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I. INTRODUCTION

Many physical systems obey, at the macroscopic level of description, evolution
equations of the form[1]

dxi

dt
= vi({xj}, λ) (1)

Here {xi}, i = 1, · · · , n are state variables such as density, temperature, or concen-
tration; {vi} represent the evolution laws, leading eventually an initial state {xi(0)}
toward an invariant part of phase space referred to as the attractor; and λ is a set
of parameters expressing the coupling between the system and its environment.

In most situations of interest the vi’s are nonlinear functions of the {xj}’s. One of
the principal signatures of such nonlinearities is the multiplicity of simultaneously
available states that can be reached in the long time limit. On the other hand, at the
level of description afforded by Eq. (1) a transition between these states, signaling
a qualitative change of behavior of the underlying system, can only be realized
by the action of an external preparation bringing the initial condition from the
domain of attraction of the initially prevailing asymptotic state to that of the new
one. If these two regimes are separated by a finite distance the corresponding initial
perturbation needs to be quite massive, and hence hardly realizable under normal
conditions.

Now systems composed of several subunits—as is typically the case of physical
systems—are subjected to spontaneous deviations from the state predicted by a
description like in Eq. (1) owing to microscopic-level processes such as thermal
motion and interparticle collisions. Furthermore, they are as a rule embedded in a
complex environment with which they continuously exchange matter, momentum
and energy. To account for these universal sources of variability we augment Eqs.
(1) by the addition of random forces {Ri(t)}. This leads to a set of stochastic
evolution equations of the form [1–3]

dxi

dt
= vi({xj}, λ) + Ri(t) (2)

We refer to the descriptions afforded by Eqs. (2) and (1) as the mesoscopic and
the mean-field description, respectively.

At the level of the observables, the action of Ri(t) will be manifested in the
form of fluctuations around the deterministic path as provided by Eq. (1). Our main
objective in this chapter is to identify the principal features of these fluctuations
starting from a set of assumptions on the nature of the random forces. A most
important point for our purpose is that fluctuations provide a natural mechanism
of transitions between states and much of the analysis will aim at determining the
mean rates and other probabilistic properties of these transitions.
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The general formulation is laid down in Section II. The case where the mean-
field dynamics derives from a kinetic potential is considered in Section III, where
the conditions of existence of such a potential and its connection with the thermo-
dynamic potentials are also analyzed. We show that there exists a general class of
phenomena for which this connection can be implemented and which includes a
variety of nucleation phenomena associated to phase transitions, one of the prin-
cipal themes of this volume. Section IV is devoted to the type of kinetic potentials
compatible with two-step nucleation as observed, in particular, in protein solutions.
State diagrams and phase space portraits are derived and different generic scenar-
ios are identified. A discrete state model of transitions between states compatible
with this information is derived in Section V, where the mean transition times are
computed and compared with the result of full-scale stochastic simulations. It is
shown that the presence of intermediate metastable states may be responsible of
an enhancement in the transition rates. The repercussions of different transition
scenarios on the dissipation generated by the system are studied in Section VI. The
main conclusions are summarized in Section VII.

II. FORMULATION

Our starting point is Eq. (2) under the additional assumption that the random forces
Ri define a multivariate stationary Gaussian white noise process,

〈
Ri(t)Rj(t′)

〉 = 2εDijδ(t − t′) (3)

it being understood thatDij form a positive definite matrix and are time independent
(stationary process). ε is a small parameter related, depending on the case, to the
thermal energy kBT or to the inverse of the system size.

As is well known, under the above conditions the stochastic variables {xi}
undergo a diffusion process in phase space, whose probability density P satisfies
the Fokker–Planck equation [1–3]

∂P

∂t
= −

n∑
i=1

∂

∂xi

vi({xj})P + ε

n∑
i,j=1

∂

∂xi

Dij

∂P

∂xj

(4)

There is an abundant literature on both the stationary and time-dependent solutions
of Eq. (4) in the case of a single variable, but the situation becomes markedly more
involved in the presence of two or more variables. We summarize hereafter some
results of special relevance for the purposes of the present chapter.
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A. Stationary Distribution

Let us write Eq. (4) in the form

∂P

∂t
= −

∑
i

∂Ji

∂xi

(5a)

where the ith component Ji of the probability flux J is given by

Ji = vi({xj})P − ε
∑

j

Dij

∂P

∂xj

(5b)

For P to be stationary the divergence of J must vanish. Now, in a multivariate
system subjected to nonequilibrium constraints this does not imply automatically
the vanishing of J itself, since a circulating probability flow with nonzero curl may
subsist, even if the state is globally stationary [4]. This entails that the stationary
solution of (4) cannot be found analytically by a simple algorithm. Nevertheless,
the presence of an ε factor in Eq. (4) suggests to seek approximate stationary
solutions of the form [1–3]

Ps({xj}) = exp[−�({xj})/ε] (6)

Substituting into (4) and keeping dominant terms (in ε−1) one obtains a Hamilton–
Jacobi type equation satisfied by � [5, 6],∑

i

vi

∂�

∂xi

+
∑
ij

Dij

∂�

∂xi

∂�

∂xj

= 0 (7)

which can be solved approximately by expanding � in an appropriate basis.
There are two cases where the above difficulties do not arise: One variable

systems; and closed physical systems, where Ps must coincide with one of the
classical distributions given by equilibrium statistical mechanics. This latter type
of systems is of special relevance in the problem of multistep nucleation and will
be considered in detail in Section III.

An important point is that � possesses a local extremum along the solutions of
the mean-field equations (1). On these grounds it has been suggested that it may
be viewed as a generalized entropy-like function [7]. This analogy will be taken
up again in Section III.

