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1
Introduction to the
Theory of Elastic Waves

1.1 Elastic waves

Elastic waves are mechanical waves propagating in an elastic medium as
an effect of forces associated with volume deformation (compression and
extension) and shape deformation (shear) of medium elements. External
bodies causing these deformations are called wave sources. Elastic wave
propagation involves exciting the movement of medium particles increas-
ingly distant from the wave source. The main factor differentiating elastic
waves from any other ordered motion of medium particles is that for small
disturbances (linear approximation) elastic wave propagation does not result
in matter transport.

Depending on restrictions imposed on the elastic medium, wave propaga-
tion may vary in character. Bulk waves propagate in infinite media. Within
the class of bulk waves one can distinguish longitudinal waves (compres-
sional waves) and shear waves. A three-dimensional medium bounded by
one surface allows for propagation of surface waves (Rayleigh waves and
Love waves). Propagation of bulk waves and surface waves is used for de-
scribing seismic wave phenomena. Bounding the elastic medium with two
equidistant surfaces causes compressional waves and shear waves to interact,
which results in the generation of Lamb waves. One can say that a free bound-
ary restricting an elastic body guides and drives waves; therefore the term
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2 Guided Waves in Structures for SHM

guided waves is also used. Lamb waves and guided waves are used in broadly
considered diagnostics and nondestructive testing. There are also waves that
propagate on media boundary (interface waves) with names derived from
their discoverers: in the interface between two solids Stoneley waves propa-
gate, while in the one between a solid and a liquid Scholte waves propagate.

1.1.1 Longitudinal Waves (Compressional/Pressure/
Primary/P Waves)

Longitudinal waves are characterised by particle motion alternately of com-
pression and stretching character. The direction of medium point motion is
parallel to the direction of wave propagation (i.e. longitudinal).

1.1.2 Shear Waves (Transverse/Secondary/S Waves)

Shear waves are characterised by transverse particle movements in alternat-
ing direction. The direction of medium particle motion is perpendicular to

Figure 1.1 Distribution of displacements for the horizontal shear wave
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Introduction to the Theory of Elastic Waves 3

Figure 1.2 Distribution of displacements for the vertical shear wave

the propagation direction (transverse). The transverse particle movement can
occur horizontally (horizontal shear wave, SH; see Figure 1.1) or vertically
(vertical shear wave, SV; see Figure 1.2).

1.1.3 Rayleigh Waves

Rayleigh waves (Figure 1.3) are characterised by particle motion composed
of elliptical movements in the xy vertical plane and of motion parallel to
the direction of propagation (along the x axis). Wave amplitude decreases
with depth y, starting from the wave crest. Rayleigh waves propagate along
surfaces of elastic bodies of thickness many times exceeding the wave height.
Sea waves are a natural example of Rayleigh waves.
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4 Guided Waves in Structures for SHM

Figure 1.3 Distribution of displacements for the Rayleigh wave

1.1.4 Love Waves

Love waves (Figure 1.4) are characterised by particle oscillations involving
alternating transverse movements. The direction of medium particle oscil-
lations is horizontal (in the xz plane) and perpendicular to the direction of
propagation. As in the case of Rayleigh waves, wave amplitude decreases
with depth.

1.1.5 Lamb Waves

These waves were named after their discoverer, Horace Lamb, who devel-
oped the theory of their propagation in 1917 [1]. Curiously, Lamb was not
able to physically generate the waves he discovered. This was achieved by
Worlton [2], who also noticed their potential usefulness for damage detection.
Lamb waves propagate in infinite media bounded by two surfaces and arise
as a result of superposition of multiple reflections of longitudinal P waves
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Figure 1.4 Distribution of displacements for the Love wave

and shear SV waves from the bounding surfaces. In the case of these waves
medium particle oscillations are very complex in character. Depending on
the distribution of displacements on the top and bottom bounding surface,
two forms of Lamb waves appear: symmetric, denoted as S0, S1, S2, . . . , and
antisymmetric, denoted as A0, A1, A2, . . . . It should be noted that numbers of
these forms are infinite. Displacement fields of medium points for the fun-
damental symmetric mode S0 and fundamental antisymmetric mode A0 of
Lamb waves are illustrated in Figures 1.5 and 1.6, respectively.

1.2 Basic Definitions

A specific case of waves as harmonic initial perturbations is considered here:

u(x, 0) = U0 cos(kx) (1.1)
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Figure 1.5 Distribution of displacements for the fundamental symmetric mode
of Lamb waves

The notions of wavenumber k and wavelength λ are common for waves of
every type. Wavenumber k refers to the spatial frequency of perturbations.
Wavelength λ refers to the spatial period of perturbations (Figure 1.7) and is
expressed by the following formula:

λ = 2π

k
(1.2)

Solution of Equation (1.1) can be expressed in a general form as:

u(x, t) = U0

2
[cos(kx − ωt) + cos(kx + ωt)] (1.3)

where U0 is wave amplitude and ω is angular velocity. The first term
in square brackets is associated with wave propagation to the right (or
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Figure 1.6 Distribution of displacements for the fundamental antisymmetric
mode of Lamb waves

Figure 1.7 Harmonic wave of length λ
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Figure 1.8 Harmonic wave propagating with velocity c

forwards), while the second term is associated with wave propagation to
the left (or backwards). Considering a wave propagating to the right, this can
be written as:

uR(x, t) = U0

2
cos(kx − ωt) (1.4)

The phase of this wave is φ = kx − ωt. For the constant phase kx − ωt = const
it is x = (ω/k)t + const. Thus, a point of constant phase moves with velocity:

c = ω

k
(1.5)

The harmonic wave propagating to the right with velocity c is presented in
Figure 1.8.

The phase velocity of a wave describes the relationship between spatial
frequency k and temporal frequency ω of the propagating waves. The depen-
dency ω = ω(k) is called the dispersion relationship. If this relation is linear,
that is ω = ck, the wave is nondispersive. In a nondispersive medium, the
phase velocity is constant for all velocities.

Besides phase velocity, the term of group velocity is also associated with
wave propagation. Group velocity refers to propagation of a group of waves
called a wave packet. In order to understand the term of wave group velocity
two waves propagating to the right, having the same amplitudes, but different
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Figure 1.9 Wave packet as the superposition of a carrier wave and a modu-
lating wave

frequencies and wavenumbers are considered:

u(x, t) = U0 [sin(k1x − ω1t) + sin(k2x − ω2t)] (1.6)

Application of universally known trigonometric identities for the sum of
sinus functions leads to:

u(x, t) = 2U0 cos
(

k1 − k2

2
x − ω1 − ω2

2
t
)

sin
(

k1 + k2

2
x − ω1 + ω2

2
t
)

(1.7)

In formula (1.7) one can distinguish a term associated with modulation and
one associated with a carrier wave:

u(x, t) = 2U0 cos (�kx − �ωt)︸ ︷︷ ︸
modulation

sin (k0x − ω0t)︸ ︷︷ ︸
carrier wave

(1.8)

The wave packet is a superposition of a carrier wave and a modulating wave
in the form of a window, as presented in Figure 1.9.

