencing or indexing with constant speed conveyer
(stamping, bottling, inspection, etc.).

Figure 1.32 Scroll gears and variable face width gears
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Also, a generalized function generator can be used to rid machines of unwanted vibrations.
Here, the undesirable torque displacement versus angular displacement is used to synthesize
devices for flywheels to achieve theoretically zero speed fluctuation, thus reducing backlash,
windup, fatigue, and noise. Some efforts have focused on band mechanisms for torque bal-
ancing (Hain, 1961) and (McPhate, 1966) with consideration of cam systems. Much attention
has been given to cam systems for function generators; however, in certain situations, there
are advantages for selecting toothed bodies over cam drives. Chakraborty and Dhande (1977)
discuss a wide variety of cam systems used for motion generation. In some applications, gear
systems can provide benefits over cam systems for the following reasons:

� No gross separation or decoupling of members occur in gear systems.
� Gear systems can be generally designed with fewer parts and higher strength-to-weight

ratios than cam systems.
� Cam systems with different orientation of input and output axes (disk, wedge, barrel, and

face) are fundamentally different.
� Cam systems generally transform rotary motion into oscillatory motion.

In addition to cam systems, some consideration has been given to the use of belts and pulleys
as well as chains and sprockets for function generation (e.g., Freudenstein and Chen (1988)
used chains and sprockets as function generators). The primary difference between belts and
pulleys and chains and sprockets is that belts and pulleys rely upon friction to transmit motion
whereas chains and sprockets do not. One advantage of belts and pulleys over direct contact
mechanisms is that the output can be insulated from the input. Reasons for selecting toothed
bodies over chains and sprockets are as follows:

� Chains and sprockets are generally nonback-drivable.
� Chains and sprockets are unable to facilitate negative I/O relationships g.
� Sprocket profiles must remain convex.
� Chains are intermediate elements with additional design constraints.

Finally, linkages can also provide an invaluable means of function generation. Two com-
monly incurred problems with linkage synthesis are sequencing and branching. Some advan-
tages for selecting toothed bodies over linkages are as follows:

� Motion specification for linkages is not general (I/O relationship can only be satisfied or
optimized for discrete values of the input).

� Linkages are usually restricted to planar of spherical motion.
� Linkages are space inefficient.
� Linkages are difficult to simultaneously balance with regards to shaking forces and shaking

moments.

In many circumstances, toothed bodies can be relied upon to provide the most direct, com-
pact, and versatile means of power transmission and function generation. Examples of non-
circular gears used for torque balancing and function generation are provided in Appendix C.
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The difference between gear pairs and cam systems for motion transmission is not well
defined in the literature. Both forms of motion transmission utilize bodies in direct contact to
achieve motion transmission. Buckingham defines motion transmission via a body where pins
or rollers are attached to a plate as Lantern pinions. Nugent (2001) extends the concept of
Lantern pinions to include nonconstant motion transmission. The pressure angle for NC gears
can be defined as the angle between the tooth surface normal and the pitch curve tangency
or the angle between the tooth surface normal and the line connecting the axes of rotation.
Here, the pressure angle is defined as the angle between the tooth surface normal and the pitch
curve tangency. Using this definition enables conventional cutters (namely, hobs and shapers)
to produce spiral NC gear elements.

1.15.1 Gear and Cam Nomenclature

Gear pairs can be identified as a direct contact mechanism the desired I/O relation is achieved
via two surfaces or bodies in direct contact. Chains and sprockets along with belts and pulleys
generate motion indirectly via an intermediate body (namely, the chain or belt). Two common
examples of direct contact mechanisms include gear pairs and cam systems. Typically, cam
systems provide oscillating behavior of the output body (translating or rotating follower) for
continuous rotation of the input (cam), whereas gear pairs provide linear output rotation of the
“gear” for an angular rotation of the input gear element or pinion. However, cam systems can
be used to provide continuous rotation of the output (Gonzalez-Palacios and Angeles, 2000),
and gear pairs can be used to achieve nonconstant motion as referenced in the preceding text.

