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Continuity of Spectra in
Rieffel’s Pseudodifferential Calculus

F. Belmonte and M. Măntoiu

Abstract. Using the fact that Rieffel’s quantization sends covariant continu-
ous fields of 𝐶∗-algebras in continuous fields of 𝐶∗-algebras, we prove spectral
continuity results for families of Rieffel-type pseudodifferential operators.
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Introduction

One naturally expects that topics or tools coming from the standard pseudodif-
ferential theory could make sense and even work in the more general setting of
Rieffel’s calculus. In [16, 17], some 𝐶∗-algebraic techniques of spectral analysis
([3, 4, 10, 15, 18] and references therein) were tuned with Rieffel quantization
[24], getting results on spectra and essential spectra of certain self-adjoint opera-
tors that seemed to be out of reach by other methods. In the present article we
continue the project by studying spectral continuity.

Pioneering work on applying 𝐶∗-algebraic methods to spectral continuity
problems and applications to discrete physical systems may be found in [3, 5,
8]. Results on continuity of spectra for unbounded Schrödinger-like Hamiltonians
(especially with magnetic fields) appear in [1, 2, 13, 20] and references therein.

Roughly, the abstract problem can be stated as follows: For each point 𝑡 of the
locally compact space 𝑇 we are given a self-adjoint element (a classical observable)
𝑓(𝑡) of a 𝐶∗-algebra 𝒜(𝑡), which is Abelian for most of the applications, and we
assume some simple-minded continuity property in the variable 𝑡 for this family.
By quantization, 𝑓(𝑡) is turned into a quantum observable 𝔣(𝑡) belonging to a
new, non-commutative 𝐶∗-algebra 𝔄(𝑡) (in spite of the notation, rather often 𝔣(𝑡)
is just 𝑓(𝑡) with a new interpretation). We inquire if the family 𝑆(𝑡) := sp [𝔣(𝑡)]
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of spectra computed in these new algebras vary continuously with 𝑡. Intuitively,
outer continuity says that the family cannot suddenly expand: if for some 𝑡0 there
is a gap in the spectrum of 𝑓(𝑡0) around a point 𝜆0 ∈ ℝ, then for 𝑡 close to 𝑡0 all
the spectra 𝑆(𝑡) will have gaps around 𝜆0 . On the other hand, inner continuity
insures that if 𝑓(𝑡0) has some spectrum in a non-trivial interval of ℝ , this interval
will contain spectral points of all the elements 𝑓(𝑡) for 𝑡 close to 𝑡0 . Although
traditionally 𝔄(𝑡) is thought to be a 𝐶∗-algebra of bounded operators in some
Hilbert space, the abstract situation is both natural and fruitful. One can work
with abstract 𝐶∗-algebras 𝔄(𝑡) and then, if necessarily, represent them faithfully
in Hilbert spaces; the spectrum will be preserved under representation.

It is well known (see Theorem 3.2) that spectral continuity can be obtained
from corresponding continuity properties of resolvent families of the elements 𝔣(𝑡)
but this involves both inversion and norm in each complicated 𝐶∗-algebra 𝔄(𝑡).
Things are smoothed out if the family {𝔄(𝑡) ∣ 𝑡 ∈ 𝑇 } has a priori continuity prop-
erties, that may be connected to the concept of (upper or lower semi)-continuous
𝐶∗-bundle, cf. [25, 26] and Definition 1.1. We are going to investigate the case in
which {𝔄(𝑡) ∣ 𝑡 ∈ 𝑇 } in obtained from another family {𝒜(𝑡) ∣ 𝑡 ∈ 𝑇 } of simpler
(classical) 𝐶∗-algebras by Rieffel quantization.

Rieffel’s calculus [24, 14] is a method that transforms “simpler” 𝐶∗-algebras
and morphisms into more complicated ones. The ingredients to do this are an ac-
tion of the vector group Ξ := ℝ𝑑 by automorphisms of the “simple” algebra as well
as a skew symmetric linear operator of Ξ . The initial data are naturally defining
a Poisson structure, regarded as a mathematical modelization of the observables
of a classical physical system. After applying the machine to this classical data
one gets a 𝐶∗-algebra seen as the family of observables of the same system, but
written in the language of Quantum Mechanics.