The propagation velocity of a modulating wave defines the propagation
velocity of a wave packet. For a constant phase �kx − �ωt = const, this is
x = (�ω/�k)t + const. Thus, group velocity at the limit transition �ω → 0,

�k → 0 is defined as:

cg = dω

dk
(1.9)

One should note that for the nondispersive media the group velocity is equal
to the phase velocity. In the dispersive media these velocities differ, which
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manifests directly as wave packet deformation during propagation. First of
all, the wave packet amplitude decreases and the packet stretches.

1.3 Bulk Waves in Three-Dimensional Media

1.3.1 Isotropic Media

In infinite elastic medium waves propagate freely in every direction and
are called bulk waves. The basis for discussing bulk waves is the three-
dimensional theory of elasticity. The full set of equations is as follows:

σij,j + ρ fi = ρüi , i, j = 1, 2, 3 (1.10)

εij = 1
2

(ui,j + uj,i), i, j = 1, 2, 3 (1.11)

σij = λδijεkk + 2μεij, i, j = 1, 2, 3 (1.12)

where εkk = ε11 + ε22 + ε33 (Einstein summation convention) and δij is the Kro-
necker delta. Equation (1.10) covers three motion equations, Equation (1.11)
describes linear relationships between deformations and displacements (six
independent equations) and Equation (1.12) covers six independent constitu-
tive equations for the isotropic case. In Equation (1.12) Lame constants have
been used; these are defined as:

λ = νE
(1 + ν)(1 − 2ν)

μ = G = E
2(1 + ν)

(1.13)

Equations (1.10) to (1.12) may be expanded using Cartesian notation. Thus,
the motion equation can be written as:

∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
+ ρ fx = ρ

∂2ux

∂t2

∂σyx

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
+ ρ fy = ρ

∂2uy

∂t2

∂σzx

∂x
+ ∂σzy

∂y
+ ∂σzz

∂z
+ ρ fz = ρ

∂2uz

∂t2

(1.14)
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where ρ is the mass density. The relationships between stress compo-
nents are governed by symmetry, that is σyx = σxy, σzy = σyz, σxz = σzx. The
deformation–displacement equations take the following form:

εxx = ∂ux

∂x
, εxy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)

εyy = ∂uy

∂y
, εyz = 1

2

(
∂uy

∂z
+ ∂uz

∂y

)

εzz = ∂uz

∂z
, εzx = 1

2

(
∂uz

∂x
+ ∂ux

∂z

)
(1.15)

They are also subject to symmetry, that is εyx = εxy, εzy = εyz, εxz = εzx. The
constitutive Equation (1.10) in Cartesian notation is as follows:

σxx = (λ + 2μ)εxx + λεyy + λεzz, σxy = 2μεxy

σyy = λεxx + (λ + 2μ)εyy + λεzz, σyz = 2μεyz

σzz = λεxx + λεyy + (λ + 2μ)εzz, σzx = 2μεzx

(1.16)

Equations (1.14) and (1.15) remain valid for any continuous medium; the
specific type of the discussed medium is introduced by Equations (1.16) –
in this case it is isotropic. Elimination of stresses and deformations from
Equations (1.14) to (1.16) leads to:

(λ + μ)uj,ji + μui,jj + ρ fi = ρüi (1.17)

Motion Equations (1.17) containing only particle displacements are
displacement-type partial differential equations. These equations are also
known as Navier equations and in Cartesian notation take the following
form [3]:

(λ + μ)
∂

∂x

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)
+ μ

(
∂2ux

∂x2 + ∂2ux

∂y2 + ∂2ux

∂z2

)
+ ρ fx = ρ

∂2ux

∂t2

(λ + μ)
∂

∂y

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)
+ μ

(
∂2uy

∂x2 + ∂2uy

∂y2 + ∂2uy

∂z2

)
+ ρ fy = ρ

∂2uy

∂t2

(λ + μ)
∂

∂z

(
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

)
+ μ

(
∂2uz

∂x2 + ∂2uz

∂y2 + ∂2uz

∂z2

)
+ ρ fz = ρ

∂2uz

∂t2

(1.18)



P1: TIX/XYZ P2: ABC
JWST119-c01 JWST119-Ostachowicz December 1, 2011 9:37 Printer Name: Yet to Come

12 Guided Waves in Structures for SHM

If the area where the solution is sought is infinite, these equations are
sufficient for describing elastic wave propagation. If the area is finite, on
the other hand, boundary conditions are necessary for the problem to be
well-posed. These boundary conditions take the form of imposed stresses
and/or displacements at area boundaries.

1.3.2 Christoffel Equations for Anisotropic Media

Wave propagation in infinite anisotropic elastic solids is governed by the full
set of equations of the three-dimensional theory of elasticity. Compared to the
isotropic case, the difference lies in a more general constitutive equation. The
full set of equations of the theory of elasticity for homogeneous anisotropic
media is as follows:

σik,k + ρ fi = ρüi , i, k = 1, 2, 3 (1.19)

εlm = 1
2

(ul,m + um,l), l, m = 1, 2, 3 (1.20)

σik = Ciklmεlm, i, k, l, m = 1, 2, 3 (1.21)

By combining Equations (1.19), (1.20) and (1.21) and ignoring external forces
the motion equations are obtained:

1
2

Ciklm (ul,km + um,kl) = ρüi (1.22)

The tensor of elasticity constants Ciklm is symmetric with regard to l and m,
and therefore:

Ciklm = Cikml = Ckilm (1.23)

A flat harmonic plane wave propagating forwards is assumed:

ui = Aiei(k j xj −ωt) (1.24)

where i = √−1 is the imaginary unit, k j is the wavenumber, Ai is a vector of
wave amplitudes and ω is angular frequency. Substitution of Equation (1.24)
into Equation (1.22) leads to:

Ciklmkkklum = ρω2ui (1.25)
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It can be seen that ui = umδim; therefore:

(ρω2δim − Ciklmkkkl)um = 0 (1.26)

This is the Christoffel equation for an anisotropic medium. The Christoffel
tensor can be defined as:

λim = �im = Ciklmnknl (1.27)

where nk are direction cosines normal to the wavefront. Furthermore, taking
into account the relationships:

kk = knk, kl = knl (1.28)

leads to:

(
�imk2 − ρω2δim

)
um = 0 (1.29)

By recalling the definition of phase velocity:

c = ω

k
(1.30)

Equation (1.29) is brought to the following form:

(
�im − ρc2δim

)
um = 0 (1.31)

This is a uniform system of three equations. The system has a nontrivial
solution if the determinant of the coefficient matrix is equal to zero. This is
a classic eigenvalue problem. The solution is composed of three velocities
(eigenvalues with regard to c2) and the corresponding eigenvectors. Depend-
ing on the arrangement of eigenvectors in space, one can be dealing with: a P
wave together with SH and SV waves, a quasi-P wave together with SH and
SV waves, a P wave together with quasi-SH and quasi-SV waves or a quasi-
P wave together with quasi-SH and quasi-SV waves [4]. One should note
that phase velocities depend on the direction of propagation, which results
from the definition of the Christoffel tensor (Equation (1.27)). In an isotropic
medium there are always pure waves: a longitudinal one and two shear ones,
the phase velocities of which do not depend on the direction of propagation.
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1.3.3 Potential Method

Bulk waves connected with wave propagation in an isotropic infinite media
are considered in this section. When no external forces f are present, Equation
(1.18) can be expressed in vector form as:

(λ + μ)∇(∇ · u) + μ∇2u = ρ ü (1.32)