The nomenclature for each field is well established. The term “gear pair” encompasses the
transmission of motion between two teeth in direct contact. The shapes of these gear teeth
are selected to achieve a sought motion (usually uniform motion). The gear teeth in mesh are
said to be conjugate when the yield the desired motion. Cam systems differ from gear pairs
where the geometry of one body (usually the follower) is selected a priori, and the geometry
of the moving body (the cam) in direct contact is calculated such that the two bodies in direct
contact achieve the sought motion. The nomenclature used throughout this work more closely
follows the gear community while enabling general nonlinear output motion characteristics.
This difference in terminology or nomenclature between cam system design and gear pair
design is revealed for the special case of “harmonic” motion as depicted in Figure 1.33.
Depicted in Figure 1.33 is a circular disk cam with a translating roller follower (zero offset)
and an input gear element in mesh with an output gear element. Central to both fields are the
following terms:

� Pitch curve
� Base curve
� Pressure angle
� Contact normal

In the considered example of harmonic motion, each term aforementioned embodies a
different concept. The base curve or base circle in cam terminology defines the cam coordinates
or contact loci between the follower and the cam. The base curve or the base circle in the
gearing community is the reference curve or circle for the generation of the commonly used
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Figure 1.33 Cam and gear nomenclature

involute tooth profile. The pitch curve is the loci of the center of the roller follower, whereas
in the gearing community the pitch curve is the centrode.

1.15.2 Rotary/Translatory Motion Transmission

One of the more common applications of transforming a rotary motion to a translating motion
involves a rack and pinion, where the I/O relationship is linear. A sketch of the two gear
elements used to accomplish such a task are shown in Figure 1.34a. The rack is the “linear”
element and the pinion is the “circular” element. Special cases of motion transformation from
a rotary input to a translating output are shown in Figure 1.34b. Here, the so-called pinion
is noncircular and the mating rack is nonlinear. One restriction on such forms of motion
transformation is that the range or amount of rotation of the pinion is limited. In order for
the output to sustain an unlimited number of rotations of the input then the I/O relationship
must be cyclic. If the I/O relationship is sinusoidal, one possible method of satisfying such
specifications involves an external circular gear and an internal circular gear. The axis of
rotation for the external gear is parallel to its central axis and displaced an amount equal
to the external gear’s radius, while the internal gear is restricted to oscillate as shown in
Figure 1.34c. Each position of the input contacts the output in two distinct positions for one
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Figure 1.34 Rotary to translation motion for (a) linear translation, (b) nonlinear translation, (c) har-
monic oscillation, and (d) nonlinear oscillation

complete cycle of the input. When the I/O relationship in not symmetric, each position of the
input can contact the output in only one position as demonstrated in Figure 1.34d.

1.16 Schematic Illustration of Gear Types

Different gear types and their corresponding names have been used to illustrate motion trans-
mission between two axes. Oftentimes gear specialist will use different names when referring
to a particular gear type. The various names used to identify these different gear types and a
schematic illustration of their general form are given in Table 1.2.

1.17 Mechanism Trains

Up to this point the, analysis of mechanisms has been restricted to three link single dof
mechanisms or gear pairs. Typically, gear pair reductions are limited to 10:1. Many situa-
tions in practice occur where three link gear pairs are cascaded to create a new and more
useful mechanism (an introduction to many other mechanisms capable of a particular type of
motion generation are cataloged by Chironis (1991)) where it is possible to have an overall
gear reduction of 1000:1. Next to three link mechanisms, mechanism trains are one of the
oldest mechanisms. A clever combination of gear pairs (e.g., transmissions and differentials)
can be combined to effectively accomplish certain tasks. A more recent treatment regarding
mechanism trains is presented by Müller (1982). The same principles can be equally applied
to other mechanism trains where the basic elements are not restricted to planar three link 1-dof
mechanisms comprising circular or noncircular gear elements.
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Table 1.2 Schematic representation of different gear types

Illustration Name/gear type

Cylindrical gearing
Helical gearing
Parallel axis gearing
Planar gearing
Spur gearing