In simple situations the multiplication in the initial 𝐶∗-algebra is just point-
wise multiplication of functions defined on some locally compact topological space
Σ, on which Ξ acts by homeomorphisms. The non-commutative product in the
quantized algebra can be interpreted as a symbol composition of a pseudodiffer-
ential type. Actually the concrete formulae generalize and are motivated by the
usual Weyl calculus [9].

The basic technical fact is that by Rieffel quantization an upper semi-contin-
uous fields of 𝐶∗-algebras is turned into an upper semi-continuous fields of 𝐶∗-
algebras and the same is true if upper semi-continuity is replaced by lower semi-
continuity. This is shown in [6]; a partial result without proof is announced in [11]
(see also [12]). For the convenience of the readers, we are going to sketch a new
proof in Section 1, relying on results from [7, 23].

As said before the most interesting cases, those which are closer to the initial
spirit of Weyl quantization, involve Abelian initial algebras 𝒜 . In this situation
the information is encoded in a topological dynamical system with locally compact
space Σ and the upper semi-continuous field property can be read in the existence
of a continuous covariant surjection 𝑞 : Σ → 𝑇 ; if this one is open, then lower
semi-continuity also holds. This is explained in Section 2.



Continuity of Spectra in Rieffel’s Pseudodifferential Calculus 13

Using these facts, in the final sections, we prove spectral continuity. We
start with families of elements belonging to the abstract Rieffel algebras. Then
we outline a setting in which these algebras admit interesting faithful represen-
tations in a unique Hilbert space, thus getting spectral continuity for families of
pseudodifferential-like operators. Making suitable adaptations of the dynamical
system, we also include an outer continuity result for essential spectra of Rieffel
pseudodifferential operators. As an example, we are going to show that our re-
sults cover families of zero order standard pseudodifferential operators and this is
new up to or knowledge. Spectral continuity for families of elliptic strictly pos-
itive order Hamiltonians (even including variable magnetic fields) is known; see
[1, 2, 13, 20]. But the methods of these articles do not extend in some obvious
way to zero-order operators. The resolvent of an elliptic operator of order 𝑚 > 0
is a pseudodifferential operator of strictly negative order and this helps a lot. In
the framework of [1] for instance, it allows using a certain form of crossed product
𝐶∗-algebras, which form semi-continuous fields by well-known results [19, 22, 23];
this is not available if 𝑚 = 0. Continuity in Planck’s constant ℏ, treated in [24]
and in [16], is also special case of our general results but we shall not repeat this
here.

The full strength of these spectral techniques would require an extension
of Rieffel’s calculus to suitable families of unbounded elements. Hopefully this
will be achieved in the future and this would be the right opportunity to present
detailed examples, which could include non-elliptic positive order pseudodiferential
operators with variable magnetic fields.

1. Families of Rieffel quantized 𝑪∗-algebras

Let 𝑇 be a locally compact space (always supposed Hausdorff); we denote dy
𝒞(𝑇 ) the space of all complex continuous functions defined on 𝑇 and vanishing at
infinity.

Definition 1.1. (see [19, 23, 26] and references therein) By upper semi-continuous

field of 𝐶∗-algebras we mean a family

{
ℬ 𝒫(𝑡)−→ ℬ(𝑡) ∣ 𝑡 ∈ 𝑇

}
of epimorphisms of

𝐶∗-algebras indexed by the locally compact topological space 𝑇 and satisfying:

1. For every 𝑏 ∈ ℬ one has ∥ 𝑏 ∥ℬ= sup𝑡∈𝑇 ∥ 𝒫(𝑡)𝑏 ∥ℬ(𝑡) .

2. For every 𝑏 ∈ ℬ the map 𝑇 ∋ 𝑡 �→ ∥ 𝒫(𝑡)𝑏 ∥ℬ(𝑡) is upper semi-continuous
and vanishes at infinity.

3. There is a multiplication 𝒞(𝑇 )× ℬ ∋ (𝜑, 𝑏) → 𝜑 ∗ 𝑏 ∈ ℬ such that
𝒫(𝑡)[𝜑 ∗ 𝑏] = 𝜑(𝑡)𝒫(𝑡)𝑏 , ∀ 𝑡 ∈ 𝑇 , 𝜑 ∈ 𝒞(𝑇 ) , 𝑏 ∈ ℬ .