The motion Equation (1.32) can be simplified further by applying Helmholtz
decomposition and the potential method [4–6]. Such an operation is only
possible for isotropic media. It is assumed that the displacement vector u can
be expressed through two potential functions: the scalar potential 
 and the
vector potential H = Hx i + Hy j + Hzk, that is:

u = ∇
 + ∇ × H (1.33)

Equation (1.33) is known as the Helmholtz solution complemented by the
condition:

∇ · H = 0 (1.34)

By applying Equation (1.33), components of Equation (1.32) can be expressed
as:

∇ · u = ∇(∇
 + ∇ × H) = (∇ · ∇)
 + ∇ · (∇ × H)︸ ︷︷ ︸
=0

= ∇2
 (1.35)

∇2u = ∇2(∇
 + ∇ × H) = ∇2∇
 + ∇2∇ × H (1.36)

ü = ∇
̈ + ∇ × Ḧ (1.37)

By substituting Equations (1.35), (1.36) and (1.37) into Equation (1.32) the
following formula is obtained:

(λ + μ)∇(∇2
) + μ
(∇2∇
 + ∇2∇ × H

) = ρ
(∇
̈ + ∇ × Ḧ

)
(1.38)

Noting that ∇∇2 = ∇2∇ (commutativity of differentiation), Equation (1.38)
after transformations yields:

∇ (
(λ + 2μ)∇2
 − ρ
̈

) + ∇ × (
μ∇2 H − ρ Ḧ

) = 0 (1.39)
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Equation (1.39) is satisfied for any point in space at any time, if the terms in
parentheses vanish, that is:

(λ + 2μ)∇2
 − ρ
̈ = 0 (1.40)

μ∇2 H − ρ Ḧ = 0 (1.41)

After dividing by ρ and ordering, Equations (1.40) and (1.41) become wave
equations for the scalar potential 
 and the vector potential H , that is:

cL∇2
 = 
̈ (1.42)

cS∇2 H = Ḧ (1.43)

where cL is the longitudinal wave velocity, defined as:

cL =
√

λ + 2μ

ρ
(1.44)

and cS is the shear wave velocity, defined as:

cS =
√

μ

ρ
(1.45)

As a result, the motion Equation (1.32) was decomposed into two simplified
wave Equations (1.42) and (1.43). Assuming that the rotational part ∇ × H of
Equation (1.33) is equal to zero, the longitudinal wave equation is obtained:

cL∇2u = ü (1.46)

Assuming that displacements in Equation (1.33) contain the rotational part
only, the shear wave equation is obtained as:

cS∇2u = ü (1.47)

1.4 Plane Waves

A specific case of three-dimensional waves are plane waves. These waves
are invariant in one direction along the wave crest. Such a situation happens
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when the wave crest is parallel to the z axis (cf. Figures 1.1 to 1.6). Moreover,
the normal vector of the wave crest is perpendicular to the z axis. Invariance
in the direction of the z axis means that all wave functions are independent
of z, and therefore their derivatives with respect to z are equal to zero, that is:

∂

∂z
≡ 0 and ∇ = i

∂

∂x
+ j

∂

∂y
(1.48)

After substituting Equation (1.48) into Equation (1.33) and expanding, the
expression for displacement is obtained:

u =
(

∂


∂x
+ ∂ Hz

∂y

)
︸ ︷︷ ︸

ux

i +
(

∂


∂y
− ∂ Hz

∂x

)
︸ ︷︷ ︸

uy

j +
(

∂ Hy

∂x
− ∂ Hx

∂y

)
︸ ︷︷ ︸

uz

k (1.49)

Although movement is invariant with respect to the z axis, Equation (1.49)
indicates that displacement components appear in all three directions (x, y
and z). It is noteworthy that the displacement component uz depends only on
potentials Hx and Hy that are associated with the horizontally polarised shear
wave (SH wave). Displacement components ux and uy depend on potentials

 and Hz associated with the longitudinal wave (P wave) and vertically
polarised shear wave (SV wave), respectively. Thanks to these relations one
can seek solutions of wave equations separately for the SH wave and the
P + SV wave combination.

1.4.1 Surface Waves

An example of waves propagating near a solid surface are Rayleigh waves,
the amplitude of which decreases rapidly with depth. The effective pene-
tration depth for Rayleigh waves is smaller than their wavelength. Particle
movement takes place in the vertical plane and is independent of the z direc-
tion; therefore one can seek solutions in terms of P + SV type plane waves.
The following assumptions are made:

∂

∂z
= 0, ux �= 0, uy �= 0, uz = 0 (1.50)

The wave Equations (1.42) and (1.43) can then be expressed in terms of
potentials 
 and Hz:

cL∇2
 = 
̈, cS∇2 Hz =
..

Hz (1.51)
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Assuming potentials of the following forms:


(x, y, t) = f (y)ei(kx−ωt), Hz(x, y, t) = hz(y)ei(kx−ωt) (1.52)

where k denotes the wavenumber, and then imposing boundary conditions
(stresses vanishing on the bounding surface):

σyy
∣∣y=0 = 0, σxy

∣∣y=0 = 0 (1.53)

After transformations the characteristic equation is obtained:

(
β2 + k2)2 − 4αβk2 = 0 (1.54)

where α and β depend on the frequency ω and the wavenumber k:

α2 = k2 − ω2

c2
L

, β2 = k2 − ω2

c2
S

(1.55)

Even though Equation (1.54) has three double roots, only one of them is real.
The real root corresponds to the surface Rayleigh wave velocity: cR = ω/kR.
By transforming Equation (1.54) one can show that the Rayleigh wave velocity
depends on the Poisson coefficient ν and the shear wave velocity cS [5]. A
universally accepted Rayleigh wave velocity approximation formula is:

cR(ν) = cS

(
0.87 + 1.12ν

1 + ν

)
(1.56)

Particle movement for Rayleigh waves can be described as follows:

ux(y) = Ai
(

ke−αy − β2 + k2

2k
e−βy

)

uy(y) = A
(

−αe−αy + i
β2 + k2

2β
e−βy

) (1.57)

where A is any constant.

1.4.2 Derivation of Lamb Wave Equations

The P + SV wave combination that leads to Lamb wave equations is con-
sidered in this section. Lamb wave propagation in a free plate of shape as
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Figure 1.10 Shape of the free plate in the Lamb wave problem

presented in Figure 1.10 is investigated. The problem is described by the
motion Equations (1.42) and (1.43) with boundary conditions imposed on the
plate surfaces. It is assumed that no stress is present on surfaces of coordinates
y = d and y = −d. Exciting the plate at any point causes the propagating ex-
cited impulse to encounter the top and bottom surfaces of the plate edge. By
means of multiple reflections from the top and bottom plate surfaces as well
as constructive and destructive interference of P and SV waves, Lamb waves
are generated. Lamb waves are composed of waves standing in the thickness
direction y (Lamb wave modes) and propagating in the x direction.