Crossed axis gearing
Crossed helical gearing
Nonenveloping gearing

Bevel
Conical gearing
Miter gearing
BeveloidTM gearing
Zero1TM

Double-enveloping gearing
Globoidal gearing
Hourglass gearing
Single-enveloping gearing
Worm gearing

Hypoid gearing
Rear axis gearing
Skew axis gearing
Spatial gearing

1.17.1 Compound Drive Trains

An example of a compound7 six-element gear train is shown in Figure 1.35 where four of its
elements consists of two noncircular gear pairs. The mobility m of the gear train is M = 1
(i.e., M = 3 (6 − 1) − 2 (5) − 1 (4) = 1). This six elements are labeled where gears 3 and
4 are one body and gears 6 and 7 are another body. For the gear train shown, the input is
the noncircular gear element 2 and the output is the noncircular gear element 8. The net I/O
relationship G for the gear train depends upon the I/O relationship g between each gear pair
within the gear train. The I/O relationship between each pair of meshing gears is denoted by
a pair of subscripts corresponding to the two gears in mesh. For example, the I/O relationship
between the noncircular gear elements 2 and 3 is g23, where the speed ω3o of the output gear

7 A compound gear train exists when more than one meshing gear element is attached to a single shaft. A simple
gear train has a single gear attached to each shaft.
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Figure 1.35 A compound eight-element gear train incorporating noncircular gear pairs

3 relative to ground is ω3o = g23 ω2i. The functional relation f 23, (v2i) between the angular
position v3o of the output gear 3 relative to the angular position v2i of the input gear 2 is
v3o = f 23 (v2i) where g23 = f ′

23(v2i). Recognizing that the output from gear element 3 is the
input to gear element 4 and that the output from gear element 6 is the input to gear element
7, the functional relationship between the output angular position v8o and the input angular
position v2i of the gear train is

v8o = f78( f56( f45( f23(v2i)))). (1.14)

Differentiating the aforementioned expression with respect to the angular position v2i of the
input, the angular displacement dv8o of the output relative to the angular displacement dv2i is

dv8o

dv2i
= f ′

78( f56( f45( f23(v2i)))) f ′
56( f45( f23(v2i))) f ′

45( f23(v2i)) f ′
23(v2i), (1.15)

where the net I/O relationship G for the entire gear train is (here g45 and g56 are constant and
independent of the input v2i)

G ≡ dv8o

dv2i
= g78( f56( f45( f23(v2i))))g56 g45 g23. (1.16)

For constant I/O relationships g78 and g23 (i.e., circular gears), g78 and g23 are independent of
the angular position v2i and g reduces to

G = g78 g56 g45 g23. (1.17)

Acknowledging that two gears in mesh must have the same diametral pitch, the net I/O rela-
tionship for compound gear trains incorporating only circular gear elements can be expressed
in terms of the number of teeth on each gear; hence,

G = N7

N8

N5

N6

N4

N5

N2

N3
= product of number of teeth on each input gear

product of number of teeth on each output gear
. (1.18)



P1: TIX/XYZ P2: ABC
JWST162-c01 JWST162-Dooner February 20, 2012 9:41 Printer Name: Yet to Come Trim: 244mm×168mm

Introduction to the Kinematics of Gearing 43

Notice that the gear element 5 acts as both an input and output and its size does not affect
G. Such gear elements that do not affect the net I/O relationship G and are referred to as
idler gears. The effect of each idler gear is a change in direction of rotation of the output
or final gear element. Also, idler gears are used as intermediate elements to accommodate a
desired center distance between two shafts. The sign of G must be carefully considered for an
assumption of a positive g for two external gears of a compound gear train fails to identify the
sign of G.