If the map 𝑡 �→∥ 𝒫(𝑡)𝑏 ∥ℬ(𝑡) is upper semi-continuous for every 𝑏 ∈ ℬ , we say
that

{
ℬ 𝒫(𝑡)−→ ℬ(𝑡) ∣ 𝑡 ∈ 𝑇

}
is an upper semi-continuous field of 𝐶∗-algebras.
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One can identify ℬ with a 𝐶∗-algebra of sections of the field. It will always
be assumed that ℬ(𝑡) ∕= {0} for all 𝑡 ∈ 𝑇 .

We go on by describing briefly Rieffel quantization [24]. Let (Ξ, [[⋅, ⋅]]) be
a 2𝑛-dimensional symplectic vector space and (𝒜,Θ,Ξ) a 𝐶∗-dynamical system,
meaning that Ξ acts strongly continuously by automorphisms of the 𝐶∗-algebra
𝒜 . We denote by 𝒜∞ the family of elements 𝑓 such that the mapping Ξ ∋ 𝑋 �→
Θ𝑋(𝑓) ∈ 𝒜 is 𝐶∞; it is a dense ∗-algebra of 𝒜. Inspired by Weyl’s pseudodif-
ferential calculus, one keeps the involution unchanged but introduce on 𝒜∞ the
product

𝑓 # 𝑔 := 𝜋−2𝑛

∫
Ξ

∫
Ξ

𝑑𝑌 𝑑𝑍 𝑒2𝑖[[𝑌,𝑍]] Θ𝑌 (𝑓) Θ𝑍(𝑔) , (1.1)

defined by oscillatory integral techniques. One gets a ∗-algebra (𝒜∞,# ,∗ ), which
admits a 𝐶∗-completion 𝔄 in a 𝐶∗-norm ∥ ⋅ ∥𝔄 as described in [24]. The action Θ
leaves 𝒜∞ invariant and extends [24, Prop. 5.11] to a strongly continuous action
of the 𝐶∗-algebra 𝔄, that will also be denoted by Θ. The space 𝔄∞ of 𝐶∞-vectors
coincide with 𝒜∞, cf [24, Th. 7.1].

Let (𝒜𝑗 ,Θ𝑗 ,Ξ, [[⋅, ⋅]]), 𝑗 = 1, 2, be two data as above and let ℛ : 𝒜1 → 𝒜2 be
a Ξ-morphism, i.e., a (𝐶∗-)morphism intertwining the two actions Θ1,Θ2. Then ℛ
sends 𝒜∞1 into 𝒜∞2 and extends to a morphism ℜ : 𝔄1 → 𝔄2 that also intertwines
the corresponding actions.

Let now 𝑇 be a locally compact Hausdorff space and let

{
𝒜 𝒫(𝑡)−→ 𝒜(𝑡) ∣ 𝑡 ∈ 𝑇

}
be a field of 𝐶∗-algebras. We are given actions Θ of Ξ on 𝒜 and Θ(𝑡) of Ξ on 𝒜(𝑡)
satisfying Θ(𝑡)𝑋 ∘ 𝒫(𝑡) = 𝒫(𝑡) ∘ Θ𝑋 for each 𝑡 ∈ 𝑇 and 𝑋 ∈ Ξ. One can say

that

{
𝒜 𝒫(𝑡)−→ 𝒜(𝑡) ∣ 𝑡 ∈ 𝑇

}
is a covariant field of 𝐶∗-algebras. Then, by Rieffel

quantization, one constructs the new covariant field

{
𝔄

𝔓(𝑡)−→ 𝔄(𝑡) ∣ 𝑡 ∈ 𝑇

}
.

Theorem 1.2. Rieffel quantization transforms covariant semi-continuous fields of
𝐶∗-algebras into covariant semi-continuous fields of 𝐶∗-algebras.

It is understood that the statement holds separately for upper and for lower
semi-continuity. In the remaining part of this section we are going to present a
proof of this result, different from that of [6].

First define

𝜅 : Ξ× Ξ → 𝕋 := {𝜆 ∈ ℂ ∣ ∣𝜆∣ = 1} , 𝜅(𝑋,𝑌 ) := exp

(
− 𝑖

2
[[𝑋,𝑌 ]]

)
(1.2)

and notice that it is a group 2-cocycle, i.e., for all 𝑋,𝑌, 𝑍 ∈ Ξ one has

𝜅(𝑋,𝑌 )𝜅(𝑋 + 𝑌, 𝑍) = 𝜅(𝑌, 𝑍)𝜅(𝑋,𝑌 + 𝑍) , 𝜅(𝑋, 0) = 1 = 𝜅(0, 𝑋) .