B. Exit from an Attraction Basin

Consider now the case where the system admits several simultaneously stable
steady-state solutions xi,α, α = 1, · · · , M and let Cα be the corresponding at-
traction basins. Clearly, Cα partition the full phase space into nonoverlapping cells
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separated by boundaries constituted by the stable manifolds of the unstable steady-
state solutions of Eqs. (1) xi,β, β = 1, · · ·, N. Within each Cα the vector field {vi}
will tend toward {xi,α}. Still, under the effect of a noise defined on an unbounded
support, as in Eq. (3), a trajectory emanating from a point inside cell Cα will
sooner or later cross the boundaries of this cell and will find itself in the domain
of attraction of another stable fixed point. Two natural questions arise then in this
context.

(i) Let c be a point on Cα. What is the distribution π(x, c) of points c by which
the trajectory escapes from Cα starting from point x ∈ Cα?

(ii) What is the mean exit time from Cα?

Just like for the stationary distribution, an exact analytic answer to these questions
is not available in the most general case of a multivariate system subjected to
nonequilibrium constraints. But in the limit ε → 0 some asymptotic estimates can
again be obtained [2]. First, the distribution of exit points is given essentially by
exp(−�(c/ε)), that is, by the stationary distribution [Eq. (6)]. And second, the
mean exit time is given by the inverse of the lowest eigenvalue λ1 of the Fokker–
Planck operator, which in the case of multistable systems is exponentially small,
λ1 ≈ exp(−K/ε) where K is a finite positive number determined by the structure
of velocity field v and by the diffusion matrix D.

III. CLOSED SYSTEMS AND DETAILED BALANCE

We now limit ourselves to closed systems operating in the linear range of irre-
versible processes. On the one side, this implies the absence of systematic ex-
ternally imposed nonequilibrium constraints, the only source of nonequilibrium
being the initial deviation of {xi} from the equilibrium values {xi,e}. And on
the other side, it implies that the fluxes j associated to the various irreversible
processes present are connected to the associated thermodynamic forces by the
relation [8, 9]

j = L · X (8)

where the matrix L of kinetic (Onsager) coefficients is assumed to be positive
definite. The forces X are in turn related to the derivatives of a thermodynamic
potential such as the free energy function F

X = −∂F

∂x
(9)

Furthermore, under an appropriate choice of variables the fluxes j can be identified
to the time derivatives of the x’s, it being understood from now on that these
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variables belong to the class of even variables under time reversal [2, 3]. Equation
(2) takes now the form

dx
dt

= −L · ∂F

∂x
+ R(t) (10)

expressing the evolution of the state variables as the overall result of thermody-
namic driven processes accounted for by F and of kinetically driven ones ac-
counted for by L and R. Nonlinearity and in particular the multiplicity of steady
states stems in this setting entirely from F , the states being thus related to different
phases in which the system of interest can exist. As for L and R they account
for the relaxation processes and for the fluctuations around each state as well as
for transitions between the states. It has to be emphasized that in writing Eq. (10)
we have lumped together the spatial degrees of freedom. In this view {xi} repre-
sent averaged quantities, such as for instance the mass fractions of the material in
different states/phases at a given stage of the transformation.

The Fokker–Planck equation [Eq. (4)] associated to Eq. (10) reads

∂P

∂t
=

n∑
i=1

∂

∂xi

⎛⎝ n∑
j=1

Lij

∂F

∂xj

P + ε

n∑
j=1

Dij

∂P

∂xj

⎞⎠ (11)

To secure consistency with equilibrium statistical mechanics this equation must
admit as stationary solution the equilibrium distribution

Ps = Pe ≈ exp(−F/ε) (12)

Inserting into Eq. (11) one sees that the diffusion matrix D and the kinetic matrix
L must be proportional (a fluctuation–dissipation type relationship) and Eq. (11)
simplifies further to

∂P

∂t
=

n∑
i,j=1

∂

∂xi

Lij

(
∂F

∂xj

P + ε
∂P

∂xj

)
(13)

Notice that this equation in conjunction with (12) implies a vanishing probability
flux in the stationary (here equilibrium) state, Ji,e = 0 for all {xj}’s within each of
the attraction basins of the fixed points. This latter property implies by itself that
the velocity field must be a linear combination of the derivatives of some potential
function with respect to the state variables but is actually more general than detailed
balance, in the sense that it may in principle be compatible with the presence of
nonequilibrium constraints.
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To extract from Eq. (13) information concerning the time-dependent properties
we introduce a linear transformation of variables

x = A · z (14a)

∂

∂x
= Ã−1 · ∂

∂z
(14b)

Ã being the transposed of matrix A, and set

F (x(z)) = U(z) (14c)

P(x(z)) = ρ(z) (14d)

We assume from now on that the kinetic matrix L is state independent. By virtue
of the fluctuation–dissipation theorem this applies to the correlation matrix D of
the fluctuations as well (additive noise). Substituting into the equation we obtain,
after some straightforward manipulations,

∂ρ

∂t
=

(
Ã−1 · ∂

∂z

)
·
{

L ·
[(

Ã−1 ∂U

∂z
ρ + εÃ−1 ∂ρ

∂z

)]}
or, in more explicit form,

∂ρ

∂t
=

∑
jm

(
A−1LÃ−1

)
jm

(
∂

∂zj

∂U

∂zm

ρ + ε
∂2ρ

∂zj∂zm

)
(15)

Equation (15) features the matrix

� = A−1LÃ−1 (16)

linked to L by a congruent transformation. As well known under such a trans-
formation a symmetric matrix can be diagonalized and actually, upon a further
linear scaling, be reduced to the unit matrix. This requirement determines fully the
transformation matrix A and upon substituting into Eq. (15), one obtains [10]