1.17.2 Epicyclic Gear Trains

Example of an epicyclic gear trains or EGTs are depicted in Figures 1.36 and 1.37. One of
EGTs most attractive feature is its high power-to-weight ratio. The special (EGT) shown in
the Figure 1.37 has a gear element 5 as an internal gear whose axis of rotation is collinear with
the axis of rotation for the gear element 2. When the axes of rotation for the input and output
elements of an EGT are coaxial it is referred to as a reverted EGT. EGTs are also frequently
referred to as planetary gear trains (PGTs). The special gear train shown consist of a central
gear, an intermediate gear, an arm (sometimes referred to as a spider or carrier), and an internal
ring gear or annulus. The reason this arrangement is referred to as a planetary gear train is
because the intermediate gear resembles a planet or satellite orbiting the sun or central gear.
Alternately, the arrangement is also referred to as an EGT is because of the epicyclic motion
of the planet gear relative to the sun gear. Usually, EGTs incorporate more than one planet
as shown in Figure 1.37. Multiple planets do not affect the kinematic relationships between
the various elements. Typically, PGTs incorporate three planet gears. Use of multiple planets
reduces the load on each planet and also distributes the loads transmitted to both the sun and
the ring gear. The distribution of load transmitted between the sun and the ring gear is known
as power branching. Use of multiple planets for load sharing can reduce the load per face
width at each mesh and eliminate the radial thrust on each element.

The difference between the compound gear train shown in Figure 1.35 and the EGT shown
in Figure 1.36 is that all axes of rotation for the gear elements of the compound gear train
are held stationary. When all three elements (i.e., the sun gear, the arm, and the ring gear)
of a PGT rotate, it is referred to as a differential. The kinematic structural composition of
PGTs was studied by Lévai (1968), and he demonstrated that there are 34 different PGTs
where each type can be derived from a single PGT consisting of two sun gears, a planet gear,
and an arm.

Figure 1.36 The speed relationship between the various elements of a planetary gear train is obtained
by determining the velocity of the pitch point between each element
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Figure 1.37 Schematic diagram for the kinematic analysis of the PGT shown in Figure 1.36

Before proceeding to develop the I/O relationship of an EGT, the mobility of an EGT is
presented. The EGT shown in Figure 1.38 consists of five elements: ground 1, a sun gear 2,
an arm 3, a planet gear 4, and a ring gear 5. The number of joints within the EGT is six:

1. One between the sun and ground
2. One between the arm and ground
3. One between the ring and ground
4. One between the arm and the planet
5. One between the sun and the planet
6. One between the planet and the ring

The freedom between the planet and both the sun and the ring is two; hence, the mobility
of the EGT becomes (Equation (1.2))

M = 3(5 − 6 − 1) + (1 + 1 + 1 + 1 + 2 + 2) = 2. (1.19)
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Figure 1.38 Three nodes to represent the inputs and outputs of a PGT

A mobility of two indicates that two independent inputs are needed to uniquely define the an-
gular position of the output. For the EGT shown in Figure 1.37, there are usually three different
possible combinations of inputs each resulting in a corresponding output. Representation of
the two inputs and the single output is represented diagrammatically using a circle and three
appendages as shown in Figure 1.38. The two inputs to the EGT are indicated by the darkened
ends of the appendages, whereas the output of the EGT is indicated by the undarkened end of
the third appendage. The considered EGT can also be interpreted as a mechanism consisting
of a single input and two outputs. The relation between the two outputs of the EGT must be
an equal split of the input power. This equal split of power is known as power division and is
not to be confused with power branching.

A schematic representation of a EGT is introduced as illustrated in Figure 1.38 in order to
facilitate the displacement analysis. The Instant Center Method, Formula Method, and Tabular
Method (Graphical approach and Graph theory) are three methods often used to obtain the
speeds relations between the various elements of a EGT. The instant center method will be
demonstrated. The speed relationship between the elements of the EGT is obtained by first
recognizing that no slippage occurs at the pitch points p24 and p45. The speed Vp24 of the pitch
point p24 relative to ground can be then expressed

Vp24 = ω2u2. (1.20a)

Also, the speed Vp24 of the pitch point p24 relative to ground is obtained using the vector loop
equation; thus,

Vp24 = ω3(u2 + u4) − (ω3 + ω4)u4. (1.20b)

Equating the above two expression for the speed Vp24 and solving for the angular speed ω4 of
the planet gear gives

ω4 = u2(ω3 − ω2)

u4
. (1.21)