Thus the initial data is converted into (𝒜,Θ,Ξ, 𝜅), a very particular case of twisted
𝐶∗-dynamical system [21, 22]. To any twisted 𝐶∗-dynamical system one associates
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canonically a 𝐶∗-algebra 𝒜 ⋊𝜅
Θ Ξ (called twisted crossed product). This is the en-

veloping 𝐶∗-algebra of the Banach ∗-algebra
(
𝐿1(Ξ;𝒜), ⋄,⋄ , ∥ ⋅ ∥1

)
, where

∥ 𝐹 ∥1:=

∫
Ξ

𝑑𝑋 ∥ 𝐹 (𝑋) ∥𝒜, 𝐹 ⋄(𝑋) := 𝐹 (−𝑋)∗

and (symmetrized version of the standard form)

(𝐹1 ⋄ 𝐹2)(𝑋) :=

∫
Ξ

𝑑𝑌 𝜅(𝑋,𝑌 ) Θ(𝑌−𝑋)/2 [𝐹1(𝑌 )] Θ𝑌/2 [𝐹2(𝑋 − 𝑌 )] . (1.3)

In the same way, for each 𝑡 ∈ 𝑇 , to (𝒜(𝑡),Θ(𝑡),Ξ, 𝜅) one associates the twisted
crossed product 𝒜(𝑡) ⋊𝜅

Θ(𝑡) Ξ. Let us use the abbreviations ℭ := 𝒜 ⋊𝜅
Θ Ξ and

ℭ(𝑡) := 𝒜(𝑡) ⋊𝜅
Θ(𝑡) Ξ. The epimorphism 𝒫(𝑡) : 𝒜 → 𝒜(𝑡) raises canonically to an

epimorphism 𝒫(𝑡)⋊ : ℭ→ ℭ(𝑡). As a consequence of results in [19, 22, 23] (see [23,

Sect. 3] for instance), if

{
𝒜 𝒫(𝑡)−→ 𝒜(𝑡) ∣ 𝑡 ∈ 𝑇

}
is an upper (or lower, respectively)

semi-continuous field, then

{
ℭ
𝒫(𝑡)⋊−→ ℭ(𝑡) ∣ 𝑡 ∈ 𝑇

}
is also an upper (resp. lower)

semi-continuous field.
Thus it would be enough to have an efficient connection between Rieffel quan-

tized 𝐶∗-algebras and twisted crossed products. We present some consequences of
results from [7]. We recall first that the Schwartz space 𝒮(Ξ) is a ∗-algebra under
complex conjugation and the Weyl product

(ℎ♯ 𝑘)(𝑋) := 𝜋−2𝑛

∫
Ξ

∫
Ξ

𝑑𝑌 𝑑𝑍 𝑒2𝑖[[𝑌,𝑍]] ℎ(𝑋 + 𝑌 ) 𝑘(𝑋 + 𝑍) . (1.4)

Fix now an element ℎ ∈ 𝒮(Ξ) ∖ {0} satisfying ℎ♯ ℎ = ℎ = ℎ and define for each
𝑓 ∈ 𝒜∞ = 𝔄∞ and any 𝑋 ∈ Ξ

[𝑀ℎ(𝑓)] (𝑋) :=

∫
Ξ

𝑑𝑌 𝑒−𝑖[[𝑋,𝑌 ]]ℎ(𝑌 )Θ𝑌 (𝑓) . (1.5)

It is shown in [7] that 𝑀ℎ can be extended as an injective 𝐶∗-morphism 𝑀ℎ : 𝔄→
ℭ ≡ 𝒜⋊𝜅

ΘΞ. We recall that injective 𝐶∗-morphisms are isometric. The construction
can be repeated with (𝒜,Θ) replaced by (𝒜(𝑡),Θ(𝑡)), so for each 𝑡 ∈ 𝑇 one gets
an isometry 𝑀(𝑡)ℎ : 𝔄(𝑡) → ℭ(𝑡) ≡ 𝒜(𝑡) ⋊𝜅

Θ(𝑡) Ξ. In addition, by [7] one has

𝑀(𝑡)ℎ ∘𝔓(𝑡) = 𝒫(𝑡)⋊ ∘𝑀ℎ. Then, for any 𝑓 ∈ 𝔄

∥ 𝔓(𝑡)𝑓 ∥𝔄(𝑡)= ∥𝑀(𝑡)ℎ[𝔓(𝑡)𝑓 ] ∥ℭ(𝑡)= ∥ 𝒫(𝑡)⋊ [𝑀ℎ(𝑓)] ∥ℭ(𝑡) .