∂ρ

∂t
=

n∑
j=1

∂

∂zj

(
∂U

∂zj

ρ + ε
∂ρ

∂zj

)
(17)

where t is a rescaled time. This is the standard form of the Fokker–Planck equation
of a system whose deterministic part of the evolution is driven by a kinetic potential
U and which is subjected to additive fluctuations of identical variance. A system
of this kind undergoes a process of isotropic diffusion in phase space described by



8 gregoire nicolis and catherine nicolis

the Langevin equation [cf. also Eq. (10)]

dzi

dt
= −∂U

∂zi

+ ri(t) (18a)

where the random forces satisfy the properties

〈ri(t)〉 = 0,
〈
ri(t)rj(t′)

〉 = 2εδkr
ij δ(t − t′) (18b)

As a corollary the invariant (equilibrium) probability density is given by

ρs(z) = ρe ≈ exp(−U(z)/ε) (18c)

Equations (18) establish the possibility to cast the evolution equations of a multi-
variate system, under the assumptions of detailed balance and of additive noise, in
a form deriving from a kinetic potential generating both the dynamical evolution
and the invariant probability of the relevant variables zi. These properties of the
kinetic potential U are to be contrasted from those of quantity � introduced in
Section II, for a system subjected to nonequilibrium constraints and not satisfying
the detailed balance property. The extent to which they subsist if the matrices L

and D are state dependent will be discussed briefly in the subsequent sections.
It should be pointed out that the conjunction of fluctuations and nonlinearities

implies that the evolution of the mean values generated by Eq. (17),

〈dzi〉
dt

= −
〈

∂U

∂zi

〉
is not closed with respect to 〈zi〉, but involves higher moments of the probability
density as well. It is only when the mean-field approximation can be justified that
these latter equations reduce to a closed set of deterministic evolution laws,

dzi

dt
= −∂U

∂zi

(19)

Otherwise, one needs to resort to the full Eq. (18a).
Let {zi,α} be the steady-state solutions to which the solutions {xi,α} introduced

in Section II transform through Eq. (14a). It follows from (19) that they are extrema
of the kinetic potential U and, by virtue of Eqs. (12) and (14c), of the free energy
and thus of the invariant probability itself as well. Linearizing around these states,
setting zi = zi,α + δzi,α yields

dδzi,α

dt
= −

∑
j

(
∂2U

∂zi∂zj

)
α

δzj,α

≡ −
∑

j

Hijδzj,α (20)
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where H = {Hij} is the Hessian matrix of U. If all eigenvalues of H are positive
the reference state {zi,α} is asymptotically stable and, at the same time, a minimum
of both U and F . If at least one eigenvalue of H is negative the reference state
is unstable. Typically it corresponds to a saddle of the potential surface U as a
function of zi and, exceptionally, (if all eigenvalues are negative) to a maximum.

Under the conditions of existence of a kinetic potential considered in the present
section the exit problem formulated in Section IIB simplifies considerably. Specif-
ically, it can be shown that in the limit, again, of small ε the transition between
stable states {xi,α} and {xi,α′ } will follow a path across the saddle point {xi,β}
lying on the manifold separating the corresponding attraction basins. Further-
more, in the same limit the mean exit time depends principally on the following
elements [11]:

(i) The value of the potential barrier �U, that is, the difference of values
of U on the unstable (transition) state and the stable state. Since U has a
local minimum on the stable state, �U is necessarily a positive quantity.
Furthermore, by virtue of Eq. (14c) �U is equal in magnitude to the free
energy barrier separating the states concerned by the transition.

(ii) The Hessian determinant, that is, the product of the eigenvalues of the
Hessian matrix {Hij}, evaluated at the minimum of the potential on the
stable state.

(iii) The curvature of U on the unstable state in the direction across the saddle
point.

In contrast to �U which as pointed out in (i) is determined from the thermody-
namics, the two latter quantities depend on kinetic effects and are thus different
from those associated to the free energy. Explicit expressions will be provided in
Section IV for generic potentials U involving two variables.

We close this section by an application of the above outlined formalism to first-
order phase transitions mediated by intermediate metastable phases [12–15]. As
alluded already in the Introduction and discussed extensively in the chapters by
Vekilov, Dinsmore et al., and Lutsko in this volume transitions of this kind are
known to occur in a variety of materials, from protein solutions to aerosols to
plasma crystals. Of special relevance is protein crystallization, where the weak-
ness and short-range character of the attractive part of the interactions favors the
existence of a long-living metastable phase in the form of a high concentration
liquid. This phase tends to enhance significantly, under certain conditions, the rate
of nucleation of crystals. Here we focus on the kinetic aspects of the process and,
in particular, on the role of the kinetic potential U and its relationship with the free
energy F . For this purpose nucleation is formulated as the dynamics of two coupled
order parameters x1 and x2 related respectively to density—or concentration—and
structure (crystallinity), evolving in an effective force field provided by the first
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part of Eq. (10) and subjected to thermal fluctuations in the form of Gaussian white
noise,

dx1

dt
= −L1

∂F

∂x1
− L

∂F

∂x2
+ R1(t)

dx2

dt
= −L

∂F

∂x1
− L2

∂F

∂x2
+ R2(t) (21)

where the matrix L of the kinetic coefficients has been taken to be symmetrical
by virtue of Onsager’s reciprocity relations. We stress that in the absence of the
intermediate phase Eq. (21) collapse into a single equation for a unique order
parameter, which can be cast straightforwardly in a variational form.

