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Abstract This chapter examines the application of intraoperatively acquired
sparse data to model-assisted image-guided liver surgery. The results suggest
intraoperative deformation correction from computer models and sparse data to be
considerable. This is an important step in the translation of image-guided surgery
techniques to the abdomen. Moreover, the algorithms explored are a cost-effective
solution that potentially improves the application of surgery, is widely adoptable,
and is relatively easy to integrate into current surgical workflow practices. While
continued investigation towards improvement is needed, these do represent
beneficial advances that can affect the clinical application of surgery today.

1 Introduction

Worldwide, hepatocellular carcinoma (HCC) is the seventh most prevalent cancer,
and is third among cancer-related deaths [113]. With respect to demographics,
80% of all HCCs occur in low-resource countries with the number of cases being
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significantly larger as a percentage of liver cancers than in developed countries.
In developed countries, using the United States as an example, metastatic liver
tumors are far more frequent than HCC. Depending on the treatment center,
metastatic liver tumors make up approximately 72% of malignant tumors in the
liver with approximately 69% of metastases deriving from colorectal carcinoma
(CRC) [2, 13]. Considering that more than 140,000 new cases of colorectal cancer
will be diagnosed in a typical year [2], with approximately 60% [13] developing
metastatic liver disease, the impact on the healthcare of developed countries is
considerable. Globally, the numbers of liver cancers are rising considerably and
the healthcare concerns are growing accordingly. For example, when comparing
the number of new liver cancers and deaths in the year of 2002 to that of the year
of 2008, an approximate 19.5% increase in new liver cancers and 16.4% increase
in deaths has taken place [113]. These sobering numbers associated with primary
and metastatic liver cancer are staggering and when considering their growth in the
past decade, the ability to manage and treat liver cancer has worldwide impact.

1.1 Standard Treatment

In light of this growing health concern, resection is the only option that is often
performed with curative intent. Unfortunately, the resection of liver tumors remains
a specialized and highly complex procedure that requires consideration of many
variables (e.g. vascular control, distribution of tumors within the liver, and adequate
residual liver volume). While risky and resource intensive, hepatic resection is now
commonly performed for an increasing number of indications. The excellent five
year survival rate (the range is 44–50% with metastatic colorectal tumors, the most
common [31] in the U.S.) make it the gold standard approach [50] to treating selected
patients with primary and metastatic liver cancer [86], despite its complexity.

Interestingly, investigators are beginning to encourage the initial use of other
treatments, usually systemic chemotherapy, not as curative measures but to facilitate
surgical therapy. For example, in the case of inoperable colorectal liver metastases,
Garcea et al. state that ‘the aim of treatment should be down-staging of metastases to
achieve resectability’ [40]. While aggressive surgery is an effective primary treat-
ment strategy, it also risks the result of injury to the liver parenchyma, which can
impair normal regeneration and put patients at risk for post-operative liver failure
[84]. Despite this, the literature advocates more aggressive hepatic resections
[31, 55, 86]. In one study specifically grouping subjects according to extent of
resection, five year survival rates rose from 38 to 45% with no increase in compli-
cation rate [86]. Unfortunately, the patient population eligible for resective therapy
is limited. Based on one study involving 2400 subjects presenting with metastatic
CRC, only 20% of patients were eligible for surgical resection [55] (these numbers
do not reflect the 24,000 patients with primary intrahepatic malignant tumors [2]).
This discrepancy may result from many factors, but is likely influenced by the
magnitude and complexity of hepatic resections as they are currently performed.
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1.2 Clinical Barriers

Briefly described here, in an open hepatic resection procedure, a large incision
through the abdomen is created to expose the anterior surface of the liver. Either
wedge or anatomical liver resections are performed to remove one or more hepatic
tumors. In wedge resections, the tumor and a 2–3 cm surrounding region of the liver
is removed, while in anatomical resection, one or more segments of the liver is
removed, based on the vascular anatomy. Each of the eight segments of the liver is
supplied by its own portal venous and hepatic arterial pedicle [41]. A right lobectomy
in which the portal and hepatic vein was entwined with the tumor is shown in Fig. 1.

Typically, a segmental hepatectomy, i.e. segmentectomy (separation along seg-
ment-based boundaries), is preferred to lobectomies or non-anatomic wedge resec-
tions. Segmentectomies preserve more tissue and are identifiable by liver color
changes resulting from vascular in-flow occlusion. In the case of wedge resections,
while they may preserve tissue, traction and bleeding can compromise the final
resection margin which has dramatic effects on outcome [31]. More specifically, five
year survival rates in patients with negative margins of less than 1 cm range from 18 to
26%, which is significantly worse than the 44 to 50% survival rate seen in patients with
negative margins greater than 1 cm. In further comparing wedge versus segmental
resection, in one study with over 260 patients, the rate of positive margins present
following wedge removal was eight times higher than with segmentectomy [31].

The choice seems clear; however, as more liver is removed in a multi-segment
or lobectomy procedure, complication rates increase. While liver resection has
shown promising survival rates and a perioperative mortality rate of less than 5%,
a significant increase in postoperative morbidity due to hepatic dysfunction and
infection has also been reported, even by specialized centers [51, 65]. In one recent
study, postoperative complications doubled when comparing major to minor
hepatectomy procedures [16]. In a related study of over 100 patients that studied

Fig. 1 A patient undergoing a right lobectomy: the liver (left) prior to resection, (middle) after
resection, and the resected lobe. Note the white towel placed in the cavity, demarcating the
location of the lobe prior to resection (middle) and the white tumor visible in the resected mass
(right). In this case, the right hepatic artery extends centrally into the mass and touches the right
hepatic vein and right portal vein
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hepatic dysfunction and infection after major liver surgery, Schindl et al. [99] used
a regression analysis to demonstrate that dysfunction increases significantly when
the relative residual liver volume (RLV) was below 26.6%. The authors believe
that calculating a specific percentage of RLV before major liver surgery from a
virtual resection on segmented computed tomography (CT) scans provided useful
information for planning hepatic surgery.

It is clear that a detailed understanding of the liver anatomy and its geometry is
used when conducting these complex procedures. With the realization that five
year survival rates can double with well executed procedures, understanding the
relationship between anatomic resection boundaries and tumors is imperative.
However, aggressiveness must be tempered with the realization that unnecessary
resection elevates complication rates. Going further, the recognition that preop-
erative plans estimating RLV based on resection information are valuable when
considering that the postoperative complication rate is important for successful
surgical outcome.