Therefore, under the right assumption, the mapping 𝑡 �→∥ 𝔓(𝑡)𝑓 ∥𝔄(𝑡) has the
desired semi-continuity properties. The first condition in the definition of a semi-
continuous field of 𝐶∗-algebras is checked analogously:

∥ 𝑓 ∥𝔄 = ∥𝑀ℎ(𝑓) ∥ℭ= sup
𝑡
∥ 𝒫(𝑡)⋊ [𝑀ℎ(𝑓)] ∥ℭ(𝑡)

= sup
𝑡
∥𝑀(𝑡)ℎ[𝔓(𝑡)𝑓 ] ∥ℭ(𝑡)= sup

𝑡
∥ 𝔓(𝑡)𝑓 ∥𝔄(𝑡) .
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Finally, one must define the mapping ★ : 𝒞(𝑇 ) × 𝔄 → 𝔄 that should be deduced
from the already existing ∗ : 𝒞(𝑇 ) × 𝒜 → 𝒜. Let 𝜑 ∈ 𝒞(𝑇 ) and 𝑓 ∈ 𝔄. There
is a sequence (𝑓𝑛)𝑛∈ℕ ∈ 𝔄∞ = 𝒜∞ with ∥ 𝑓 − 𝑓𝑛 ∥𝔄→ 0 for 𝑛 → ∞. One sets
𝜑 ★ 𝑓 := lim𝑛 𝜑 ∗ 𝑓𝑛 . We leave to the reader the easy task to check that this limit
exists in 𝔄 and that the identity 𝔓(𝑡)[𝜑 ★ 𝑓 ] = 𝜑(𝑡)𝔓(𝑡)𝑓 holds for every 𝑡 ∈ 𝑇 .

2. The Abelian case

We denote by 𝒞(Σ) the Abelian 𝐶∗-algebra of all complex continuous functions
on the locally compact Hausdorff space Σ that are arbitrarily small outside large
compact subsets. When Σ is compact, 𝒞(Σ) is unital. We indicate a framework
leading naturally to fields of 𝐶∗-algebras.

We assume given a continuous surjection 𝑞 : Σ → 𝑇 . Then we have the
disjoint decomposition of Σ in closed subsets Σ = ⊔𝑡∈𝑇Σ𝑡 , where Σ𝑡 := 𝑞−1({𝑡}) .
One has the canonical injections 𝑗𝑡 : Σ𝑡 → Σ and the restriction epimorphisms
ℛ(𝑡) : 𝒞(Σ) → 𝒞(Σ𝑡) , with ℛ(𝑡)𝑓 := 𝑓 ∣Σ𝑡 = 𝑓 ∘ 𝑗𝑡 , ∀ 𝑡 ∈ 𝑇 . This is the right
setting to get semi-continuous fields of Abelian 𝐶∗-algebras.

Proposition 2.1. In the setting above

{
𝒞(Σ)

ℛ(𝑡)−→ 𝒞(Σ𝑡) ∣ 𝑡 ∈ 𝑇

}
is an upper semi-

continuous field of commutative 𝐶∗-algebras. If 𝑞 is also open, the field is contin-
uous.

Proof. Obviously ∩𝑡∈𝑇 ker[ℛ(𝑡)] = {0} , since 𝑓 ∣Σ𝑡 = 0 , ∀ 𝑡 ∈ 𝑇 implies 𝑓 = 0 .
On the other hand, setting

𝜑 ∗ 𝑓 := (𝜑 ∘ 𝑞)𝑓 , ∀𝜑 ∈ 𝒞(𝑇 ) , 𝑓 ∈ 𝒞(Σ) , (2.1)

we get immediately ℛ(𝑡)(𝜑 ∗ 𝑓) = 𝜑(𝑡)ℛ(𝑡)𝑓 , ∀ 𝑡 ∈ 𝑇 .