In the case of the solution applicable to the P + SV wave combination,
motion is contained in the vertical (x, y) plane and the following conditions
are observed:

ux �= 0, uy �= 0,
∂

∂z
= 0, 
 and Hz only (1.58)

In order to simplify the notation, the two potential functions 
 and Hz are
denoted as φ and ψ , respectively. Substituting conditions (1.58) into Equations
(1.42) and (1.43) the following expressions are obtained:

∂2φ

∂x2 + ∂2φ

∂y2 = 1
c2

L

∂2φ

∂t2 longitudinal waves

∂2ψ

∂x2 + ∂2ψ

∂y2 = 1
c2

S

∂2ψ

∂t2 shear waves
(1.59)

Referring to the displacement field expressed through potentials (1.49):

ux = ∂φ

∂x
+ ∂ψ

∂y
, uy = ∂φ

∂y
− ∂ψ

∂x
, uz = 0 (1.60)
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and substituting Equations (1.60) into the deformation–displacement rela-
tionship (1.15), the strain relations are obtained as:

εxx = ∂2φ

∂x2 + ∂2ψ

∂x∂y

εyy = ∂2φ

∂y2 − ∂2ψ

∂x∂y

εyx = 1
2

(
2

∂2φ

∂x∂y
− ∂2ψ

∂x2 + ∂2ψ

∂y2

)

εzz = 0
εyz = 0
εzx = 0

(1.61)

Stress, in turn, can be expressed according to Equations (1.16) as:

σxx = λ

(
∂2φ

∂x2 + ∂2φ

∂y2

)
+ 2μ

(
∂2φ

∂x2 + ∂2ψ

∂x∂y

)

σyy = λ

(
∂2φ

∂x2 + ∂2φ

∂y2

)
+ 2μ

(
∂2φ

∂y2 − ∂2ψ

∂x∂y

)

σzz = 0

σyx = μ

(
2

∂2φ

∂x∂y
− ∂2ψ

∂x2 + ∂2ψ

∂y2

)

σyz = 0
σzx = 0

(1.62)

The solution of Equations (1.59) is assumed in the following form:

φ = 
(y)ei(kx−ωt)

ψ = �(y)ei(kx−ωt)
(1.63)

It should be noticed that these solutions represent waves propagating in
the x direction and waves standing in the y direction. The complex term of
the exponential function includes a time variable depending on x, which is
associated with wave propagation. On the other hand, the unknown functions

 and � are ‘static’ functions that only depend on y. In other words, these
functions describe the stress distribution in the crosswise direction (across
the plate thickness). Substituting the relationships (1.63) into Equations (1.59)
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leads to a system of differential equations with regard to functions 
 and �:

∂2


∂y2 +
(

ω2

c2
L

− k2
)


 = 0

∂2�

∂y2 +
(

ω2

c2
S

− k2
)

� = 0
(1.64)

In the same fashion displacements and stress can be directly obtained from
Equations (1.60) and (1.62). By ignoring the ei(kx−ωt) term in all expressions,
the displacements and stresses can be expressed as:

ux = ik
 + d�

dy
, uy = d


dy
− ik�

σxx = λ

(
−k2
 + d2


dy2

)
+ 2μ

(
−k2
 + ik

d�

dy

)

σyy = λ

(
−k2
 + d2


dy2

)
+ 2μ

(
d2


dy2 − ik
d�

dy

)

σyx = μ

(
2ik

d


dy
+ k2� + d2�

dy2

)
(1.65)

After the following symbols are introduced:

p2 = ω2

c2
L

− k2, q 2 = ω2

c2
S

− k2 (1.66)

Equations (1.64) are brought to the following form:

∂2


∂y2 + p2
 = 0

∂2�

∂y2 + q 2� = 0
(1.67)

Equations (1.67) are fulfilled by a general solution:


 = A1 sin(py) + A2 cos(py)
� = B1 sin(q y) + B2 cos(q y)

(1.68)
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Derivatives of potentials with regard to y are as follows:

d


dy
= A1 p cos(py) − A2 sin(py),

d2


dy2 = −A1 p2 sin(py) − A2 p2 cos(py)

d�

dy
= B1q cos(q y) − B2 sin(q y),

d2�

dy2 = −B1q 2 sin(q y) − B2q 2 cos(q y)

(1.69)

As field variables contain sine and cosine functions with argument y, which
are odd and even with regard to y = 0, respectively, the solution can be
sorted into two sets of modes: symmetric modes and antisymmetric ones.
Specifically, the distribution of displacements in the direction of the x axis
will be symmetric with respect to the middle plane of the plate when ux

contains cosines and antisymmetric when ux contains sines. This is reversed
for displacements in the direction of the y axis. Thus, equation systems for
individual wave propagation modes are as follows.

1.4.2.1 Symmetric Modes


S = A2 cos(py)

�S = B1 sin(py)

uS
x = A2ik cos(py) + B1q cos(q y)

uS
y = −A2 p sin(py) + B1ik sin(q y)

σ S
xx = −A2(λp2 + (λ + 2μ)k2) cos(py) − B12μikq cos(q y)

σ S
yy = −A2(λk2 + (λ + 2μ)p2) cos(py) − B12μikq cos(q y)

σ S
yx = μ

[−A22ikp sin(py) + B1(k2 − q 2) sin(q y)
]

(1.70)

1.4.2.2 Antisymmetric Modes


A = A1 sin(py)

� A = B2 cos(py)

uA
x = A1ik sin(py) − B2q sin(q y)

uA
y = A1 p cos(py) − B2ik cos(q y)

σ A
xx = −A1(λp2 + (λ + 2μ)k2) sin(py) − B22μikq sin(q y)

σ A
yy = −A1(λk2 + (λ + 2μ)p2) sin(py) + B22μikq sin(q y)

σ A
yx = μ

[
A12ikp cos(py) + B2(k2 − q 2) cos(q y)

]

(1.71)
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Using the relationship:

λk2 + (λ + 2μ)p2 = λk2 + (λ + 2μ)
(

ω2

c2
L

− k2
)

= λk2 − k2(λ + 2μ) + (λ + 2μ)
(

ω2

c2
L

)

= −2k2μ + ω2ρ = μ

(
−2k2 + ω2

c2
S

)

= μ

[(
ω2

c2
S

− k2
)

− k2
]

= μ(q 2 − k2)

(1.72)

gives:

σ S
yy = −A2μ(q 2 − k2) cos(py) − B12μikq cos(q y)

σ A
yy = −A1μ(q 2 − k2) sin(py) + B22μikq sin(q y)

(1.73)

One should note that the waves can be separated into symmetric and anti-
symmetric modes only in specific cases, when structure symmetry is present.
Such separation is impossible in the case of analysis of anisotropic plates,
unless the wave propagates along the symmetry plane of the plate.

Constants A1, A2, B1, B2, as well as dispersion equations, still remain
unknown. They can be obtained by imposing free boundary conditions.