1.3 Surgical Guidance

With this backdrop, the translation of preoperative surgical planning coupled with
accurate image-guided surgical therapy for open abdominal procedures would
undoubtedly be a valuable tool for breaking down these surgical barriers and
increasing the possibility of favorable outcomes for more patients undergoing
this aggressive and complex procedure. Currently, there is active research and
development in the area commonly referred to as image-guided liver surgery.
For example, augmented reality systems are being developed that merge the real
surgical field containing the liver within a virtual scene [45, 83, 107]. These works
detail several hurdles to overcome, including the development of an accurate
registration technique to map virtual to real space, one of the most difficult steps in
image-guided surgery. Several groups are working on registration problems
associated with liver surgery to include methods to determine the deformation and
respiration movement of the liver during surgery which is critical for accurate
mapping between physical and image space [11, 52, 81, 111]. Other laboratories
are looking at robotic applications towards liver ablation and radiosurgery thera-
pies [1, 89, 95, 104]. In addition, the value of intraoperative ultrasound has been
recognized and several groups have been developing techniques to map preoper-
atively acquired liver magnetic resonance (MR) and CT images to ultrasound
images [6, 7, 12, 23].

While strides in translating image-guidance technology to the abdomen have
been made, there are still considerable challenges. In quantitative studies using
intraoperative computed tomography, the presence of confounding deformations
has been shown to compromise tradition organ-based image-guided liver navi-
gation [47]. The work by Lange et al. [60–62] is looking at a CT-to-ultrasound
(US) vessel based non-rigid registration system for providing the link between
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image and physical space within the presence of deformation. While the three
reported cases performed well, the likelihood of this approach working within the
confines of OR workflow is limited. More specifically, while significant structures
such as the tumor or the posterior side of the liver are easily recognized intra-
operatively, distinct vasculature landmarks will likely take significantly longer.
The automatic reconstruction of 3D objects as well as automatic segmentation in
ultrasound is still a very difficult task. In addition, their method requires the
identification of as many bifurcations as possible in the spatial neighborhood of the
tumor using tracked ultrasound and then the determination of corresponding
bifurcations within the CT. While the subsurface information would be valuable
for non-rigid correction, the likelihood of misidentification in this highly vascu-
larized organ is high, and the encumbrance could challenge adoption. Others have
pursued intraoperative imaging solutions within primarily the ultrasound domain
with more limited developments within the MR environment [7, 24, 28, 32, 44, 47,
57, 69, 73, 80, 108]. Another possibility is to acquire information regarding
the exposed surfaces (either in open or minimally invasive) and then couple
this acquired data to computer models to constrain volumetric deformation fields
[19, 20, 26, 33]. This approach is highly robust with respect to surgical workflow
as it can augment existing guidance systems quite easily.

Regardless of realization, there is ample evidence that improved visualization as
provided by image-guidance for abdominal procedures is critical. Given the wealth
of data taken preoperatively, the ability to align that data with the deforming organ
intraoperatively is a barrier that needs to be overcome. Organ presentation, whether
open or laparoscopic, requires that intraoperative collected data be used to register
all preoperative data. Each solution proposed represents a balance between accu-
racy and utility and serves as constraints to data acquisition and guidance procedure
execution. These constraints are the foundation of the sparse data extrapolation
problem. More specifically, the problem of extrapolating cost-effective relevant
patient information from distinctly finite or sparse data while balancing the com-
peting goals between workflow and engineering design, and between application
and accuracy is the sparse data extrapolation problem [77].

1.4 Compensating for Intraoperative Deformation

While intraoperative volumetric imaging as provided by magnetic resonance
[10, 85] or X-ray computed tomography [47] are compelling technologies for the
monitoring of intraoperative changes to soft-tissue, it does not represent a solution
that is economically scalable to many medical centers, is very difficult to adapt to
all clinical presentations for surgery, and incurs ionizing radiation in the latter.
As described earlier, open abdominal surgery requires a level of patient access that
is somewhat incompatible with these technologies. In addition, while providing
differing degrees of soft-tissue contrast, these modalities still serve as primarily
a tool to monitor anatomical changes only. The wealth of preoperative data
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(e.g. single proton emission computed tomography, positron emitted tomography,
diffusion MR imaging, MR/CT angiographic data, functional MR, MR elastog-
raphy, etc.) cannot possibly be intraoperatively acquired for update during surgery,
i.e. the ability to leverage the considerable battery of imaging techniques provided
by MR and CT technology largely remains untapped intraoperatively due to the
constraints of the OR environment. As a result, the need to align preoperative data
to the intraoperative patient state is a persistent need.

While non-rigid image registration algorithms for image-to-image alignment
abound in the literature to include numerous texts, the registration of preoperative
to the intraoperative environment is more limited due to the extensive changes in
the target domain [96]. These approaches predominantly fall into two categories
data-rich, and sparse-data frameworks. An example of the former is that demon-
strated by Clatz et al. [25] where a biomechanical model is used to constrain the
deformation field produced by an iterative regularized least squares minimization
process driven by a block-matching framework. The approach is driven by data-
rich intraoperative MR and in a six patient preliminary study demonstrated an
ability to correct for 50–90% of deformations with an average correction of
approximately 73% across the cases. This work was later used to register func-
tional and diffusion tensor magnetic resonance imaging to the intraoperative state
[3] as well as further developments towards the resection environment [110]. This
work is a good example of the use of intraoperative imaging as a solution for
intraoperative correction. Interestingly, the second approach, whereby computer
models are driven by sparsely available intraoperative data, has not shown a great
deal of difference in results from the data-rich presentation. In recent reports,
methods driven by ultrasound partial volume, stereo-pair microscope surface data,
and/or organ surface laser range scan data have produced similar fidelity [22, 34,
46, 53, 70, 106, 109]. The reason for this non-intuitive similarity is due to the
extent of change in a resection environment, i.e. there is such a significant change
in the acquired images from the pre- to the intraoperative state due to tissue
removal that it significantly challenges the data-rich realization. While interesting,
both of these examples represent work within the neurosurgical environment
which is where deformation correction needs began for image-guided surgery.