We need to study continuity properties of the mapping

𝑇 ∋ 𝑡 �→ 𝑛𝑓 (𝑡) := ∥ℛ(𝑡)𝑓∥𝒞(Σ𝑡) = sup
𝜎∈Σ𝑡

∣𝑓(𝜎)∣

= inf
{∥𝑓 + ℎ∥𝒞(Σ) ∣ ℎ ∈ 𝒞(Σ), ℎ∣Σ𝑡 = 0

} ∈ ℝ+ .

The last expression for the norm can be justified directly easily, but it also follows
from the canonical isomorphism 𝒞(Σ𝑡) ∼= 𝒞(Σ)/𝒞Σ𝑡(Σ), where 𝒞Σ𝑡(Σ) is the ideal
of functions ℎ ∈ 𝒞(Σ) such that ℎ∣Σ𝑡 = 0 .

We first assume that 𝑞 is only continuous. For every 𝑆 ⊂ 𝑇 we set Σ𝑆 :=
𝑞−1(𝑆) . It is easy to see by the Stone-Weierstrass Theorem that

𝒞(𝑡)(Σ) := {ℎ ∈ 𝒞(Σ) ∣ ∃ an open neighborhood 𝑈 of 𝑡 such that ℎ∣Σ𝑈 = 0}
is a self-adjoint 2-sided ideal dense in 𝒞Σ𝑡(Σ) . Let 𝑡0 ∈ 𝑇 and 𝜀 > 0; by density
and the definition of inf

∃ℎ ∈ 𝒞(𝑡0)(Σ) such that 𝑛𝑓 (𝑡0) + 𝜀 ≥ ∥𝑓 + ℎ∥𝒞(Σ) .
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Let 𝑈 be the open neighborhood of 𝑡0 for which ℎ∣Σ𝑈 = 0. For any 𝑡 ∈ 𝑈 one also
has ℎ ∈ 𝒞(𝑡)(Σ) , so

𝑛𝑓 (𝑡) = inf
{∥𝑓 + 𝑔∥𝒞(Σ) ∣ 𝑔 ∈ 𝒞(𝑡)(Σ)

} ≤ ∥𝑓 + ℎ∥𝒞(Σ) ≤ 𝑛𝑓 (𝑡0) + 𝜀

and this is upper semi-continuity.
Let us also suppose 𝑞 open, let 𝑡0 ∈ 𝑇 and 𝜀 > 0 . By the definition of sup,

there exists 𝜎0 ∈ Σ𝑡0 such that ∣𝑓(𝜎0)∣ ≥ 𝑛𝑓 (𝑡0)−𝜀/2 . Since 𝑓 is continuous, there
is a neighborhood 𝑉 of 𝜎0 in Σ such that

∣𝑓(𝜎)∣ ≥ ∣𝑓(𝜎0)∣ − 𝜀/2 ≥ 𝑛𝑓 (𝑡0)− 𝜀, ∀𝜎 ∈ 𝑉.

Since 𝑞 is open, 𝑈 := 𝑞(𝑉 ) is a neighborhood of 𝑡0 . For every 𝑡 ∈ 𝑈 we have
Σ𝑡 ∩ 𝑉 ∕= ∅, so for such 𝑡

𝑛𝑓 (𝑡) ≥ sup{∣𝑓(𝜎)∣ ∣ 𝜎 ∈ Σ𝑡 ∩ 𝑉 } ≥ 𝑛𝑓 (𝑡0)− 𝜀

and this is lower semi-continuity. □
Suppose now that a continuous action Θ of Ξ by homeomorphisms of Σ is

also given. For (𝜎,𝑋) ∈ Σ× Ξ we are going to use all the notations

Θ(𝜎,𝑋) = Θ𝑋(𝜎) = Θ𝜎(𝑋) ∈ Σ (2.2)

for the 𝑋-transformed of the point 𝜎. The function Θ is continuous and the home-
omorphisms Θ𝑋 ,Θ𝑌 satisfy Θ𝑋 ∘Θ𝑌 = Θ𝑋+𝑌 for every 𝑋,𝑌 ∈ Ξ.