1.4.2.3 Symmetric Solution

The symmetric solution of Lamb wave equations is obtained when displace-
ments and stresses are assumed to be symmetrical with respect to the middle
plane (see Figure 1.11):

ux(x,−d) = ux(x, d), σyx(x,−d) = −σyx(x, d)

uy(x,−d) = −uy(x, d), σyy(x,−d) = σyy(x, d)
(1.74)

One should note that positive shear stresses have the same directions on the
top and bottom surfaces, and thus the opposite signs in Equations (1.74).
Symmetric boundary conditions are as follows:

σyx(x,−d) = −σyx(x, d) = 0

σyy(x,−d) = σyy(x, d) = 0
(1.75)
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Figure 1.11 Symmetric and antisymmetric analysis

After substituting boundary conditions into the stress relationships described
by formulas (1.70) and (1.73) a set of linear equations is obtained:

[ −2ikp sin(pd) (k2 − q 2) sin(qd)

(k2 − q 2) cos(pd) −2ikq cos(qd)

][
A2

B1

]
=

[
0

0

]
(1.76)

A uniform system of linear equations can be solved when its determinant is
equal to zero:

DS = (k2 − q 2)2 cos(pd) sin(qd) + 4k2 pq sin(pd) cos(qd) = 0 (1.77)

After transformations:

tan(qd)
tan(pd)

= − 4k2 pq

(k2 − q 2)2 symmetric modes (1.78)

One should note that p and q depend on the wavenumber k as well as on
the frequency f = ω/2π . Equation (1.78) is known as the Rayleigh–Lamb
frequency equation or the dispersion equation. Using this equation, one can
compute the symmetric mode (S) velocity, with which waves propagate in a
plate of thickness d for a chosen frequency f . A numerical solution of Equa-
tion (1.78) is a set of symmetric eigenvalues kS

0 , kS
1 , kS

2 , . . . . Substituting the
eigenvalues into the uniform system of Equations (1.76) allows thecoefficients
(A2, B1) to be determined in the form:

A2 = 2ikq cos(qd), B1 = (k2 − q 2) cos(pd) (1.79)
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Substitution of the coefficients (A2, B1) into Equations (1.70) yields symmetric
modes of the Lamb waves:

uS
x = −2k2q cos(qd) cos(py) + q (k2 − q 2) cos(pd) cos(q y)

uS
y = −2ikpq cos(qd) sin(py) − ik(k2 − q 2) cos(pd) sin(q y)

(1.80)

Stress distribution is obtained by means of substituting the coefficients
(A2, B1) into Equations (1.70) and (1.73):

σ S
xx = −(2ikq )

[
(λp2 + (λ + 2μ)k2) cos(qd) cos(py)

+ μ(q 2 − k2) cos(pd) cos(q y)
]

σ S
yy = −2μ(ikq )(k2 − q 2) [cos(qd) cos(py) − cos(pd) cos(q y)]

σ S
yx = μ

[
4k2 pq cos(qd) sin(py) + (k2 − q 2)2 cos(pd) sin(q y)

]
(1.81)

1.4.2.4 Antisymmetric Solution

An antisymmetric solution of the Lamb wave equations is obtained when
displacements and stresses are assumed to be antisymmetrical with respect
to the middle plane (see Figure 1.11):

ux(x,−d) = −ux(x, d), σyx(x,−d) = σyx(x, d)

uy(x,−d) = uy(x, d), σyy(x,−d) = −σyy(x, d)
(1.82)

One should note that positive shear stresses have opposite directions on the
top and bottom surfaces, and thus they are antisymmetric. Antisymmetric
boundary conditions are as follows:

σyx(x,−d) = σyx(x, d) = 0

σyy(x,−d) = −σyy(x, d) = 0
(1.83)

After substituting boundary conditions into the stress relationships expressed
by formulas (1.71) and (1.73) a set of linear equations is obtained:

[
2ikp cos(pd) (k2 − q 2) cos(qd)

(k2 − q 2) sin(pd) 2ikq sin(qd)

] [
A1

B2

]
=

[
0
0

]
(1.84)
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A uniform system of linear equations can be solved when its determinant is
equal to zero:

DA = (k2 − q 2)2 sin(pd) cos(qd) + 4k2 pq cos(pd) sin(qd) = 0 (1.85)

After transformations:

tan(qd)
tan(pd)

= − (k2 − q 2)2

4k2 pq
antisymmetric modes (1.86)

One should note that p and q depend on the wavenumber k as well as on
the frequency f = ω/2π. Equation (1.86) is known as the Rayleigh–Lamb
frequency equation or the dispersion equation. Using this equation, one can
compute the antisymmetric mode (A) velocity, with which waves propagate
in a plate of thickness d for a chosen frequency f . A numerical solution of
Equation (1.86) is a set of antisymmetric eigenvalues k A

0 , k A
1 , k A

2 , . . . . Substi-
tuting the eigenvalues into the uniform system of Equations (1.86) allows the
coefficients (A1, B2) to be determined in the form:

A1 = 2ikq sin(qd), B2 = −(k2 − q 2) sin(pd) (1.87)

Substitution of the coefficients (A1, B2) into Equations (1.71) yields antisym-
metric modes of the Lamb waves:

uA
x = −2k2q sin(qd) sin(py) + q (k2 − q 2) sin(pd) sin(q y)

uA
y = −i[2kpq sin(qd) cos(py) + k(k2 − q 2) sin(pd) cos(q y)]

(1.88)

Stress distribution is obtained by means of substituting the coefficients
(A1, B2) into Equations (1.71) and (1.73):

σ A
xx = −(2ikq )(λp2 + (λ + 2μ)k2) sin(qd) sin(py)

+μ(q 2 − k2) sin(pd) sin(q y)

σ A
yy = 2μ(ikq )(k2 − q 2) [sin(qd) sin(py) − sin(pd) sin(q y)]

σ A
yx = −μ

[
4k2 pq sin(pd) cos(py) + (k2 − q 2)2 sin(qd) cos(py)

]
(1.89)
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1.4.3 Numerical Solution of Rayleigh–Lamb Frequency
Equations

Solving the Rayleigh–Lamb frequency Equations (1.78) and (1.86) is not easy,
because the parameters p and q are also dependent on the wavenumber. These
equations can be analysed as relationships ω(k) or c(ω) describing dispersion
curves, where ω is the angular frequency and c is the phase velocity. The
phase velocity is defined by the following formula:

c = ω

k
(1.90)

For the given frequency there is an infinite number of solutions in the form
of wavenumbers fulfilling Equations (1.78) and (1.86). These solutions can
be real, imaginary or complex. However, in the case of the nonloaded plate
problem it is sufficient to consider real wavenumber k values only. This can
be achieved by means of the following system of equations:

tan(qd)
q

+ 4k2 p tan(pd)
(q 2 − k2)2 = 0 symmetric modes

q tan(qd) + (q 2 − k2)2 tan(pd)
4k2 p

= 0 antisymmetric modes

(1.91)

Further transformations aimed at introducing phase velocity and the prod-
uct of frequency and thickness as analysis parameters lead to the following
relationships:

LHSS = tan(q̂ωd)
q̂

+ 4 p̂ tan( p̂ωd)
c2(q̂ 2 − 1/c2)2

LHSA = q̂ tan(q̂ωd) + (q̂ 2 − 1/c2)2 tan( p̂ωd)
4 p̂c2

(1.92)

where:

ωd = 2π f d, p̂ =
√

1
c2

L

− 1
c2 , q̂ =

√
1
c2

S

− 1
c2 (1.93)

An algorithm that can be used for solving Equation (1.92) is presented below
[4]:
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1. Choose an initial value of the product of frequency and thickness (ωd)0.
2. Estimate the value of the phase velocity c0.
3. Investigate the signs of the left-hand sides LHSS and LHSA (assuming they

are nonzero).
4. Repeat steps 3 and 4 until signs in one of the equations LHSS or LHSA

change.
5. Use the bisection method to locate the value of phase velocity precisely

within the cn < c < cn+1 range, where n + 1 is the step at which sign
changes occur.

6. Continue iterating until the left-hand side of the desired equation is close
to zero.

7. After locating the root continue searching for the value of the
frequency–thickness product ωd, in order to locate other conceivable roots
by repeating steps 2 to 6.