Within abdominal applications, some work has been forthcoming but the
guidance environment is very different from its neurosurgical counterpart. The
setting for image-guided liver surgery holds many unique challenges. For example,
organ presentation often involves separation from the surrounding ligamenture and
far-more mobilization. Once presented, the organ is then stabilized, i.e. packed, in
a state which often produces organ deformation when compared to its preoperative
CT images. Often, these actions are taken all before one can acquire data regarding
shape change. In addition, diaphragmatic movement can cause shift in the organ
that typically cause large semi-rigid translations of the organ (can usually be
minimized with apneic periods). While these are considerable obstacles, fortu-
nately, the robust physiological constitution of the liver allows for significantly
larger resection margins (typically 1 cm into healthy tissue) which does reduce the
accuracy requirements for successful use of guidance technology.
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Similar to the neurosurgical environment, while some intraoperative imaging
solutions have been proposed [5, 47, 61, 73, 74], the workflow requirements have
inhibited much of the tomographic work, and with respect to ultrasound imaging,
while amenable to the workflow, it too has struggled with respect to the integration
of preoperative imaging data and its use in intraoperative monitoring roles.

In this chapter, work towards a deformation correction framework will be
presented and some preliminary results will be provided. The solutions presented
typically have an implementation that reflects Fig. 2. The preoperative workflow
reflects imaging, segmentation and data feature extraction, and then model
building activities. Within the intraoperative environment, data regarding the
target of interest is acquired, a rigid alignment process is executed, that align-
ment is then adjusted non-rigidly, and an update to the guidance system is
provided.

2 Preoperative Tasks

A crucial step in any image-guided surgery application is the separation of the
anatomy of interest from the surrounding tissues such that a three-dimensional
patient-specific model can be constructed. The surgeon uses this model to create a
preoperative plan in which the desired resection lines are defined and executed in
the operating room. An accurate preoperative model is also necessary for defining
boundary conditions in the finite-element model.

Fig. 2 Typical workflow for intraoperative deformation correction
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2.1 Image Segmentation and Planning

In CT images of the liver, the segmentation process is complicated because the
intensity values in tumors and surrounding organs are similar to the liver which
makes discerning the extents of the organ difficult [112]. In an elaborate study,
across several research groups, Heimann et al. [112] evaluated the efficacy of
semi-automatic and automatic liver segmentation methods on a series of clinical
data sets. The methods included statistical shape models, atlas registration, level-
sets, graph-cuts, and rule-based systems. The results showed that in general,
methods that use some interaction have more consistent segmentations.

Scout Liver (Pathfinder Therapeutics Inc., Nashville, TN, USA), MeVisLab
(MeVis Medical Solutions, Breman, Germany), Myrian (Intrasense, Montpellier,
France), and mint Liver (Mint Medical, Heidelberg, Germany) are amongst the
handful of commercially available planners that provide segmentation of structures
of interest in the liver. In addition to being an end-user application, MeVisLab1 is
also a closed source rapid application development tool that facilitates integration
of image processing algorithms. 3D Slicer,2 Seg3D,3 Caret,4 and ITK-SNAP5 are
open-source applications which offer manual and semi-automatic segmentation
tools. Osirix6 and AMIRA7 are closed source applications with integrated semi-
automatic segmentation and visualization tools.

The segmentation method used by Scout Liver8 is based on a level set approach
proposed by Dawant et al. [30, 49]. The method takes 5–15 min to run, and then
up to 15 min of user interaction after the segmentation. This method has been
evaluated at the Catholic University of Louvain in Belgium. The study aimed at
comparing the accuracy and repeatability of the method with those of manual
segmentation for determining liver volume from MR images of living liver
transplant donors. The key findings were that (1) mean interaction time was
reduced from 25 min with manual segmentation to 5 min for the semi-automatic
method; (2) differences between the actual volume and the estimated volume
ranged from �223 to +123 mL for manual segmentation and from �124 to +86
mL with the method; (3) semi-automatic segmentation improved organ weight
estimation in 15 out of 18 cases; and, (4) inter- and intraobserver repeatability
(reliability) was improved using the semi-automatic method [49]. Figure 3 shows a
screen capture of the Scout Liver planning system used in a clinical evaluation.

1 http://www.mevislab.de/
2 http://www.slicer.org/
3 http://www.sci.utah.edu/cibc/software
4 http://brainvis.wustl.edu/wiki/index.php/Main_Page
5 http://www.itksnap.org/
6 http://www.osirix-viewer.com/
7 http://www.amira.com/
8 http://www.pathsurg.com/
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MeVisLab is a commercial system which consists of a set of tools for preop-
erative planning that allows a surgeon to explore the relationship between
the intrahepatic vessels and tumors in a 3D surface representation of the liver
[37, 59, 101]. Liver vessels are segmented from CT volumes using a refined region
growing algorithm and then visualized by fitting graphics primitives along the
skeleton lines. The user can choose arbitrary viewing directions, colors and
transparency values and design individual visualizations. Given this wealth of 3D
information, the user can then attempt resection strategies to estimate the conse-
quences of a surgical intervention. In a study by Li et al. [66], a 94.6% overlap of
the liver segmented with Scout and MeVisLab was found.

Myrian XP Liver9 is a pre-surgical planner for measuring liver volume,
segmentation of hepatic and portal veins, parenchyma and lesions, and planning of
surgical cutting planes. The software has been used for segmenting adrenal glands
[87], calculating liver resection volume [92], and lung volume measurements [36];
however, the specifics of the segmentation algorithm are not reported. Mint
Liver10 is a surgical planner built on the open-source Medical Imaging Toolkit in
collaboration with the German Cancer Research Center (Heidelberg, Germany).

Several studies have shown that using three-dimensional models to plan liver
surgery improves the efficiency and accuracy of resection margins [42, 56, 58, 59, 94].
The preoperative estimation of partial and total liver volumes is necessary for
assessing the risk of organ failure [94]. In addition to identifying and segmenting the

Fig. 3 Scout Liver preoperative planning software (Pathfinder Therapeutics Inc.) in use at
Memorial Sloan-Kettering Cancer Center. (left) A green spline demarcates the liver boundary.
(right) Preoperative plan of the liver including the tumor (dark gray), ablation path (red), portal
vein (magenta), and hepatic vein (blue)

9 http://www.intrasense.fr/pages/eng/media/Myrian_XPLiver.pdf
10 http://www.mint-medical.de/productssolutions/mintliver/mintliver/
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liver and tumor tissue, planners also segment the liver vasculature and construct
three-dimensional models of the hepatic and portal vessel structures [42, 101].