The action Θ of Ξ on Σ induces an action of Ξ on 𝒞(Σ) (also denoted by
Θ) given by Θ𝑋(𝑓) := 𝑓 ∘ Θ𝑋 . This action is strongly continuous, i.e., for any
𝑓 ∈ 𝒞(Σ) the mapping

Ξ ∋ 𝑋 �→ Θ𝑋(𝑓) ∈ 𝒞(Σ) (2.3)

is continuous; thus we are placed in the setting presented in the first section. We
denote by 𝒞(Σ)∞ ≡ 𝒞∞(Σ) the set of elements 𝑓 ∈ 𝒞(Σ) such that the mapping
(2.3) is 𝐶∞; it is a dense ∗-algebra of 𝒞(Σ) . The general theory supplies a non-
commutative 𝐶∗-algebra 𝔄 ≡ ℭ(Σ) , acted continuously by the group Ξ , with
smooth vectors ℭ∞(Σ) = 𝒞∞(Σ) .

To insure covariance for the emerging families of 𝐶∗-algebras, we impose a
condition of compatibility between the action Θ and the mapping 𝑞 .

Definition 2.2. We say that the surjection 𝑞 is Θ-covariant if it satisfies the equiv-
alent conditions:

1. Each Σ𝑡 is Θ-invariant. 2. For each 𝑋 ∈ Ξ one has 𝑞 ∘Θ𝑋 = 𝑞 .

Recall now the Rieffel-quantized 𝐶∗-algebras ℭ(Σ) and ℭ(Σ𝑡) as well as the
epimorphisms ℜ(𝑡) : ℭ(Σ) → ℭ(Σ𝑡). Applying Theorem 1.2 and Proposition 2.1,
one gets

Corollary 2.3. Assume that 𝑞 : Σ → 𝑇 is a Θ-covariant continuous surjection.

Then the covariant field of non-commutative 𝐶∗-algebras
{
ℭ(Σ)

ℜ(𝑡)−→ℭ(Σ𝑡) ∣ 𝑡∈𝑇
}

is upper semi-continuous.
If 𝑞 is also open, then the field is continuous.



18 F. Belmonte and M. Măntoiu

3. Spectral continuity for symbols

Let us introduce the concept of continuity for families of sets that will be useful
below.

Definition 3.1. Let 𝑇 be a Hausdorff locally compact topological space and let
{𝑆(𝑡) ∣ 𝑡 ∈ 𝑇 } be a family of compact subsets of ℝ .

1. The family is called outer continuous if for any 𝑡0 ∈ 𝑇 and any compact
subset 𝐾 of ℝ such that 𝐾 ∩ 𝑆(𝑡0) = ∅ , there exists a neighborhood 𝑉 of 𝑡0
with 𝐾 ∩ 𝑆(𝑡) = ∅ , ∀𝑡 ∈ 𝑉 .

2. The family {𝑆(𝑡) ∣ 𝑡 ∈ 𝑇 } is called inner continuous if for any 𝑡0 ∈ 𝑇 and
any open subset 𝐴 of ℝ such that 𝐴∩ 𝑆(𝑡0) ∕= ∅ , there exists a neighborhood
𝑊 of 𝑡0 with 𝐴 ∩ 𝑆(𝑡) ∕= ∅ , ∀𝑡 ∈𝑊 .

3. If the family is both inner and outer continuous, we say simply that it is
continuous.

In applications the sets 𝑆(𝑡) are spectra of some self-adjoint elements 𝑓(𝑡) of
(non-commutative) 𝐶∗-algebras 𝔄(𝑡). The next result states technical conditions
under which one gets continuity of such families of spectra. It is taken from [1]
and it has been inspired by the treatment in [3]. We include the proof for the
convenience of the reader.

Proposition 3.2. For any 𝑡 ∈ 𝑇 let 𝑓(𝑡) be a self-adjoint element in a 𝐶∗-algebra
𝔄(𝑡) with norm ∥ ⋅ ∥𝔄(𝑡) and inversion 𝑔 �→ 𝑔(−1)𝔄(𝑡) . We denote by 𝑆(𝑡) ⊂ ℝ the
spectrum of 𝑓(𝑡) in 𝔄(𝑡) .

1. Assume that for any 𝑧 ∈ ℂ ∖ ℝ the mapping

𝑇 ∋ 𝑡 �→
∥∥∥ (𝑓(𝑡)− 𝑧)

(−1)𝔄(𝑡)

∥∥∥
𝔄(𝑡)

∈ ℝ+ (3.1)

is upper semi-continuous. Then the family {𝑆(𝑡) ∣ 𝑡 ∈ 𝑇 } is outer continuous.
2. Assume that for any 𝑧 ∈ ℂ ∖ ℝ the mapping (3.1) is lower semi-continuous.
Then the family {𝑆(𝑡) ∣ 𝑡 ∈ 𝑇 } is inner continuous.