8. Choose a different value of the ωd product and repeat steps 2 to 7.

The procedure presented above is run for such number of ωd values as to
achieve the desired accuracy.

One should note that despite the investigated functions being continuous,
sign changes accompanying a zero crossing may pass unnoticed if increments
of ωd are too large. This is due to the fact that the left-hand sides of Equations
(1.91) have plots with peaks passing through zero in narrow ranges of the
frequency–thickness product. That is why one needs to enhance the algo-
rithm with an additional rule that would account for missed roots. This can
be achieved by extrapolating the phase velocity curve. In case a root is lost, ex-
trapolation allows the dispersion curve to be complemented with the missing
root in the analysed frequency range. Sample results of root extraction from
Equations (1.92) in the form of dispersion curves for an aluminium plate are
presented in Figure 1.12. One should note that the procedure described above
can be programmed in such a fashion that roots are classified into families of
symmetric modes S0, S1, S2, . . . and antisymmetric modes A0, A1, A2, . . . .

From the shear horizontal mode (SHM) point of view, another important
property of Lamb waves are the group velocity dispersion curves. Group
velocity is defined as:

cg = dω

dk
(1.94)

However, in order to reduce computation time and complexity of the code
that computes dispersion curves, group velocity can be derived from phase
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Figure 1.12 Phase velocity dispersion curves for symmetric and antisymmetric
modes of Lamb waves (cL = 6.3 km/s, cS = 3.2 km/s)

velocity. After substituting k = ω/c into Equation (1.94) the group velocity is
defined as [4]:

cg = dω

d
(

ω
c

) = dω

dω
c − ω dc

c2

= c2

c − ω dc
dω

(1.95)

After taking ω = 2π f into account, the third equality can be written as:

cg = c2

c − ( f d) dc
d( f d)

(1.96)

where f d denotes the product of frequency and thickness. One should note
that when the derivative of phase velocity with regard to f d is equal to
zero, then cg = c. One should also note that when the derivative of phase
velocity with regard to f d approaches infinity (i.e. at the cut-off frequency),
the group velocity approaches zero. Numerical derivation can be performed
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Figure 1.13 Group velocity dispersion curves for symmetric and antisymmetric
modes of Lamb waves (cL = 6.3 km/s, cS = 3.2 km/s)

by applying the finite differences formula:

dc
d( f d)

∼= �c
�( f d)

(1.97)

Graphs of group velocity dispersion curves for an aluminium plate for
symmetric and antisymmetric modes of Lamb waves are presented in
Figure 1.13.

1.4.4 Distribution of Displacements and Stresses for Various
Frequencies of Lamb Waves

After finding the roots of Equations (1.91) and classifying the dispersion
curves one can compute the distributions of displacements and stress across
the plate thickness according to Equations (1.80), (1.81), (1.88) and (1.89). Sam-
ple graphs of displacement and stress distributions across the plate thickness
depending on frequency and type of Lamb wave mode are presented in
Figures 1.14 and 1.15. It is evident that as the frequency rises, the distribution
of displacements and stresses across the plate thickness becomes increasingly
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(a) (b)

(c) (d)

(e) (f)

Figure 1.14 Distribution of longitudinal displacements ux and transverse dis-
placements uy across the plate thickness for antisymmetric and symmetric
modes of Lamb waves for individual frequencies.
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(a)

(d)

(e) (f)

(b)

(c)

Figure 1.15 Distribution of stresses across plate thickness for antisymmetric and
symmetric modes of Lamb waves for individual frequencies
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complex. In other words, for higher frequencies one must use polynomials of
higher orders for fitting the curves.

1.4.5 Shear Horizontal Waves

Apart from Lamb wave modes that exist in flat plates, there also exist a set of
time-harmonic wave motions known as shear horizontal (SH) modes. In case
of shear horizontal waves the particle motion (displacements and velocities)
are in a plane, that is parallel to the surface of the plate (x, z) (see Figure 1.1).
Physically, any mode in the SH family can be considered as the superposition
of bulk waves reflecting from the upper and lower surfaces of the plate,
polarized horizontally (in the z axis direction). Particle motion has only a uz

component and the wave Equation (1.47) simplifies to:

∇2uz = 1
c2

S

üz (1.98)

It is assumed that the particle motion has the form:

uz(x, y, t) = h(y)ei(kx−ωt) (1.99)

The first part of Equation (1.99) represents a standing wave h(y) across the
plate thickness. The second part, ei(kx−ωt), represents a wave propagating
in the x direction. Substitution of Equation (1.99) into Equation (1.98) and
division of both sides by ei(kx−ωt) yields:

h′′(y) + η2h(y) = 0 (1.100)

where:

η2 = ω2

c2
S

− k2 (1.101)

The solution of Equation (1.100) has the general form:

h(y) = C1 sin(ηy) + C2 cos(ηy) (1.102)

Without going into detail, the tractions-free boundary conditions at the upper
and lower plate surfaces:

σyz(x,±d, t) = 0 (1.103)
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leads to the system of linear homogeneous equations with the determinant:

sin(ηd) cos(ηd) = 0 (1.104)

Equation (1.104) is the characteristic equation of SH wave modes and is zero
when either:

sin(ηd) = 0 (1.105)

which corresponds to symmetric modes of SH waves, or:

cos(ηd) = 0 (1.106)

which corresponds to antisymmetric modes of SH waves.
Explicit solutions of Equations (1.105) and (1.106) are:

ηSd = nπ, n = 0, 1, 2, . . .

ηAd = (2n + 1)
π

2
, n = 0, 1, 2, . . .

(1.107)

for symmetric and antisymmetric modes, respectively. Finally, phase velocity
dispersion curves of SH wave modes can be obtained from Equations (1.101)
and (1.107) by recalling that k = ω/c:

c(ω) = cS√
1 − (ηd)2

( cS
ωd

)2
(1.108)

Phase velocity dispersion curves calculated according to Equation (1.108) are
presented in Figure 1.17. It should be noted that the first symmetric SH wave
mode is not dispersive because its eigenvalues is zero (ηS

0 d = 0), and hence
Equation (1.108) leads to cS0 (ω) = cS. Figure 1.16 also indicates the asymptotic
behaviour of the SH wave velocity. If ω → ∞, then c → cS.

It can be shown that the group velocity of SH waves is inversely propor-
tional to the phase velocity and can be expressed as [5]:

cg(ω) = cS

√
1 − (ηd)2

( cS

ωd

)2
(1.109)

Corresponding to Equation (1.109), the group velocity dispersion curves are
presented in Figure 1.17.



P1: TIX/XYZ P2: ABC
JWST119-c01 JWST119-Ostachowicz December 1, 2011 9:37 Printer Name: Yet to Come

34 Guided Waves in Structures for SHM

Figure 1.16 Phase velocity dispersion curves for symmetric and antisymmetric
modes of SH waves (cS = 3.2 km/s)

Figure 1.17 Group velocity dispersion curves for symmetric and antisymmetric
modes of SH waves (cS = 3.2 km/s)
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1.5 Wave Propagation in One-Dimensional Bodies of
Circular Cross-Section

1.5.1 Equations of Motion

Propagation of elastic waves in one-dimensional bodies is governed by equa-
tions of the linear theory of elasticity, which for isotropic media can be brought
to tensor (1.17) or vector form:

(λ + μ)∇(∇ · u) + μ∇2u = ρ ü (1.110)

The case of one-dimensional bodies of full circular cross-section is anal-
ysed here. It is most convenient to analyse this subject using the cylindrical
system of coordinates (x, r, θ ) instead of the Cartesian system (x, y, z) (see
Figure 1.18).