Some commercial systems such as Scout Liver, MeVisLab, and mint Liver also
let the surgeon delineate resection lines and ablation paths on three-dimensional
liver models. These provide useful information such as functional liver volume,
remnant liver volume (volume of liver remaining after resection) and also help the
surgeon estimate the consequences of surgical intervention by avoiding vessels.
As discussed in the previous section, the liver deforms during surgery; hence, these
preoperative plans should be used with caution in the operating room as the
intraoperative presentation of the organ is significantly different to the preoperative
models and images.

2.2 Surface Model Smoothing and Parameterization

While the above references speak to the process of segmentation, and the visu-
alization of structure for image-guided surgery purposes, it does not really address
the next step in model-based correction frameworks, i.e. the generation of the
computation model for execution of finite element techniques. Using the seg-
mented images, 3D surfaces can be tessellated using methods such as the
Marching Cubes algorithm [68] which can generate a fitted liver surface. Once
complete, a smoothed parametric representation of the marching cubes surface can
be generated using tools such as the FastRBF Toolbox (Farfield Technologies,
Christchurch, New Zealand). This surface will consist of connected triangles and
can be used for image-to-physical surface registration. Once complete, a tetrahe-
dral mesh generator [105] is to generate the 3D volumetric tetrahedral mesh which
is required by the finite-element model. In the realization shown here, the domains
were represented by elastic systems with tetrahedral elements. While these may
not be the optimal element or even model choice for liver, we have found that with
displacement-based boundary conditions and elastic properties that are moderately
incompressible (i.e. Poisson’s ratio of 0.45), the results add value to guidance
systems and are tractable for real-time guidance applications.

3 Intraoperative Tasks

The strategy of augmenting existing image guidance with deformation correction
(as depicted in Fig. 2) relies on acquiring sparse intraoperative data through sur-
face or subsurface characterization which is described in Sect. 3.1. In the paradigm
of model-assisted image-guided surgery described here, these acquisition methods
would be low cost (with less resolution), thus facilitating wide-spread adoption.
For completeness, intraoperative CT and MR are addressed in the context of liver
surgery; however, there is little need to provide guidance system updates from
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finite-element models in the presence of rich intraoperative images. The alignment
(or registration) of intraoperative data with preoperative images remains a chal-
lenging task in image-guided surgery. Section 3.2 compares registration methods
specifically developed for the unique challenges of liver surgery and Sect. 3.3
describes deformation correction provided by finite-element models. Section 3.4
details the final task in model-assisted image-guided surgery, to propagate the
deformation correction, computed by the model, to the guidance display for
clinical interrogation.

3.1 Surface and Subsurface Characterization

Three low-cost acquisition methods used for initializing finite element models are
described: hand swabbing, laser range scanning, and conoscopic holography.
Ultrasound, intraoperative CT and MR, and Fluoroscopy are means of acquiring
subsurface information.

3.1.1 Hand Swabbing

Swabbing the anatomy with a tracked stylus is a method of acquiring surface
information intraoperatively. The advantages of this technique are that the surgeon
has familiarity with the tool, line-of-sight of the stylus tip is not necessary, and the
tool already exists in the image-guided surgery operative setup so additional
equipment is unnecessary. In delicate structures such as the brain, it is impossible
to directly touch the soft tissue. Collecting patient data in this way makes sense for
anatomical structures that do not deform such as bone [72] and for initializing
registrations involving the liver [26]. However, the fidelity of these registrations is
compromised due to displacements in the soft tissue from contact force with the
stylus or from the stylus losing contact with the surface. The deleterious effects of
hand swabbing on registration accuracy have been studied [21, 75]. Two examples
of hand swabbing are shown in Fig. 4. In both examples, point data acquired by
hand swabbing a rubber liver phantom was registered to a 3D model generated
from preoperative CT data. The target registration error (TRE) was computed
for each point in the preoperative model compared to a ground truth estimate.
Indeed, it is straight forward to generate good and bad examples of hand swabbing
acquisition on the same anatomy.

3.1.2 Laser Range Scanning

Laser range scanning (LRS) uses the principle of triangulation to determine the
position of three-dimensional points in space [4]. A laser light is emitted from the
scanner and strikes the surface. The reflected light is received by a charge-coupled
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device (CCD) camera, and based on the reflected light and the known trigono-
metric relationship between the laser emitter and the camera, the three-dimen-
sional location can be computed. The CCD also captures a standard digital image
that can be used to texture map the point cloud. The texture information provides
valuable information for segmenting the organ as well as for finding salient fea-
tures on the organ for the purposes of image-to-physical registration [102].
Figure 5 is an example of an LRS acquired intraoperatively of a patient under-
going hepatectomy. The field of view of the LRS, segmented geometric point
cloud, and textured point cloud is shown.

By attaching optical tracking targets, the position and orientation of the scanner
with respect to the patient can be determined such that all scans are in the same
coordinate space which facilitates quantifying deformation from scan to scan.
In laboratory studies of the LRS designed in conjunction with Pathfinder Thera-
peutics Inc. (Nashville, TN, USA), the geometric scanner accuracy mean error is
0:37� 0:40 mm [93]. When the LRS is tracked without wires (passive optical
tracking) from different locations, the mean error is 1:49� 0:50 mm. The tracking
accuracy of the previous generations of LRS was found to be 1:0� 0:5 mm [102]
and 1:4� 0:8 mm [21] with wires (active optical tracking).

3.1.3 Conoscopic Holography

Conoscopic holography is a distance measurement technique originally reported
by Sirat and Psaltis [103] based on analyzing constructive and destructive inter-
ference patterns between emitted and reflected laser light. The conoprobe emits a
cone of laser light (solid angle) rather than relying on the less accurate method of
triangulation used by laser-range scanning. Though conoscopic holography
has been traditionally used for measuring distances in industrial quality control,
recent techniques have been developed for non-contact surface acquisition that
can be deployed through a laparoscopic port [64]. In this preliminary study, the

Fig. 4 The effect of hand swabbing liver phantom surfaces on registration error for two data
collections. In this example, TRE is computed for each element in the preoperative mesh and
reported in millimeters
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Conoprobe Mark 3 (Optimet Metrology Ltd., Jerusalem, Israel) was combined
with optical tracking technology such that a three-dimensional surface description
of anatomy was obtained. The conoprobe reports the distance and direction of the
laser source to the laser point on the surface. A calibration procedure establishes
the transformation of the conoprobe points into the coordinate system of the
optical tracking system. Figure 6 shows the conoprobe and conoprobe points
rendered on the surface of a liver phantom. In this example, the tracked conoprobe
is registered in real time, as data is collected from the conoprobe.