Switching to the Fokker–Planck description and assuming that the fluctuation–
dissipation theorem is valid we seek for a congruent transformation (14) diagonal-
izing L with a matrix A of the form Aii = ai, Aij = Aji = a. Upon carrying out
the algebra one obtains

a1 = L1 ±
√

L1L2 − L2

L
a

a2 = L2 ±
√

L1L2 − L2

L
a (22a)

and the Fokker–Planck equation in the z1, z2 variables

∂ρ

∂t
=

√
L1L2 − L2L2

a2(L1 + L2 + 2
√

L1L2 − L2){
∂

∂z1

∂U

∂z1
ρ + ∂

∂z2

∂U

∂z2
ρ + ε

(
∂2ρ

∂z2
1

+ ∂2ρ

∂z2
2

)}
(22b)

Notice that the argument in the square root is positive, owing to the positive defi-
niteness of the matrix L. This relation can be further reduced to the form of Eq. (17)
by rescaling the variables z1, z2 or, more straightforwardly, the time,

t = τ
a2(L1 + L2 + 2

√
L1L2 − L2)

L2
√

L1L2 − L2
(22c)

yielding

∂ρ

∂τ
= ∂

∂z1

∂U

∂z1
ρ + ∂

∂z2

∂U

∂z2
ρ + ε

(
∂2ρ

∂z2
1

+ ∂2ρ

∂z2
2

)
(23)
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In the context of the two-step nucleation the free energy F possesses three
minima. Now, from Eq. (14) one has

∂F

∂xi

=
2∑

k=1

Ã−1
ik

∂U

∂zk

∂2F

∂xi∂xj

=
2∑

k,�=1

Ã−1
ik A−1

�j

∂2U

∂zk∂z�

(24)

The first of these relations implies that the extrema of F transform into extrema
of U, since the matrix A is nonsingular. The second relation implies that the
Hessians of U and F (in their respective variables) are related by the congruent
transformation used to reduceL to the unit matrix which, by construction, preserves
positivity. The nature of the extrema of F is thus not affected in the evolution in
terms of the transformed variables. In short, the nucleation of crystals of the solid
phase is reflected by fluctuation-induced transitions removing the system, initially
located in a minimum of U associated to the fluid phase, toward a minimum
associated to the solid phase.

An interesting question from the standpoint of irreversible thermodynamics is
whether the processes associated to the density and crystallinity (structure) fields
can be thermodynamically coupled, as implied in Eq. (21) by the presence of the
off-diagonal element L of the Onsager matrix. Now density is a true scalar whereas
structure is accounted for by a tensor. At first sight, in an isotropic medium, this
would rule out a thermodynamic coupling on the grounds of the Curie symmetry
principle [8, 9]. On the other hand, a tensor T can be split in the following way

T = 1

3
I tr T + T (a) + T (s) (25)

where I is the unit tensor, tr T the trace of T that is a scalar, T (a) its antisymmetric
part that can alternatively be viewed as an axial (“pseudo”) vector, and T (s) its
symmetric traceless part that can be alternatively be viewed as a polar (“true”)
vector. Clearly, then, the density field x1 can legitimately be coupled to the first
part of the decomposition in Eq. (25) or, alternatively, to any other structure related
quantity x2 of scalar nature such as the first coefficient of a Fourier series expansion
of the solid-phase density. The terms in L at the level of Eq. (21) stand, precisely,
for this type of coupling. Notice that even in the absence of a nondiagonal term
L in this equation x1 and x2 would still be coupled kinetically, through the x1, x2
dependence of the potential.

IV. GENERIC POTENTIALS AND THEIR UNFOLDINGS

In this section, we develop some generic models of transitions between states com-
patible with different types of nucleation scenarios observed in nanosize materials
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such as protein solutions, under the conditions of existence of a kinetic potential
put forward in the preceding section. The latter is viewed as a Landau type poly-
nomial [16, 17] that depends nonlinearly on appropriate linear combinations of
the original variables—the order parameters—the main question being to deter-
mine for each given scenario the minimal number of relevant order parameters
and the minimal relevant nonlinearities displayed in this potential providing a
qualitative explanation of the process of interest.

Now the above described program is reminiscent of the philosophy underly-
ing bifurcation theory [18, 19] or more appropriately catastrophe theory [20–22],
which deals more specifically with the classification of the different behaviors of
dynamical systems deriving from a potential. Applications of catastrophe theory
to phase transitions have been the subject of several investigations [23–25], but
to our knowledge they have so far been concerned with the structure of the phase
diagrams of a material as some key parameters are varied. Here we also focus
on dynamical aspects, including the kinetics of the transitions between different
states. The particular class of phenomena that we address are transitions between a
reference state, denoted by 1, to a final state, denoted by 3 it being understood that
under certain conditions another state 2 may also exist such that transitions from 1
to 2 and from 2 to 3 are possible. In the literature of multistep nucleation [12–15],
1 can be a dilute protein solution phase, 3 a crystalline phase with high protein
concentration, and 2 a dense protein solution phase, but in actual fact the approach
is generic: it extends beyond this example and covers a wide class of materials,
including colloidal systems. All states 1, 2, 3 are supposed to be locally stable and
thus to correspond to minima of the kinetic potential U. We place ourselves in
conditions where 3 is much more stable than 1 and 2, entailing that U(3) is signif-
icantly less than U(1) and U(2). The relative stability of states 1 and 2 can change.
Of special interest will be situations where state 2 represents a metastable phase.

The simplest “reference” situation is when state 2 does not exist. The transition
between 1 and 3, a first-order phase transition, can then be understood qualitatively
in terms of a Landau polynomial of 4th degree involving a single order parameter
z related, for example, to the protein concentration,

U4(z) = z4

4
+ λ

z2

2
+ uz (26)

This type of nonlinearity along with the two control parameters λ and u are suffi-
cient to account for all different behaviors. Criticalities separating these behaviors
are associated with the cusp catastrophe [21], one of the seven known elementary
catastrophes. The transition per se from 1 to 3 occurs through an intermediate
unstable state (13), lying between 1 and 2.

Let us now place ourselves under conditions that state 2 also exists. Different
situations can be envisaged.
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A. Transitions from 1 to 3 Occur Necessarily Through State 2

This scenario is in turn compatible with the presence of both a single or two order
parameters.