Using Helmholtz decomposition, one can express the displacement field
vector u as the sum of the irrotational vector field uφ and the solenoidal
vector field ur . This can be achieved by assuming that the displacement field
vector is generated by a pair of potentials, that is scalar potential φ and vector

Figure 1.18 Shape of the structural rod element
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potential H = (Hx, Hr , Hθ ):

u = uφ + uH = ∇φ + ∇ × H, ∇ · H = 0 (1.111)

using the following notation:

∇φ = i
∂φ

∂x
+ r

∂φ

∂r
+ θ

1
r

∂φ

∂θ

∇ · H = ∂ Hx

∂x
+ 1

r
∂(r Hr )

∂r
+ 1

r
∂ Hθ

∂θ

∇ × H = i
1
r

[
∂(r Hθ )

∂r
− ∂ Hr

∂θ

]
+ r

[
1
r

∂ Hx

∂θ
− ∂ Hθ

∂x

]

+ θ

[
∂ Hr

∂x
− ∂ Hx

∂r

]

∇2u = ∂2u
∂x2 + ∂2u

∂r2 + 1
r

∂u
∂r

+ 1
r2

∂2u
∂θ2

(1.112)

where i, r and θ are unit vectors orientated along axes x, r and θ . Thus,
displacement components can be expressed in the following form:

ux = ∂φ

∂x
+ 1

r
∂(r Hθ )

∂r
− 1

r
∂ Hr

∂θ

ur = ∂φ

∂r
+ 1

r
∂ Hx

∂θ
− ∂ Hθ

∂x

uθ = 1
r

∂φ

∂θ
+ ∂ Hr

∂x
− ∂ Hx

∂r

(1.113)

Application of the Helmholtz theorem leads to motion equations identical
with Equations (1.42) and (1.43), but formulated in the cylindrical system of
coordinates:

cL∇2φ = φ̈, cS∇2 H = Ḧ (1.114)

1.5.2 Longitudinal Waves

Analysis of longitudinal elastic waves in structural rod elements can be
greatly simplified by the assumption of rotational symmetry of the rod with
regard to the x axis. Because of this symmetry all displacement and stress
components must be independent of the θ angle. In the case of longitudinal
waves the uθ displacement component as well as γxθ and γrθ deformation
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components must be equal to zero, that is uθ = γxθ = γrθ = 0. Moreover, one
can demonstrate that a direct consequence of symmetry is that the potential
vector H must have only one nonzero component Hθ and the other compo-
nents Hx and Hr vanish, that is Hx = Hr = 0 [4, 7]. Consequently, the nonzero
components of the displacement vector in the rod can be expressed as:

ux = ∂φ

∂x
+ 1

r
∂(r Hθ )

∂r
, ur = ∂φ

∂r
− ∂ Hθ

∂x
(1.115)

After substituting the relationships (1.115) into Equation (1.110) and simpli-
fications, a system of two independent motion equations expressed using
scalar potentials φ and Hθ is obtained:

cL∇2φ = φ̈, cS

(
∇2 Hθ − Hθ

r2

)
= Ḧθ (1.116)

The second equation of this system can be simplified further, thanks to the
fact that:

∂

∂r
∇2 Hθ = ∇2 ∂ Hθ

∂r
− 1

r2

∂ Hθ

∂r

Substituting:

Hθ = −∂ψ

∂r

leads to:

cL∇2φ = φ̈, cS∇2ψ = ψ̈ (1.117)

At the same time, components ux and ur of the displacement vector u can be
ultimately expressed as:

ux = ∂φ

∂x
− ∂2ψ

∂r2 − 1
r

∂ψ

∂r
, ur = ∂φ

∂r
− ∂2ψ

∂x∂r
(1.118)

The displacement field in the rod can be easily computed on the basis
of Equations (1.118). Nonzero components of the displacement field are
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as follows:

εxx = ∂ux

∂x
, εrr = ∂ur

∂r
, εθθ = ur

r
, γxr = ∂ur

∂x
+ ∂ux

∂r
(1.119)

while the stress field can be computed from Hooke’s law, recalling the well-
known identities:

σxx = 2μεxx + λ(εxx + εrr + εθθ )

σrr = 2μεrr + λ(εxx + εrr + εθθ )

σθθ = 2μεθθ + λ(εxx + εrr + εθθ )

τxr = μγxr

(1.120)

Harmonic waves propagating in the rod along the x axis can be assumed as
the solution of Equations (1.105) in a general complex form:

φ = φ̂(r )ei(kx−ωt), ψ = ψ̂(r )ei(kx−ωt) (1.121)

where φ̂(r ) and ψ̂(r ) are unknown functions. Substitution of the relation-
ships (1.121) into the motion Equations (1.117) leads to a system of Bessel
differential equations for functions φ̂(r ) and ψ̂(r ):

d2φ̂

dr2 + 1
r

dφ̂

dr
+ α2φ̂ = 0,

d2ψ̂

dr2 + 1
r

dψ̂

dr
+ β2ψ̂ = 0 (1.122)

where:

α2 = ω2

c2
L

− k2, β2 = ω2

c2
S

− k2

which have solutions in the form of Bessel functions of the first type: J0(αr )
and J0(βr ), as well as of the second type: Y0(αr ) and Y0(βr ). As Bessel func-
tions of the second type exhibit a singularity in the origin r = 0, this branch
of solutions is discarded, leading to the following form of solutions of the
problem being analysed:

φ̂ = AJ0(αr ), ψ̂ = B J0(βr ) (1.123)

where A and B are some constants.
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Taking into account the general form of solutions given as Equation (1.121),
one can finally write that:

φ = AJ0(αr )ei(kx−ωt), ψ = B J0(βr )ei(kx−ωt) (1.124)

Propagation of longitudinal elastic waves in a rod requires meeting the
boundary conditions of stresses vanishing on the external rod surface, which
accompany the motion equation system (1.117):

σrr(x, r ) = τxr(x, r ) = 0, dla 0 ≤ x ≤ l, r = a = d
2

(1.125)

where l is the length and d is the rod diameter.
After substituting Equations (1.124) into Equations (1.119), using the iden-

tities of Equations (1.120) again and some simplifications, the boundary con-
ditions of the vanishing stress components σrr and τxr lead to a system of two
uniform equations expressed through the solutions from formulas (1.124).

A given system of equations has a nontrivial solution only if its determinant
vanishes. In the analysed case this condition leads directly to a certain non-
linear equation known in literature as the Pochhammer frequency equation
for longitudinal modes propagating in rods; this equation relates the angular
frequency ω with wavenumber k. The Pochhammer frequency equation has
the following form:

2α

a

(
β2 + k2

)
J1(αa )J1(βa ) − (

β2 − k2
)

J0(αa )J1(βa )

−4k2αβ J1(αa )J0(βa ) = 0
(1.126)

It is worth noting that this equation was derived for the first time in 1876 by
a Prussian mathematician Leo Pochhammer [8], who studied vibrations of
circular cylinders. This equation was also studied by many other researchers
(e.g. Chree [9], Love [10], Davis [11], Pao and Mindlin [12] and Graff [13]),
but due to its complexity its roots remained unknown for many years.