In a laboratory study of the tracked conoprobe, the observed root-mean-squared
error was 0:58 mm: In another study, the effects of contact and non-contact surface
acquisition techniques on TRE were investigated for soft tissue. A comparison of
image-to-physical registrations using three different methods of organ spatial
digitization: (1) a tracked laser range scanner, (2) a tracked pointer, and (3) a
tracked conoprobe demonstrated that the conoprobe was more accurate with
respect to TRE than either the LRS or tracked pointer. A comparison of a the three
acquisition methods with respect to TRE are shown in Fig. 7.

3.1.4 Ultrasound

Ultrasound is a valuable intraoperative imaging modality due to its low cost,
pervasive use in operating rooms, and safety; however, in general, ultrasound
images are noisy due to speckle and geometric distortion and can be difficult to
interpret. It can be challenging to acquire high-resolution ultrasound images due to
patient positioning, surgical access, and interference artifacts from surgical tools in
the surgical field. Evidence suggests that ultrasound is a viable tool in liver surgery
because vessel and tumor boundaries are visible in this imaging modality in both
laparoscopic [54] and open surgeries [9]. Ultrasound is routinely used to locate
tumors and guide liver resection as well as ablative technology [47]. The efficacy
of image-guided liver surgery techniques using ultrasound has been studied for

Fig. 5 (left) Digital image taken of the liver anatomy from the range scanner; (middle) point
cloud acquired from laser-range scanner; and (right) point cloud with addition of texture
information from laser-range scanner
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phantom [6, 82], porcine [48], and human [7] images. Lange et al. [60–62] pro-
posed a CT to US vessel-based non-rigid registration system where corresponding
landmarks (typically vessel bifurcations) are identified. Automatic vessel seg-
mentation has not been achieved in US [61] because of the challenge of localizing
the extents of vasculamenture in images which is illustrated in Fig. 8.

The improved resolution of ultrasound images coupled with the low cost of the
systems make ultrasound a good candidate for providing displacements to finite-
elements models and establishing boundary conditions. At the time of writing,
existing literature does not address this specific problem for the liver; however,
techniques have been proposed for the neurosurgical domain.

Fig. 7 A comparison of TREs computed for each element in the preoperative mesh for one (left)
hand swabbing, (middle) LRS, and conoprobe acquisition. TRE increases from blue to white to
red

Fig. 6 (left) Conoprobe Mark 3 with NDI passive tracking markers. (right) Conoprobe points
(rendered in red) collected on the surface of a liver phantom and registered to a preoperative
model from CT
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3.1.5 Intraoperative CT and MR

Interventional CT and MR are imaging modalities used for compensating for
intraoperative soft tissue deformation. Both require a dedicated imaging device
and a radiologist present for interpreting images [18]. As such, these modalities
are not economically scalable to many medical centers. Non-metallic tools are
required when working in the magnetic field of most MR units and the patient and
surgical staff are exposed to ionizing radiation in the case of CT. Soft tissue
deformation during liver resection has been documented with CT and has dem-
onstrated significant effects [47]. Intraoperative MR has been studied with respect
to ablative techniques [73, 74].

3.1.6 Fluoroscopy

Fluoroscopy is one of the most widely used interventional imaging modalities and
as such could provide meaningful initial intraoperative displacements for use in
finite-element modeling. Fluoroscopic images provide poor tissue contrast, subject
the patient and surgical staff to ionizing radiation, and require 3D reconstruction.
Newer 3D fluoroscopic systems are capable of reconstructing 3D images with
reasonable speed and accuracy.

3.2 Registration

Integral to the display of preoperative patient images superimposed with intra-
operatively acquired data, is the ability to align the preoperative images with the
physical patient within the operating room. Without this, providing reliable
guidance information to surgeons and pertinent surface displacement data for

Fig. 8 Ultrasound image
collected during liver surgery
at Memorial Sloan-Kettering
Cancer Center; (A) left portal
vein, (B) division between the
caudate and left lobe, and
(C) posterior edge of left
lobe, designated
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deformation correction algorithms would be impossible. In previous work, image-
to-physical space registration was performed using a traditional iterative closest
point (ICP) algorithm [8] between the preoperative CT liver surface and an
intraoperatively acquired point cloud of the liver surface provided by LRS
[19–21]. This more conventional method can still be compromised by poor initial
pose estimation as well as tissue deformation due to the laparotomy and liver
mobilization performed prior to tumor resection.

To increase registration robustness for use in image-guided liver surgery, and as
a good initial pose for deformation correction algorithms, an approach using
weighted salient anatomical features identifiable in both the preoperative image set
and intraoperative liver surface data was developed [26]. The algorithm is an ICP
variant. Robustness studies were performed using both phantom and clinical data
under conditions of varying initial pose. The results suggest that the proposed
weighted patch registration algorithm is significantly better than traditional point-
based and ICP. Figure 9 illustrates the steady improvement in results using our
salient feature-based registration on a sample clinical case. A series of quantitative
phantom experiments was also conducted. In these experiments, surface and
subsurface targets were implanted to generate quantitative estimates of TRE [35].
Under conditions of modest and severe misalignment, salient feature ICP out-
performed traditional ICP in all trials. When the alignment was successful, both
methods produced an average residual closest point distance of approximately
0:6� 0:1 mm, with a TRE of 2:8� 0:3 mm. On patient data, the root mean square
(RMS) error for salient-feature ICP was 3:7� 0:05 mm.

Penney et al. [90] developed a technique to map preoperatively acquired liver
MR images to ultrasound images, by picking an initial point in each modality and
computing vessel probability maps for registration. When compared with ‘bronze
standard’ registration, the RMS target registration error improved from 15.4 to
4.3 mm using this technique. Peterhans et al. studied the effect of designating
landmarks for registration and finding correspondence using Horn’s method [91].
The reported RMS landmark registration errors was less than 10 mm on clinical
data. Lange et al. [61] propose CT-to-ultrasound vessel-based non-rigid registra-
tion system for providing the link between image and physical space. The method
was tested on three clinical cases and required the identification of as many
bifurcations as possible with tracked ultrasound and then the determination of
corresponding bifurcations within the CT. The mean distance between corre-
sponding points after rigid registration were in the range 4.4–4.7 mm and
improved to 2.6–4.9 mm after non-rigid registration using thin-plate splines.