(i) In the first case the minimal Landau polynomial compatible with the exis-
tence of three local minima is of 6th degree [21].

U6(z) = z6

6
+ w

z4

4
+ c

z3

3
+ λ

z2

2
+ uz (27)

It involves the four control parameters w, c, λ, and u [21] and generates at
criticality the butterfly catastrophe [21]. The transition from 1 to 3 involves
two steps [26]. One from 1 to 2 via an intermediate unstable state (12); and
one from 2 to 3 via an intermediate unstable state (23).

(ii) In the second more realistic case, in addition to order parameter z1 related
to, for example, concentration in the example of protein crystallization one
also accounts for a second order parameter z2 associated to the structure
of the solid phase. We require that the associate potential switches, as
the control parameters are varied, from a two-well geometry (minima at
states 1 and 3) to a three-well one (minima at states 1, 2, and 3). This
transition scenario is typical of the parabolic umbilic catastrophe [21] and
its universal features can be captured by the potential involving four control
parameters [21]

U(z1, z2) = z2
1z2

2
+ z4

2

4
+ λ

z2
1

2
+ μ

z2
2

2
+ uz1 + vz2 (28)

In spite of the presence of the additional variable z2 the transition from 1 to
3 still occurs necessarily via state 2 [27] and involves two intermediate un-
stable states, (12) and (23) behaving as saddle points in the two-dimensional
phase space spanned by z1 and z2.

B. Transitions from 1 to 3 Need Not Occur Through State 2

In this more flexible scenario, which is compatible with the experimental data on
crystallization of protein solutions or of colloidal systems, we are led to require that
all three states 1, 2, and 3 must be able to communicate with each other directly.
In a two-dimensional phase space this entails three stable nodes whose attraction
basins are separated by the stable manifolds of three saddle points. If only these
six fixed points were present this would lead to a forbidden configuration in the
form of a closed loop delimited by the unstable manifolds of the three saddles. One
thus needs to stipulate the existence of a seventh fixed point, which for topological
reasons must be an unstable node and thus a maximum of the kinetic potential.
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To accommodate this configuration it is necessary to go beyond the potentials
associated to the seven elementary catastrophes, the minimal solution satisfying the
necessary genericity properties being the unfolding of the double cusp catastrophe
[28, 29], which we write here in the form

U(z1, z2) = z4
1 + z4

2

4
+ k

z2
1z

2
2

2
+ a

z3
1

3
+ b

z2
1z2

2

+ λ
z2

1

2
+ μ

z2
2

2
+ cz1z2 + uz1 + vz2 (29)

with k> −2 and k /= 2. This potential involves eight control parameters. It reduces
along z1 = 0 and along z2 = 0 to a potential of the form (26) associated to the clas-
sical cusp catastrophe—whence the “double cusp catastrophe” denomination. In
what follows we will be interested in the dynamical behaviors and the bifurcations
generated by the partial unfolding in which we set k = b = 0.

The mean-field evolution equations of the two order parameters generated by
the potential in Eq. (29) are [cf. Eq. (19)]

dz1

dt
= −z3

1 − az2
1 − λz1 − cz2 − u

dz2

dt
= −z3

2 − μz2 − cz1 − v (30)

In the limit where the coefficient c is zero these equations are uncoupled. Their
steady-state solutions are thus solutions of two independent cubic equations. De-
pending on the sign of the corresponding discriminant each of these can have one
to three real solutions, the transition between these different regimes being condi-
tioned by the cusp catastrophe. Globally therefore, barring nongeneric situations
where two real solutions merge into a single one (discriminant of one of the cubics
vanishes) the full system can have for given parameter values one, three, or nine
real solutions.

Consider now the case of c being nonzero. Equation (30) become then coupled
and their steady state solutions z1s, z2s satisfy the relations

z2s = −1

c

(
z3

1s + az2
1s + λz1s + u

)
(31a)

− 1

c3

(
z3

1s + az2
1s + λz1s + u

)3

− μ

c

(
z3

1s + az2
1s + λz1s + u

)
+ cz1s + v = 0 (31b)
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The stability of these solutions is determined by the eigenvalues ω of the Jacobian
matrix of (30), which satisfy the characteristic equation

ω2 +
{

3
(
z2

1s + z2
2s

)
+ 2az1s + λ + μ

}
w

+
(

3z2
1s + 2az1s + λ

) (
3z2

2s + μ
)

− c2 = 0 (32)

We notice that Eq. (31b) is of ninth degree. It can thus have up to nine real solutions
continuing those of the uncoupled case, as long as c is sufficiently small. The
situation will change as c is gradually increased. Since there cannot be more than
nine solutions, one expects that the number of solutions will decrease. Furthermore,
degenerate situations where two real solutions were merging for c = 0 should
now give rise to two structurally stable solutions following the splitting of the
degeneracy caused by the “perturbation” terms cz2 and cz1.

Figure 1 depicts the bifurcation diagram of solution z1s [Eq. (31b)] versus pa-
rameter c keeping a, λ, μ, u, and v fixed such that in the limit c = 0 one has nine
real solutions. As can be seen, increasing c leads successively from four simulta-
neously stable solutions (among a total of nine solutions) to three simultaneously
stable solutions (among a total of seven solutions) and finally to two simultane-
ously stable solutions (among a total of three solutions). This is in full agreement

0.5

1

1.5

2

2.5

0 0.1 0.2

z1

c

(3)

(1)

(2)

(N)

(23)

(12)

(13)

Figure 1. Bifurcation diagram of solution z1s of Eq. (31b) versus parameter c for a = −5,
λ = 7.75, μ = −7/4, u = −3.75, and v = 1/2. Full and dashed lines denote stable and unstable states,
respectively. (1) Reference stable state; (3) final stable state; (2) intermediate stable state; (12), (13),
(23) intermediate unstable saddle-type states; (N) unstable node.
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(13)
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Figure 2. Location of steady states of Eq. (30) and of the unstable manifolds in the two-
dimensional phase space (z1, z2) for c = 0.1. Other parameter values as in Fig. 1.

with the qualitative arguments advanced above. Notice that from the standpoint of
phase transition theory four coexisting stable phases is compatible with the Gibbs
phase rule [30] as long as one is dealing with a two-component system, as is the
case of a protein solution.