1.5.3 Solution of Pochhammer Frequency Equation

In the analysed case Pochhammer frequency equation was solved using
original dedicated software developed by M. Krawczuk and A. Żak for the
MATLAB R© environment [14]. Phase velocity and group velocity values for
waves propagating in the rod were calculated under the assumption that
the rod was made of aluminium alloy of Young’s modulus E = 72.7 GPa,
Poisson’s coefficient υ = 0.33, material density ρ = 2700 kg/m3 and diameter
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d = 0.01 m. Characteristic velocities were cL = 6.3 km/s and cS = 3.2 km/s,
respectively.

The calculation range was set out by a frequency range from 0.1 Hz to 20
MHz and a phase frequency range c from 2 km/s to 50 km/s. Roots of the
Pochhammer frequency equation were sought in nodes of a regular grid of
400 × 2000 nodes with an assumed accuracy of δ ≤ 0.001%.

Solving the equation involves applying the conjugate bisection method
[15]. In the first step, roots were located as a function of the phase velocity
c p = ω/k for the given frequency, which was treated like a parameter in
Equation (1.126). In the second step, the phase velocity c was considered as
a parameter and the roots were located as a function of frequency f . In this
way the second step of calculations improved the solution obtained in the first
step for those of the analysed areas where phase velocity changes were very
large. Group velocity values were also computed numerically by derivation
of the wavenumber curves k = k(ω) with regard to the angular frequency ω.

Results obtained for changes of the group velocity to phase velocity ratio
cg/c p as a function of the parameter f d, where f is frequency and d is rod
diameter, are shown in Figure 1.19. As can be seen in Figure 1.20, the phase

Figure 1.19 Dispersion curves of the group velocity to phase velocity ratio
for the case of longitudinal modes in an aluminium rod (cL = 6.3 km/s, cS =
3.2 km/s)
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Figure 1.20 Increase of the second mode of the phase velocity dispersion
curve for an aluminium rod

velocity dispersion curve for the second mode exhibits very unusual be-
haviour near the cut-off frequency for this mode between points A, B and C.
One can see that between points A and B the group velocity and the phase ve-
locity have opposite signs. This suggests that the direction of energy transfer
in the rod may be opposite to the wave propagation direction. In other words,
wave motion carries energy in one direction, but wave propagation seems to
occur in the other direction. This phenomenon, called wave backpropagation,
was investigated and documented in the literature by many researchers (e.g.
Meeker and Meitzler [16], Meitzler [17], Alippi et al. [18] and Marston [19])
and still is the subject of research, especially in the case of electromagnetic
waves.

In the frequency parameter f d range from a cut-off frequency of
3.72 MHz·mm (point B) to 3.85 MHz·mm (points A and C) the phase velocity
curve c p takes double values, which indicates two different zones of group
velocity cg values. The first branch of the phase velocity curve c p = c p( f d)
between points A and B is an area of high phase velocities, where phase veloc-
ity c p and group velocity cg have opposite signs. The second branch between
points B and C is an area of low phase velocities, where phase velocity c p and
group velocity cg have the same signs.
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1.5.4 Torsional Waves

Torsional waves are a consequence of vanishing displacements ur and uz.
Because of rotational symmetry, displacement uθ must be independent of θ .
For torsional waves the motion equation is as follows [13]:

∂2uθ

∂r2 + 1
r

∂uθ

∂r
− uθ

r
+ ∂uθ

∂x2 = 1
c2

S

∂2uθ

∂t2 (1.127)

Harmonic waves of the following form are assumed:

uθ = V(r )ei(kx−ωt) (1.128)

Substituting Equation (1.128) into Equation (1.127) and solving the differential
equation for the unknown function V(r ) leads to:

uθ = 1
β

B J1(βr )ei(kx−ωt) (1.129)

where B is any constant.
From the boundary conditions:

σrr(x, r ) = τxr(x, r ) = τrθ (x, r ) = 0, for 0 ≤ x ≤ l, r = a = d
2

(1.130)

the only nontrivial condition is the following one:

τrθ (x, r ) = 0, for 0 ≤ x ≤ l, r = a = d
2

(1.131)

This condition leads to a dispersion equation for torsional modes propagating
in rods that relates the angular frequency ω with wavenumber k:

(βa )J0(βa ) − 2J1(βa ) = 0 (1.132)

The first three roots of Equation (1.132) are:

β1 = 0, β2a = 5.136, β3a = 8.417
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One should note that β = 0 is also a solution of the dispersion equation. The
limit transition β → 0 in Equation (1.129) leads to the following equation:

uθ = 1
2

Brei(kx−ωt) (1.133)

This displacement represents the lowest torsional mode. In the lowest mode
displacement the amplitude uθ is proportional to the radius. The motion
corresponding to the solution is rotation of each rod cross-section as a whole
around its centre. One should note that β = 0, which implies that the phase
velocity is equal to the shear wave velocity cS:

β2 = ω2

c2
S

− k2, β = 0, → cS = ω

k
= c

Thus the lowest torsional mode is nondispersive. Higher modes are dis-
persive. For the given frequency, solutions of Equation (1.132) in the form
of wavenumbers kn can take real or imaginary values. For real values the
kn(ω) branches are hyperbolically shaped, while for imaginary values they
are circles.

1.5.5 Flexural Waves

Flexural waves are dependent on the circumferential angle θ and in the
displacement vector all three components are nonzero and change according
to simple trigonometry-based relationships:

ux = Ux(r ) cos θei(kx−ωt)

ur = Ur (r ) sin θei(kx−ωt)

uθ = Uθ (r ) cos θei(kx−ωt)

(1.134)

After substituting the displacement components (1.134) into the system of
displacement Equations (1.114) a system of three ordinary differential equa-
tions containing the functions Ux, Uy and Uθ is obtained. Without going into
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the details of solving these equations, their ultimate form is as follows:

Ux(r ) = ik AJ1(αr ) − C
r

∂

∂r
[r J2(βr )] − C

r
J2(βr )

Ur (r ) = A
∂

∂r
J1(αr ) + B

r
J1(βr ) + ikC J2(βr )

Uθ (r ) = − A
r

J1(αr ) + ikC J2(βr ) − B
∂

∂r
J1(βr )

(1.135)

Particular integrals of (1.135) are chosen in such fashion that they do not
have singularities on the rod axis. From the conditions of zero stresses on the
cylinder surface:

σrr (x, r ) = τxr (x, r ) = τrθ (x, r ) = 0, for 0 ≤ x ≤ l, r = a = d
2

(1.136)

after applying the relationships (1.135) a system of three equations [20] is
obtained. This is a system of equations uniform with regard to constants
A, B and C . The condition of the vanishing system determinant leads to a
frequency equation [13], from which one can determine subsequent roots k.

Figure 1.21 Dispersion curves of the group velocity to phase velocity ratio for
the case of flexural modes in an aluminium rod (cL = 6.3 km/s, cS = 3.2 km/s)
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The frequency equation for flexural waves in rods of circular cross-section
was investigated by Pao and Mindlin [12].

Results obtained for changes of the group velocity to phase velocity ratio
cg/c p as a function of the parameter f d, where f is frequency and d is rod
diameter, are shown in Figure 1.21.
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