3.3 Deformation Correction Using Finite Elements

In the previous sections, the process of segmentation, model construction
(geometry only), intraoperative data acquisition, and initial rigid registration were
covered. In addition to building digital representations of the anatomy, one aspect
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that is common to many of the data-rich or sparse-data non-rigid alignment
realizations is the utilization of biomechanical models to constrain the solution
space to realistic deformation predictions. The classic partial differential equation
that represents a state of static mechanical equilibrium is,

r � r ¼ 0 ð1Þ

where r is the mechanical stress tensor. In this description, the constitutive laws
that relate the mechanical stress tensor, rij; to the mechanical strain tensor, eij;

define the nature/behavior of the material when subjected to mechanical load. For
example, a linearly elastic material assumes that the stress is linearly proportional
to the strain. Other models in which stress varies with strain, strain rate, and stress
rate are commonly referred to as viscoelastic solids.

With respect to viscoelastic behavior, there have been some recent reports
regarding time-dependent behavior of liver tissue when subjected to mechanical
loading. Miller [79] extrapolated work performed in brain tissue to data reported
by Melvin et al. [76] for the determination of a viscoelastic liver model. Liu and
Bilston performed a series of experiments on bovine livers to include oscillation
and relaxation tests and generated a five-element Maxwell model [67]. Work by
Carter et al. made measurements of in vivo and ex vivo liver specimens in humans
and pigs at strain rates consistent with surgical loading. In addition, they developed
a nonlinear elastic model to represent their data [17]. Schwartz et al. generated a
computational framework to solve a nonlinear viscoelastic model for realistic
surgical simulation that was validated using ex vivo liver samples from deer under
conditions of perforation from needle biopsy [100]. Rosen et al. conducted a study
whereby tissue from seven abdominal organs underwent cyclical and step strain
compressions using a motorized endoscopic grasper with the focus of generating
realistic viscoelastic haptic tissue models under surgical loading conditions [97].

Fig. 9 Example of the misalignment of the intraoperative liver surface (red) and the
preoperative image (white) after registration with ICP (left) and salient-feature ICP (right). Note
the alignment of the preoperative falciform ligament (blue) and intraoperatively collected
falciform ligament (red) is much better with salient-feature ICP (right)
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More recently, sophisticated nonlinear viscoelastic and hyperelastic constitutive
models have been proposed as better representations of the stress-strain behavior
[39, 114].

While the above represents several examples of constitutive modeling spanning
decades, it is important to realize that a clear understanding of the extent of model
refinement necessary for effective surgical guidance is continuing to be revealed.
More specifically, through observation, we understand the nature of surgical
presentation, and the scale of applied surgical manipulations. Through measure-
ment, we understand the accuracy of workflow-amenable digitization equipment as
well as image-rendered surgical targets. Only through a comprehensive under-
standing of these factors can a proper model selection be made. With current state-
of-the-art guidance equipment (i.e. optical localizers with measurement accuracies
on the order of 0.5 mm and image volumes at the single millimeter resolution)
and human-based surgical applicators, the utilization of linear and moderately
nonlinear models is likely appropriate for guidance techniques concerned with
positional application of surgical tools. With diagnostics, haptic interfaces, or pos-
sibly development of robotic manipulators, extension of models may be important.

In the work presented here, we will assume a linear elastic behavior where the
stress is linearly proportional to the strain (i.e. Hooke’s law) [14]. To solve the
resulting system of partial differential equations, many methods are available [63].
The method we have chosen is a standard Galerkin weighted residual approach
with linear Lagrange polynomial basis functions [71]. As with many of these types
of problems, sparse matrix formats and iterative solvers such as stabilized con-
jugate gradient with incomplete LU preconditioning are used to solve [15] but
many options exist. While model selection will affect fidelity, the design of
algorithms to drive correction with sparsely acquired intraoperative data is far
more challenging.

3.3.1 Iterative Closest Atlas Technique

Given the organ presentation described above, one strategy to correct for defor-
mation of soft-tissue abdominal organs is to acquire data regarding visible
shape change of the organ anterior surface and then extrapolate global organ
shape change using computer models. Similar to approaches in non-rigid image
registration [98], the framework is initialized via a rigid registration (usually a
surface-based registration) with the subsequent application of a non-rigid iterative
alignment process to correct for deformations. In previous work, a non-rigid
correction was performed using a modified shape atlas technique [29] which we
called iterative closest atlas (ICAt) [19, 26]. Figure 10 demonstrates the ICAt
framework. The preoperative planning alluded to in Fig. 2 is demonstrated here
with sample results (gray region of Fig. 10). Upon completion, the computational
model is imported to a finite-element elastic-model solving routine where tens to
hundreds of boundary conditions descriptions are employed in an automated
fashion to build a comprehensive shape atlas that is representative of typical
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surgical deformations. Within the intraoperative environment (red region of
Fig. 10), data regarding the exposed organ surface is acquired using a tracked laser
range scanner in this case. This data is then rigidly aligned using a salient-feature
weighted surface based registration method [26]. Once aligned, the remaining non-
rigid effects are compensated for using a regularized least-squares approach which
iteratively generates a linear combination of shapes from the shape atlas to best fit
the deformations present [27]. While the results were encouraging in realistic
phantom conditions, it was found during observations that significant variability in
presentation existed such that atlas techniques became challenging. Within the
neurosurgical environment, these techniques have been shown to be very powerful
[22, 33] and will likely be important as better understanding of deformations due
to presentation is improved.

As a result of this difficulty, other strategies have been explored whereby
the available sparse data is used to extrapolate deformation boundary conditions to
the remainder of the organ. Similar to the previous technique, these approximated
boundary conditions are then applied to a finite element biomechanical model of
the organ to execute a complete volumetric correction. These strategies are very
robust and have demonstrated results that have improved correction although
further work is needed. The most significant change in the intraoperative correc-
tion framework is shown in Fig. 11 where the steps following the initial alignment
have been modified to involved active computer model computations during
surgery. Briefly stated, the framework of these methods is to use the initial closest
point distance maps (e.g. Fig. 10, colored field in the initial registration) as a
means to spatially distribute, i.e. extrapolate, those additional deformation con-
ditions over the remaining surface of the liver thus generating a complete
boundary condition set for the computer model. At this time, two strategies have
been explored: (1) radial spatial filter and (2) Laplacian PDE filter.