Similarly, the speed Vp45 of the pitch point p45 relative to ground yields

Vp45 = ω5(u2 + 2u4) = ω3(u2 + u4) + (ω3 + ω4)u4. (1.22)

Substituting the expression obtained in Equation (1.21) for the angular speed ω4 of the planet
gear into the aforementioned relation yields the following expression for the speed relationship
for the considered EGT:

(u2 + 2u4)ω5 − 2(u2 + u4)ω3 + u2ω2 = 0. (1.23a)
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Figure 1.39 Load relationship for a PGT is obtained by a summation of forces

At this point, it is descriptive to identify each element in the PGT as the sun gear, arm, planet
gear, or ring gear rather than elements 2, 3, 4, or 5, respectively; hence, the aforementioned
relationship becomes

(us + 2up)ωr − 2(us + up)ωa + usωs = 0. (1.23b)

Recognize that if the angular speed ωa of the arm is zero, then (us + 2up) = ur and the
aforementioned speed relationship for the EGT is the same as that obtained for the net I/O
relationship G for a compound gear train (i.e., Nr/Ns = G = ωr/ωs). As demonstrated earlier
for gear pairs with constant I/O relationships g, an additional expression for the relationship
of a mechanism train can be obtained by replacing the pitch radius of each gear element by
the number of teeth on that gear; thus, Equation (1.23b) becomes

(Ns + 2Np)ωr − 2(Ns + Np)ωa + Nsωs = 0. (1.23c)

The static torque relationship (i.e., for nonaccelerating elements) between the elements of
the EGT shown in Figure 1.37 is determined by disassembling it as shown in Figure 1.39 and
evaluating the torques at each element. The contact force Fsp between the sun gear and the
planet gear, and the contact force Fpr between the planet gear, and the ring gear, correspond to
the pitch points psp and ppr, respectively. A summation of forces about the sun gear, the ring
gear, and the arm are, respectively,

Ts = usFsp, (1.24a)

Tr = (us + 2up)Fpr, (1.24b)

Ta = −(us + up)(Fsp + Fpr). (1.24c)

Solving Equations (1.24a) and (1.24b) for Fsp and Fpr, and substituting the results into Equation
(1.24c) yields the following torque relationship:

us(us + up)Tr + us(us + 2up)Ta + (us + up)(us + 2up)Ts = 0 (1.25a)
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Fsp = Fpr for ωp = constant and the following torque relations also exits:

Ta = −2
(us + up)

us
Ts = −2

(us + up)

(us + 2up)
Tr. (1.26)

Replacing the pitch radius of each gear element by the number of teeth on that gear the
aforementioned torque relationship for the EGT is

Ns(Ns + Np)Tr + Ns(Ns + 2Np)Ta + (Ns + Np)(Ns + 2Np)Ts = 0. (1.25b)

A subtle difference between the speed relationship of Equation (1.23c) and the torque rela-
tionship of Equation (1.25b) is that the coefficients associated with the angular speeds ωs,
ωa, and ωr are different from the coefficients associated with their respective torques Ts, Ta,
and T r. Expanding the torque relationships in Equations (1.25a) and (1.25b) reveals that the
summation of torques Ts, Ts, and T r is zero (i.e., 
T = Ts + Ta + T r = 0). The speed and
torque relations are for the EGT are presented in Table 1.3. Each relationship is expressed in
terms of the pitch radius of each gear element of the EGT and also in terms of the number of
teeth on each gear element of the EGT.

Often it is desirable to distribute the load exerted on each element of an EGT by incorporating
multiple planets (power branching). In order to evenly space multiple planet gears around the
periphery of the sun gear, the number of teeth on the sun gear, each of the planet gears, and
the ring gear are not arbitrary. Acknowledging that each planet gear meshes with both the sun
gear and the ring gear, the circular pitch cp of each gear of the EGT must be identical; hence,

2πus

Ns
= 2πup

Np
= 2πur

Nr
= cp. (1.27)

If n is the number of planet gears and θ s is the angle subtended between successive planet
gears, integer multiple ks of the circular pitch must be equal to the arc length along the pitch
curve of the sun gear; therefore,

us

(
2π

n

)
= cpks =

(
2πus

Ns

)
ks,

or upon rearranging

ks = Ns

n
.