The location of the steady states in phase space in the range of three simultane-
ously stable states is indicated in Fig. 2, where the unstable manifolds of the other
fixed points are also sketched. We obtain a configuration corresponding exactly
to what was anticipated in the beginning of Section IVB showing clearly the ex-
istence of two a priori competing pathways, of transitions from state 1 to state 3,
1 → (13) → 3 and 1 → (12) → 2 → (23) → 3. This configuration also suggests
associating in the particular case of protein crystallization order parameter z1 to
“concentration” and order parameter −z2 to “structure” or “crystallinity.”

Naturally, the transitions between the stable states present in the bifurcation
diagram of Fig. 1 will be governed by the augmented version of Eq. (30) in which
fluctuations are incorporated, see Eq. (18a):

dz1

dt
= −z3

1 − az2
1 − λz1 − cz2 − u + r1(t)

dz2

dt
= −z3

2 − μz2 − cz1 − v + r2(t) (33)

where the random forces r1, r2 satisfy conditions (18b).
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V. KINETICS OF TRANSITIONS BETWEEN STATES: MAPPING
INTO A DISCRETE MARKOV PROCESS

As stressed in Sections II and III, a case of special interest when studying transitions
between states is the weak noise limit. For a system whose evolution is generated
by a kinetic potential U, in the notation of Eq. (18b) and in the light of the comments
following Eq. (20), this means that ε is much smaller than the various potential
barriers �Uij . The latter are given by the differences of the value U(ij) of U on the
unstable (transition) state (ij) across which the system will leave attraction basin
of stable state i to enter that of stable state j, and of the value U(i) of U on the
reference stable state i.

The mean waiting time τij for a transition from state i across state (ij) is given
by an extension of a classic theory originally elaborated for one-variable systems
by Kramers [2, 3] in the multi (here two-) dimensional case. In what follows we
will be especially interested in the corresponding transition rates kij = τ−1

ij that in
the above specified limits take the form [11, 31]

kij = 1

2π

(
σ

(1)
i σ

(2)
i

)1/2
(

σ+
(ij)

|σ−
(ij)|

)1/2

exp

(
−�Uij

ε

)
(34)

Here σ
(1)
i , σ(2)

i are the eigenvalues of the Hessian of U (or equivalently the solutions
of Eq. (32) on the stable reference state i); and σ±

(ij) stand, respectively, for the
unstable and stable eigenvalue of the Hessian [or equivalently the solutions of Eq.
(32)] evaluated on the unstable (saddle) transition point.

Under the same assumptions the diffusion type of stochastic process described
by Eq. (33) can be mapped into a jump process between the (discrete) stable states,
in which the transition probabilities per unit time are given by Eq. (34), see Refs 2,
26, 27. This leads to the following simple kinetic schemes, it being understood that
state 3 is by far the most stable state and thus plays the role of an absorbing barrier.

A. Three Simultaneously Stable States (Seven-Steady-State Region)

21

3

k21

k12
k23k13

(35)

The pobabilities p1 and p2 to be in the attraction basins of states 1 and 2 satisfy
the rate equations

dp1

dt
= −(k12 + k13)p1 + k21p2

dp2

dt
= k12p1 − (k21 + k23)p2 (36a)
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with

p3 = 1 − p1 − p2 (36b)

The overall transition rates from 1 to 3 will be determined by the eigenvalues
ω± of the transition matrix associated to Eq. (36a),

ω2
± + (k12 + k21 + k23 + k13)ω± + k12k23 + k21k13 + k23k13 = 0

Actually, following a short initial transient the dominant time scale of the transition
will be determined by the smallest (in absolute value) eigenvalue ω−,

ω− = 1

2
{−(k12 + k21 + k23 + k13)

+
√

(k12 + k21 + k23 + k13)2 − 4(k12k23 + k21k13 + k23k13)} (37)

B. Two Simultaneously Stable States (Five-Steady-State Region)

k13
1 3

k′
13

(38)

This configuration arises past the limit point where states (23) and 2 merge in the
bifurcation diagram of Fig. 1. There are two independent pathways leading from 1
to 3, a first past unstable state (13) exactly as in case A and a second past unstable
state (13)′ that is actually a smooth continuation of unstable state (12) of case A.
The probability p1 to be in the attraction basin of state 1 satisfies the equation

dp1

dt
= −(k13 + k′

13)p1 (39a)

with

p3 = 1 − p1 (39b)

The overall transition rate from 1 to 3 is here determined by

|ω| = (k13 + k′
13) (40)
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C. Two Simultaneously Stable States (Three-Steady-State Region)

This configuration arises past the limit point where states (12) and N merge in the
bifurcation diagram of Fig. 1. It corresponds to the simple kinetic scheme

k13
1 3 (41)

with

dp1

dt
= −k13p1 (42a)

p3 = 1 − p1 (42b)

The transition rate is simply determined by

|ω| = k13 (43)

Equations (37), (40), and (43) in conjunction with Eqs. (34), (29), and (31) allow
one to determine the mean transition times τ13 = 1/|ω−|, 1/(k13 + k′

13), and 1/k13
as the parameter c runs from left to right across the bifurcation diagram of Fig. 1.
The result is represented by the curve in full line in Fig. 3. For reference we also
plot (dashed line) the transition times τ