3.3.2 Radial Spatial Filter Method

Two approaches have been attempted and each is an alternate realization
of Fig. 11. The first of these methods was presented in [33]. In this approach,
the correspondence function between laser range scan data is used to guide
the application of boundary conditions similar to work by [19, 20]. However, the
difficulty in these direct approaches was that sufficient information regarding
posterior surfaces needed to be specified which was difficult to approximate, and
flanking regions around the laser range scan partial surface were left unmodified
which lead to unnatural looking deformations (i.e. a plug-like effect). In these
extrapolation strategies, a spatial surface filter that distributes into the flanking
regions of the liver surface is created and more natural deformations are generated.
The first approach created radial capture regions that were initially quite
large (large enough to propagate to the posterior areas of the liver). These regions
served as averaging kernels to distribute the closest-point based boundary condi-
tion associated with the sparse intraoperative data from the laser range scanner.
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Fig. 10 Iterative closest atlas technique

Fig. 11 Active-solve intraoperative local sparse data registration framework that extrapolates
data into flanking and posterior regions
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With spatially diffuse kernels, the averaging would result in a small increment of
deformation to be applied. As kernels are gradually reduced in size, the liver shape
would approach that of the laser range scan measurements.

These computations were all compatible with OR timing. It should also be
noted that the radial spatial filter was modified by a norm-sensitizer as it distrib-
uted boundary conditions to the posterior side of the liver whereby the boundary
conditions would change sign to promote more realistic organ movement. One
advantage of this filter is that it introduced sufficient boundary conditions such that
a priori assumptions regarding the posterior regions of the liver need not be
specified rather the filter approach provided sufficient enhancement to the condi-
tion number of matrices associated with FEM calculations to allow for rapid robust
solutions with standard sparse matrix techniques. While this method was com-
parable to ICAt, the results were of limited success.

3.3.3 Laplacian PDE Filter Method

From this initial experience, a second method was developed that performed a
solution to Laplace’s partial differential equation expressed along the organ sur-
face’s triangular mesh to extrapolate boundary conditions into the flanking regions.
This type of method has been used to assist in non-rigid surface registration of the
breast where fiducials were not present [88] and the results were found to be
reasonable. Upon completion of the solution of Laplace’s equation, the boundary
conditions assigned to the posterior regions also underwent the same norm sen-
sitization previously mentioned. Figure 12 demonstrates the result from the both of
these intraoperative model computing approaches with all surfaces normalized to
the max–min range of displacements. Figure 12 illustrates the results at three
different iterations associated with the dynamic radial spatial filter method from
our technique reported in [33]. It should be noted that each of the iterations shown
represents an increment of displacement (typically about 10–15 applied so the per-
increment value is quite small in magnitude). Figure 12 shows the single iteration
Laplacian PDE method. The Laplacian method is usually executed as either a
single or dual-pass method that makes it considerably faster than the radial method
(i.e. only two model solves are necessary versus 10–15 in the radial method).

3.4 Intraoperative Update of Image Guidance System

In Sect. 3.3, the quantitative aspects of deformation correction were described but
the problem of integrating deformation into OR work flow was not addressed. In a
typical guidance display, the surgeon is presented with orthogonal views of the
preoperative medical image volume and a view of the 3D surface model. With
deformation comes the necessity to update the guidance display or else the sur-
geon’s virtual display will no longer correspond to their physical reality. If an
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intraoperative image volume is available, the guidance display could simply be
updated with it. The intraoperative volume could even be from a different modality
than the preoperative volume (ultrasound mapped to preoperative MRI [43] using
thin-plate splines). In the case of deformation correction using mathematical
models, there is no intraoperative image for display. Galloway and Peters [38]
describe this problem thusly: ‘one of the fundamental concepts of [image-guided
interventions], which is that the images represent the present state of the physi-
ology, is only a first approximation’.

A direct method of introducing deformation correction into the guidance system
is to apply the volumetric deformation fields to the preoperative images and utilize
the deformed images for navigation [78]. Since the liver is the only object for
which the volumetric deformation field exists, the position and orientation of non-
liver objects within the CT are preserved. This is achieved by initially assigning
voxels contained within the liver volumetric mesh to the background intensity in
the (new) deformed CT volume. The deformed liver within the deformed CT
image volume is created by updating the intensity associated with the deformed
position of voxels contained within each element in the volumetric liver mesh.
Voxel deformations are interpolated from the nodal deformation field through the
use of linear tetrahedral finite-element basis functions, and the intensity of the
deformed voxel is computed through trilinear interpolation of the eight nearest
neighbor voxels to the original position. The image volume with and without
deformation is shown in Fig. 13.

When deforming the image volume, the fine image detail may be lost in this
process due to interpolation effects due to low soft-tissue contrast in CT (the
imaging modality most often used in liver surgery). To address this deficiency, a
novel local stylus transformation was developed which corrects for deformation
but also maintains the pristine nature of the images. This method of introducing
deformation into the guidance display is to apply the volumetric deformation field

Fig. 12 a Initial-mid-and last iteration of boundary condition distribution; b single iteration with
Laplacian methodology. Red indicates displacements applied to model are needed to move along
the surface normal while blue indicates moving against the surface normal
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to the tip of the surgical tool and leaving the preoperative images intact. Typically,
in a guidance system, a global rigid registration estimate is applied to each tool tip
position. In our deformation corrected method, the global rigid registration is
applied followed by a local non-rigid refinement of the transformed tool tip.

More specifically, the global registration rigidly transforms the tool’s position
from the patient’s physical space to the preoperative image space. The non-rigid
refinement updates the tool’s position on the images using the computed volu-
metric deformation field. This step requires an interpolation (if the transformed
tool position is within the extents defined by the segmented liver) or an extrapo-
lation (if the transformed tool position lies outside of the extents defined by the
segmented liver) since the volumetric deformation field does not exist for every
point on the preoperative images. The basis functions used in the biomechanical
model to compute the volumetric deformation field was used to interpolate the
displacement vector at each node in the voxel in the tetrahedral mesh to every
voxel the image volume. A simple nearest neighbor approach and a distance-based
weighting scheme was used to extrapolate displacements from the tetrahedral
mesh to an envelope surrounding the mesh. The guidance display will simply show
the updated tool position with the pristine preoperative image volume.