Likewise, a similar relation must exists for the ring gear; thus,

kr = Nr

n
.

Since the sum of two integers is an integer, the following relation must also be an integer if
the planet gears are to be evenly spaced along the outer periphery of the sun gear:

ks + kr = Ns + Nr

n
= 2(Ns + Np)

Number of planet gears
= Integer. (1.28)
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Table 1.3 Speed and torque relationships for the EGT shown in Figure 1.37

Input Output Speed relationship Torque relationship

Sun gear
Arm

Ring gear ω5 =
(

2(u2 + u4)

u2 + 2u4

)
ω3

−
(

u2

u2 + 2u4

)
ω2

T5 =
(

u2 + 2u4

u2 + u4

)
T3 −

(
u2 + 2u4

u2

)
T2

T5 = −2

(
u2 + 2u4

u2 + u4

)
T2

T5 = −
(

u2 + 2u4

u2

)
T3

ω5 =
(

2(N2 + N4)

N2 + 2N4

)
ω3

−
(

N2

N2 + 2N4

)
ω2

T5 =
(

N2 + 2N4

N2 + N4

)
T3 −

(
N2 + 2N4

N2

)
T2

T5 = −2

(
N2 + 2N4

N2 + N4

)
T2

T5 = −
(

N2 + 2N4

N2

)
T3

Sun gear
Ring gear

Arm ω3 =
(

u2

2(u2 + u4)

)
ω2

+
(

u2 + 2u4

2(u2 + u4)

)
ω5

T3 =
(

u2 + u4

u2

)
T2 +

(
u2 + u4

u2 + 2u4

)
T5

T3 = −
(

u2

u2 + 2u4

)
T5

T3 = −2

(
us + up

us

)
T2

ω3 =
(

N2

2(N2 + N4)

)
ω2

+
(

N2 + 2N4

2(N2 + N4)

)
ω5

T3 =
(

N2 + N4

N2

)
T2 +

(
N2 + N4

N2 + 2N4

)
T5

T3 = −
(

N2

N2 + 2N4

)
T5

T3 = −2

(
Ns + Np

Ns

)
T2

Arm Ring
gear

Sun gear ω2 =
(

2(u2 + u4)

u2

)
ω3

−
(

u2 + 2u4

u2

)
ω5

T2 =
(

u2

u2 + u4

)
T3 −

(
u2

u2 + 2u4

)
T5

T2 = −1

2

(
us

us + up

)
T3

T2 = −1

2

(
u2 + u4

u2 + 2u4

)
T5

ω2 =
(

2(N2 + N4)

N2

)
ω3

−
(

N2 + 2N4

N2

)
ω5

T2 =
(

N2

N2 + N4

)
T3 −

(
N2

N2 + 2N4

)
T5

T2 = −1

2

(
Ns

Ns + Np

)
T3

T2 = −1

2

(
N2 + N4

N2 + 2N4

)
T5
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Figure 1.40 Compound PGTs using Fergusson’s paradox to illustrate circulating power

1.17.3 Circulating Power

A myriad of mechanisms can be devised by incorporating multiple EGTs into a single mecha-
nism, also known as compound EGTs. As demonstrated, the PGT is a 2-dof mechanism where
in certain circumstances the two input can be obtained from a single input by creating branches
or loops where the combined effect of torque and speed are high. This combination of torque
and speed in referred to as circulating power or internally transmitted power. These meshes
where the combination of high speed and torque do not affect the net I/O relationship G of the
mechanism train. Circulating power is important and can determine the load capacity of the
compound EGT. High circulating power can reduce the efficiency of a compound EGT due
to increased mesh losses. The term “circulating power” can be misleading in that either high
torques do not exist for the static case or that input power does not equal output power. The
concept of circulating power is the basis of locked torque tests used to evaluate the performance
of gear pairs.