(0)
13 from 1 to 3 ignoring the presence or not

of state 2, evaluated as τ
(0)
13 = k−1

13 . Finally, the crosses in Fig. 3 stand for the result
of a simulation of the full stochastic differential equations (33). As can be seen the
analytic and the simulation results agree remarkably well. Deviations do occur but
they are limited to situations near transition points where the potential barrier is
small, a case for which Eq. (34) needs to be amended as one of the assumptions of
the theory (ε 	 �U) is no longer fulfilled. More importantly, we see that as one
is entering the region of existence of stable state 2 the transition times decrease
dramatically as compared to those that would prevail had the direct path 1 → 3
via unstable state (13) been the only one available. In particular, for values of c

slightly less that 0.1 state 2 turns out to be less stable than state 1 and the barrier
�U23 less than �U13. The transition from 1 to 3 occurs then in an accelerated way
through a “secondary nucleation” mediated by state 2. Remarkably, state 2 has
an accelerating effect even in the vicinity of the transition point where it merges
with unstable state (23). This occurs near x ≈ 0.16 in the bifurcation diagram of
Fig. 1 and may be referred to as “transient intermediate state nucleation,” see also
chapter by J. Lutsko in this volume. These conclusions are in accord with the
results of observations [13], simulations [12], and microscopic approaches [14,
15] according to which the presence of an intermediate dense fluid phase enhances
the nucleation of protein crystals. It also shows that intermediate state-mediated
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Figure 3. Mean transition times τ13 between states 1 and 3 versus parameter c. Full line: analytic
result [Eqs. (34) and (37)]; crosses: result of the simulation of the full stochastic differential equations
(33); dashed line: direct transition from 1 to 3 ignoring the presence of state 2. Noise strength 2ε =
0.025. Number of realizations is 1000 and other parameter values as in Fig. 1.

enhancement is a generic phenomenon, extending beyond the specific case of
protein crystallization.

VI. IRREVERSIBLE THERMODYNAMICS OF
FLUCTUATION-INDUCED TRANSITIONS

According to the setting adopted throughout this chapter, the transition between
the initial state 1 and the final state 3 (direct or indirect via state 2) is a transient
irreversible process: starting from state 1 with probability equal to one the state
is gradually depleted and eventually state 3 invades the entire system, owing to
its higher stability (U(3) 	 U(1)) in conjunction with the weak noise limit ε <

�U13 	 �U31. In this section, we analyze this transition from the standpoint of
irreversible thermodynamics by evaluating the entropy production [8, 9] associated
to the different scenarios considered in the previous sections.

As a reference we start with the direct transition scenario (cf. Section VC)

1
k13�
k31

3 (44)
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where we introduce a small backward transition rate (k31 	 k13) in order to avoid
the complication arising from the presence of purely irreversible steps. We also
adopt a “chemical” interpretation where the variables associated to 1 and 3 are the
mass fractions x and s of the material in these states [see also comment prior to Eq.
(11)]. The rate equation associated to scheme (44) is then [to be compared with
Eq. (42)]

dx

dt
= −k13x + k31s (45a)

with

s = 1 − x (45b)

The solutions of Eqs. (45) corresponding to the initial conditions x(0) = 1,
s(0) = 0 read

x(t) = k′
1

k1 + k′
1

+ k1

k1 + k′
1

exp[−(k1 + k′
1)t]

s(t) = k1

k1 + k′
1

− k1

k1 + k′
1

exp[−(k1 + k′
1)t] (46)

The instantaneous entropy production (normalized by the gas constant) associated
to this “direct” transformation is

σd(t) = (k13x − k31s) ln
k13x

k31s

where for simplicity we adopted the assumption of an ideal mixture. Integrating
this expression from time t = 0 to t = ∞ and using Eq. (46) one obtains the total
dissipation undergone by the system to complete the transition,

�d =
∫ ∞

0
dtσd(t) = ln

k13 + k31

k31
= ln(Keq + 1) (47)

where Keq = k13/k31 is the equilibrium constant of the “reaction” in Eq. (44). In
the limit k31 	 k13 this expression reduces to ln Keq, that is, to the standard free
energy change associated to the reaction.

We next evaluate the dissipation in the “secondary nucleation” scenario, where
the 1 to 3 transition occurs via state 2. The corresponding scheme, rate equations
and entropy production are (compare with Section VA)

1
k12�
k21

2
k23�
k32

3 (48)
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dx

dt
= −k12x + k21y

dy

dt
= k12x − (k21 + k23)y + k32s

s = 1 − x − y (49)

σ = (k12x − k21y) ln
k12x

k21y
+ (k23y − k32s) ln

k23y

k32s

Integrating again σ from 0 to ∞ we obtain for x(0) = 1 and in the limit of small k21,
k32 the following expression for the total dissipation during the transformation:

� = �1 + �2 (50a)

with

�1 = ln
k12

k21
+ ln

k23

k32
(50b)

and

�2 = −k12

∫ ∞

0
dt exp[−k12t] ln

k12(1 − exp[−(k23 − k12)t])

k23 − k12
+ k12k23

k12 − k23

×
∫ ∞

0
dt(exp[−k12t] − exp[−k23t])

× ln
k23 − k12 − k23 exp[−k12t] + k12 exp[−k23t]

k12(exp[−k12t] − exp[−k23t])
(50c)

Here part �1 corresponds to the contribution of the standard part of the chem-
ical potentials in the entropy production and part �2 to the contribution of the
composition-dependent part. Clearly,

�1 = ln
k12k23

k21k32
= ln Keq

where Keq was already introduced in Eq. (47). In the limit of small k32, �1 becomes
thus identical to �d . On the other hand, as it turns out �2 = 0 for all values of the
ratio k23/k12. We therefore conclude that

� = �d (51)

that is, at least in the limits considered the total dissipation associated to transition
from 1 to 3 is independent of whether the transition is direct or occurs via the
intermediate state 2. This is at variance with some results reported in the literature
in a somewhat different context [32], where the presence of intermediate steps
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seems to lower the entropy production. What it happening here is, rather, that the
contribution to dissipation due to the distance from equilibrium of the ratio x/y

counteracts exactly that due to the distance from equilibrium of the ratio y/s. We
emphasize that nonequilibrium is manifested here as a transient phenomenon, as
eventually the whole system is invaded with probability one by the single final
state 3, whatever the pathway for reaching this state might have been.