4 Application: Tumor Resection

These methods have been explored using realistic liver phantom experiments.
Figure 14 shows the liver phantom centrally located within an arrangement of
external fiducials (white spheres). Figure 14 illustrates the CT-rendered results of
the phantom in a deformed state. Using this system, a pre-deformation organ
configuration was acquired using CT and LRS, and then a series of deformations
were applied and the data was acquired again. These data (fiducial points and

Fig. 13 An axial slice of the undeformed CT volume (left) and the corresponding deformed
volume (right)
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surfaces) were then used to align the pre-deformation and post-deformation data in
a battery of rigid and non-rigid registration algorithms. The targets (shown as
beads in Fig. 14) served as novel positions whereby its transformed location could
be compared to its CT-acquired counterpart and a TRE could be reported. Table 1
is a comprehensive overview of the results from these experiments.

Looking through the different registrations, it is evident that more data leads to
better TRE. We can see that the non-rigid ICAt using sparse data (4th row of
results) is approximately equivalent to the data-rich ICP results (3rd row of
results—complete organ surfaces available in both states). As we move further
down the list, we begin to exceed this result using the radial and then Laplacian
PDE method. While this may seem a modest improvement, an appropriate com-
parison would be to compare the first two rows of results from Table 1 to that of
the ICAt and subsequent non-rigid registration methods. These two registration
results represent what can realistically be achieved with open abdominal surgery
without the use of intraoperative tomographic scanning. When we compare any of
the sparse non-rigid registration results (rows 4–7 results) to these, a considerable
improvement in targeting error has been achieved. As far as a performance goal,
the last row of Table 1 represents what is achievable with a data-rich non-rigid
registration environment. If these extrapolative methods can be improved, a
surgical platform amenable to the patient workflow associated with abdominal
surgery will have been created.

It is clear that more organ surface data would be helpful in designing these
methods and while intraoperative CT and MR may be a somewhat intractable
solution with respect to surgical workflow, the use of additionally sparse ultra-
sound data may be an avenue to narrow the gap between sparse and data-rich
methods. For example, Fig. 15 illustrates a liver with metastatic lesion and
posterior liver surface designated within a preoperative CT liver slice (left) and

Fig. 14 a Liver phantom; b CT-rendered surface with applied deformations and bead targets
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its approximate corresponding image using intraoperative ultrasound (right).
Although the experiments were performed in a liver phantom, Table 1 suggests
that additional surface data is the critical step in reducing target error. Utilization
of echogenic structures such as the liver posterior surface or the tumor boundary
itself may be an important piece of guidance information to further reducing target
error.

5 Application: Radio Frequency Ablation

While some tracked intraoperative ultrasound technology approaches have been
implemented [61], its widespread integration into guidance platforms is not
commonplace. In addition to providing data, tracked intraoperative ultrasound will

Table 1 Results from rigid and non-rigid registration experiment in realistic liver phantom study
undergoing deformations

Registration
method

Description Average target
error range
(mm)

Maximum
target error
range (mm)

External rigid
registration

Fiducials at positions approximately
external to abdomen

14.8–22.8 31.0–42.3

Iterative closest
point (ICP)

Iterative closest point registration
of CT segmented liver surface to
intraoperative acquired LRS surface
of liver

4.3–4.4 8.8–10.9

Salient feature
weighted ICP

Iterative closest point registration of CT
segmented liver surface to intraoperative
acquired LRS surface of liver with salient
features of falciform ligament and inferior
ridges

4.1–4.5 10.0–11.3

Surface data-rich
ICP

Iterative closest point registration between
complete CT segmented liver surface
before and after deformation

2.7–3.2 6.7–6.8

ICAt Iterative closest atlas non-rigid registration
using CT segmented liver surface to
intraoperative acquired LRS surface of liver

2.5–4.0 5.3–14.3

Radial spatial
filter method

Iterative radial spatial filter non-rigid
registration using CT segmented liver
surface to intraoperative acquired LRS
surface of liver

2.6–3.0 8.0–10.5

Laplacian PDE
filter method

Surface Laplacian PDE filter non-rigid
registration using CT segmented liver
surface to intraoperative acquired LRS
surface of liver

2.0–2.6 6.4–8.6

Non-rigid Full surface description with closest-point
non-rigid correction

0.6–0.9 1.8–3.3
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likely serve as the best means to validate abdominal image-guidance technologies.
Along this direction, to test the potential of correction in the in vivo environment,
some preliminary tests have been conducted in two clinical cases at Memorial
Sloan-Kettering Cancer Center. In these preliminary tests, the goal was to deliver a
radiofrequency ablation (RFA) probe to target (i.e. approximate centroid of
tumor). With respect to data, preoperative CT images, an intraoperative swabbed
surface of the liver as provided by an optically-tracked stylus, and the final
location of the RFA probe in physical space was provided. In placing the RFA
probe, the surgeon confirmed the placement of the probe in the centroid used
intraoperative ultrasound guidance.

Using this data, the RFA probe tip position was projected using our rigid salient
feature registration method (equivalent of row 3 result of Table 1), and then in its
model-corrected position (using the Laplacian PDE method of row 7 result of
Table 1). Figure 16 shows the first two cases with the model corrected probe
position showing clear improvement. With rigid registration, the RF position
resided just inside the tumor edge for Case 1 and outside the tumor for Case 2
while the deformation corrected position in both instances placed the probe closer
to the tumor centroid which is consistent with the surgeon’s procedural experience.
While these results are preliminary, it does show promise as a technique as well as
the use of ultrasound as a validation tool and quite possibly a potential source for
improving the methods.

Fig. 15 (left) CT with metastasis and posterior edge of liver, and (right) corresponding objects in
ultrasound
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6 Conclusions and Future Directions

While comprehensive data creates the best performance with respect to engi-
neering, if the methods overly encumber the surgeon such that patient care is
compromised, these do not represent practical solutions. Each of the methods
described above is considerably restricted by the use of sparse data. The final

Fig. 16 The RFA probe tip position before and after correction for two clinical cases at
Memorial Sloan-Kettering Cancer Center. The distance between the tip before and after
correction in relation to 5 mm sphere drawn around the centroid of the tumor improved after
correction in both cases

Model-Assisted Image-Guided Liver Surgery 33



column in Table 1 emphasizes the importance of comprehensive data. However,
the methods reported above have been thoughtfully designed for speed and sur-
gical workflow. In this chapter, it is suggested that computational modeling, sparse
data, and constrained extrapolative techniques can sometimes serve as effective
alternatives to comprehensive technology solutions. Mathematical modeling has a
long history of trying to connect disparate data. Its use here in the surgical domain
and in the role of providing enhancement to application of therapeutic processes is
an exciting prospect.
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