An interesting application of such a compound EGT is based on the schematic illustration
shown in Figure 1.40. The compound EGT shown in Figure 1.40 can be used to obtain very
high speed reductions. The two EGTs shown utilize the same sun gear and arm; however, the
radii ur1 and ur2 of the two ring gears are different. Initially, it might appear that the radii
ur1 and ur2 must be the same since the sun gear for the two EGTs are identical. The ability
for the compound EGT to operate in spite of up1 �= up2 is known as Fergusson’s mechanical
paradox8 (Nakada, 1952). The fact that the compound EGT is functional is attributed to the
property that involute profiled gears continue to provide uniform motion transmission between
two parallel axes independent of small changes in center distance. When the center distance
for two cylindrical gears with involute tooth profiles is increased (a profile shift), then the
pitch radii and the diametral pitch for the gear pair must also increase. This feature enables a
single gear (with involute profiles) to mesh with two other gears, each with a slightly different
number of teeth and mounted along the same axis.

8 James Fergusson, 1773. Note date of publication and timing of Euler’s proposed use of involute for tooth profile!
One of Fergusson’s application is a geared Orrery (after Charles Boyle, Earl of Orrery) or astronomical devices for
showing earth and moon’s motion around the sun.
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Earlier in this section, a single EGT was described as a two input, one output device. As
indicated by the feathered marks shown in Figure 1.38, the ring gear 1 is held stationary. Thus,
the speed of the arm ωa1 is uniquely determined by the speed of the sun gear ωs1. The output
ωr2 of the compound EGT is the ring gear 2. The two inputs to the second EGT are the angular
speed ωa2 of the arm and the angular speed ωs2 of the sun gear. Recognize the angular speeds
ωs1 and ωs2 of both the sun gears are the same. Also, the angular speeds ωa1 and ωa2 of the
arms are identical. Since the pitch radii us1 and ur2 are not the same although Nr1 and Nr2 are
the same, the second ring gear can be thought of as subjected to a profile shift. Here, the sun
gear for the compound EGT is in essence two identical gears with different pitch radii and
diametral pitches. The smaller the difference Nr2 − Nr1 in the number of teeth between the
two ring gears, the higher the speed reduction between the input and the output. The difference
Nr2 − Nr1 must be an integer equal to the number of locations where the center lines of
teeth between the two ring gears coincide, and hence, is the maximum allowable number of
“identical” planet gears.

The circulating power Pc depends on the overall gear ratio G of the compound mechanism.
Based on Equation (1.23c) an expression of the net gear ratio G can be expressed as

G = 1

1 + 2(Np2/Ns)

(
1 + (Np2/Ns)

1 + (Np1/Ns)
− 1

)
, (1.29)

and as a result the output torque To becomes

To = Ti

G
. (1.30)

Based on Equations (1.24a), (1.24b) and (1.24c) the corresponding torque Ts2 on the “second”
sun gear is

Ts2 = 1

1 + 2(Np2/Ns)
To. (1.31)

For a given input speed ωi and toque T i, the input power becomes T iωi. The circulating power
Pc for the compound EGT is the ratio between the maximum power at the sun gear to that of
the net power at the sun gear. Thus,

Pc = Ts2ωs2

Tiωi

[
1 + (Np2/Ns)

1 + (Np1/Ns)
− 1

]−1

. (1.32)

1.17.4 Harmonic Gear Drives

Harmonic gear drives are a compact method of achieving a high speed reduction. Such drives
were developed by C.W. Musser and are frequently used in robotic manipulators. The harmonic
drive typically consists of three elements: a wave generator, a flexible external gear element,
and a rigid internal gear element. The anatomy of such a harmonic gear drive is depicted
in Figure 1.41. Speed reductions typically range from 30:1 to 300:1. Harmonic gear drives
are compact, simple, and have low backlash, whereas their disadvantage is its low torsional
rigidity due to the flexible external gear element. A general trend is that the efficiency of
harmonic gear drives decreases as the reduction ratio increases.