VII. CONCLUSIONS

In this chapter we outlined a general approach for analyzing the transitions between
simultaneously stable steady states in the presence of thermodynamic or externally
driven fluctuations. Emphasis was placed on transitions between two given states
taking place under conditions allowing for the presence of a third one, which could
be metastable with respect to the other states or even appear as a transient in the
vicinity of criticalities of certain kinds. Conditions were defined under which the
presence of such “intermediate” states can enhance the rate of transitions between
the two “reference” states. We have shown that these mechanisms are likely to
be generic and underlie a wide range of phenomena including the nucleation of
crystalline materials from a liquid mixture in the presence of a second liquid phase
as observed, in particular, in the crystallization of globular proteins or colloids.

Throughout the analysis we considered a closed system evolving eventually
toward the state of thermodynamic equilibrium and satisfying the condition of
detailed balance, entailing a vanishing probability flux in each phase space point
and the proportionality between the Onsager matrix of kinetic coefficients and
the diffusion matrix of the fluctuations. Under the additional condition that these
matrices are state independent we showed that the evolution of the state variables
could be mapped into a form deriving from a kinetic potential. We have constructed
generic potentials compatible with various nucleation scenarios, some of which
are identical to experimentally observed scenarios in the context of crystallization
of globular proteins or colloids, see Ref. 13 and the Chapters by Vekilov and by
Dinsmore et al. in this volume. These potentials provide also valuable information
on the nature of the free energy surface of the system concerned which, despite its
complex dependence on microscopic-level properties, is ultimately topologically
equivalent to them.

More than one century ago, Wilhelm Ostwald proposed a step rule to explain
certain observations on the formation of crystalline materials from the melt [33].
According to this rule, typically it is not the most stable form of the material but
the least stable one that crystallizes first. The status of this rule in the light of
present day knowledge on nucleation has been discussed recently in the literature
[34, 35]. Our analysis shows that Ostwald’s step rule is a consequence of a general
underlying mechanism: the transition from an initial state (a liquid phase) to a final
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one (a stable crystalline phase) may occur preferably via a pathway involving an
intermediate state (a second, metastable liquid phase), possessing the necessary
properties (e.g., high concentration of a key substance) for the appearance and
growth of nuclei possessing the structure of the final phase. The analysis also
shows that this is only one out of several scenarios and provides information on
its realizability depending on the values of the parameters present in the problem.

Transitions between states are a generic phenomenon observed in a multitude
of systems of interest in physical, life, engineering, and environmental sciences
[36]. It constitutes one of the principal signatures of the dynamics of complex
systems as it endows them with the ability to evolve, to choose, and to adapt and
extends in this respect beyond the examples of protein or colloid crystallization
and similar phase transition phenomena. Viewed in all its generality it constitutes
a largely open problem likely to witness important developments in the future.

A first direction would be to account for the presence of several intermediate
states as it may be the case, for instance, in transitions between different confor-
mations of proteins and other biomolecules [37].

From the standpoint of stochastic processes and thermodynamics an interest-
ing extension would be to assess whether some of our conclusions subsist when
the condition of detailed balance breaks down. There are two broadly different
mechanisms at the origin of such a breakdown.

(i) The evolution vector v in Eq. (1) contains an additional contribution beyond
the one involving the thermodynamic or the kinetic potential. Typically,
this will reflect the presence of constraints in, for instance, the form of
concentration or temperature gradients, that do not allow the system to
reach the state of equilibrium as provided by the extremum of the potential,
even in the long time limit.

(ii) The diffusion matrix Dij of the fluctuations accounts for the fact that the
medium in which the system of interest is embedded is itself maintained
out of equilibrium—for instance, by an external time-periodic driving.

In both cases, while Eqs. (6) and (7) will remain valid Eqs. (18) will break down
and much of the analysis of Sections III–V will need to be extended. In particular,
the exit from the attraction basin of a stable state need no longer follow a path
across an intermediate unstable state of the saddle point type.

The influence of intermediate states on the kinetics of the transitions between
two reference states can also be viewed as a new mechanism of control and opti-
mization of the rate of production of the “material” associated to the final state. In
this perspective, it would be of interest to study its interference with other known
control mechanisms. Most prominent among them is stochastic resonance [38,
39], whereby the passage over a potential barrier is facilitated by the presence of a
weak external periodic forcing. In the context of phase transitions and in particular
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of protein crystallization a coupling of nucleation kinetics with an external field
is expected to exist and play a nontrivial role in view of the presence of charged
groups in the individual molecules [26]. Ordinarily, studies in stochastic resonance
focus on the case of two simultaneously stable states separated by an unstable state
of the saddle point type. Recently, an extension to the case of several stable states
in the presence of a spatially periodic potential has been reported [40]. It would
undoubtedly be interesting to adapt this work to the type of potentials considered
in this chapter and assess the additional effect of the external periodic forcing in
different parts of the bifurcation diagram of Fig. 1.

Finally, future developments in this area should aim at the elucidation of the
microscopic basis of the mesoscopic-level approach developed in this chapter. This
should clarify the limits of validity of some of the assumptions adopted, such as
the use of spatially lumped variables and the independence of matrices L and
D on the state variables {xi} in Eqs. (14) and onward, and provide the basis for
appropriate refinements and generalizations.
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