The flexible external gear element is smaller in diameter than the rigid internal gear element,
resulting in having two fewer teeth on its outer circumference. It is held in an oval (usually
elliptical) shape by the wave generator, and its teeth engage with the teeth on the rigid internal
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Figure 1.41 Anatomy of a harmonic gear drive

gear element across the major axis of the oval wave generator. The tooth mesh rotates with
the major axis of the oval wave generator. When the wave generator rotates 180◦ Clockwise
(CW), the flexible external gear element rotates CCW by one tooth relative to the rigid internal
gear element. Each rotation of the wave generator causes the flexible gear element two-teeth
counter clockwise (CCW) relative to the rigid external gear element. The gear ratio g for such
harmonic drives is

g = Nf

Nr − Nf
, (1.33)

where
Nf number of teeth on the flexible external gear element, and
Nr number of teeth on the rigid internal gear element.

Errors in transmission function are typically inherent in harmonic drives. More appropri-
ately, nonlinear motion exists as the gear teeth are usually based on circular external and
circular internal gears elements. Distortions in the external gear element occur as a result of
its flexibility. Conjugate action no longer occurs as a result of this distortion. This “distortion”
can be reduced by designing the tooth based on the instantaneous radius of curvature of the
ellipse in the distorted configuration.

1.17.5 Noncircular Planetary Gear Trains

PGTs are 2-dof mechanisms and consequently multiple noncircular gear elements can be
combined within a single PGT (see Katori, 1998). PGTs with noncircular gear elements can
yield “extreme” functional relations using “reasonable” noncircular gear elements. These
“extreme” functional relations cannot be “reasonably” obtained using a single noncircular
gear reduction. Such a special PGT was proposed by Mundo (2006) where he divided the
PGT motion generation into two phases: one phase involving a nonlinear velocity relation grp

between the ring gear and the planet gear and a second phase involving a nonlinear velocity
relation gps between the planet gear and the sun gear. Mundo used a Fourier series expression
to specify the instantaneous gear ratio accordingly:

grp(vi) = m +
N∑

k=1

[ak cos(kmvi) + bk sin(kmvi)]. (1.34)
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Figure 1.42 PGT with noncircular gear elements (reproduced by permission of MMT, Mundo, 2006)

The ring gear is the input gear element in this case and the planet is the output element. The
restriction on Equation (1.34) is that its integral from 0 to 2π must be rational. The resulting
planet radius and the sun gear’s center of rotation define the sun gear radius. In general, the
center of the sun gear and the ring gear are not coincident. Depicted in Figure 1.42 is an example
of such a PGT. Mundo suggested the PGT as part of a bicycle driveline to match the optimal
nonconstant pedal torque provided by the human body with constant torque to the wheels.

1.18 Summary

This chapter presents a review of the kinematic geometry of gearing and introduces some of
the concepts of kinematic synthesis and analysis within the context of conventional cylindrical
gearing. These concepts include mobility, the Arhnold-Kennedy instant center theorem, and
the Euler-Savary equation. The concept of mobility is presented to check the constraint of
multiple gears in mesh and determine if they will move. It is also useful in establishing the
need for profile modification in order to enable the bodies to move. Mobility is a mathematical
concept used to determine if a gear system is a constrained structure or if it is unconstrained
to move as desired. The Arhnold-Kennedy instant center theorem is briefly discussed that can
be used to determine in general the location of the pitch point relative to the two moving
bodies and to ground at any instant for a given motion specification about two parallel axes.
The Euler-Savary equation is presented to determine the radii of curvature of tooth profiles
at the contact that satisfy the Arhnold-Kennedy instant center theorem. Different forms of
conjugate tooth profiles are also presented and subsequently used to illustrate addendum and
dedendum contacts, backlash, and contact ratio. A tabulation is given of the advantages and
disadvantages of some of the tooth profiles that are commonly used in practice. Another table is
given for the speed and torque relationships for PGTs. Included is the synthesis of noncircular
gears for torque balancing purposes. Also, a brief analysis of the kinematics and statics of
mechanism trains is given along with the theoretical basis for the generation of circulating
power in compound gear trains. Part II of this book develops the necessary relationships for
the geometric design and manufacture of these seemingly different aspects of gearing.