Proof. We use the functional calculus for self-adjoint elements in the 𝐶∗-algebra
𝔄(𝑡) to define 𝜒[𝑓(𝑡)] for every continuous function 𝜒 : ℝ→ ℂ vanishing at infinity.
Notice that

(𝑓(𝑡)− 𝑧)
(−1)𝔄(𝑡) = 𝜒𝑧[𝑓(𝑡)] , with 𝜒𝑧(𝜆) := (𝜆− 𝑧)−1 .

By a standard argument relying on Stone-Weierstrass Theorem, one deduces that
the map 𝑡 �→ ∥𝜒[𝑓(𝑡)]∥𝔄(𝑡) has the same continuity properties (upper or lower
semi-continuity, respectively) as (3.1) .

Let us suppose now upper semi-continuity in 𝑡0 and assume that 𝑆(𝑡0)∩𝐾 = ∅
for some compact set 𝐾 . By Urysohn’s Lemma, there exists 𝜒 ∈ 𝒞(ℝ)+ with
𝜒∣𝐾 = 1 and 𝜒∣𝑆(𝑡0) = 0 , so 𝜒 [𝑓(𝑡0)] = 0 . Choose a neighborhood 𝑉 of 𝑡0 such
that for 𝑡 ∈ 𝑉

∥ 𝜒[𝑓(𝑡)] ∥𝔄(𝑡)≤∥ 𝜒[𝑓(𝑡0)] ∥𝔄(𝑡0) +
1

2
=

1

2
.
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If for some 𝑡 ∈ 𝑉 there exists 𝜆 ∈ 𝐾 ∩ 𝑆(𝑡), then

1 = 𝜒(𝜆) ≤ sup
𝜇∈𝑆(𝑡)

𝜒(𝜇) = ∥ 𝜒[𝑓(𝑡)] ∥𝔄(𝑡)≤ 1

2
,

which is absurd.
Let us assume now lower semi-continuity in 𝑡0. Pick an open set 𝐴 ⊂ ℝ such

that 𝑆(𝑡0)∩𝐴 ∕= ∅ and let 𝜆 ∈ 𝑆(𝑡)∩𝐴. By Urysohn’s Lemma there exist a positive
function 𝜒 ∈ 𝒞(ℝ) with 𝜒(𝜆) = 1 and supp(𝜒) ⊂ 𝐴; thus ∥𝜒 [𝑓(𝑡0)] ∥𝔄(𝑡0) ≥ 1.
Suppose moreover that for any neighborhood 𝑊 ⊂ 𝑇 of 𝑡0 there exists 𝑡 ∈𝑊 such
that 𝑆(𝑡) ∩ 𝐴 = ∅ and thus 𝜒 [𝑓(𝑡)] = 0. This clearly contradicts the lower semi-
continuity of 𝑡 �→ ∥𝜒 [𝑓(𝑡)] ∥𝔄(𝑡). We conclude thus the inner continuity property
for the family 𝑆(𝑡) . □

Proving these properties of the resolvents is a priori a difficult task, since this
involves working both with norms and composition laws that depend on 𝑡 . But
putting together the information obtained until now, we get our abstract result
concerning spectral continuity:

Theorem 3.3. Let
{
𝒜 𝒫(𝑡)−→ 𝒜(𝑡) ∣ 𝑡 ∈ 𝑇

}
be a covariant upper semi-continuous

field of 𝐶∗-algebras indexed by a Hausdorff locally compact space 𝑇 and let 𝑓
be a smooth self-adjoint element of 𝒜 . For any 𝑡 ∈ 𝑇 we denote by 𝔄(𝑡) the
Rieffel quantization of 𝒜(𝑡) and consider 𝑓(𝑡) := 𝒫(𝑡)𝑓 as an element of 𝒜(𝑡)∞ =
𝔄(𝑡)∞ ⊂ 𝔄(𝑡), with spectrum 𝑆(𝑡) computed in 𝔄(𝑡) . Then the family {𝑆(𝑡) ∣ 𝑡 ∈
𝑇 } is outer continuous.

If the field is continuous, the family of subsets will also be continuous.

Proof. Theorem 1.2 allows us to conclude that the quantized field{
𝔄

𝔓(𝑡)−→ 𝔄(𝑡) ∣ 𝑡 ∈ 𝑇
}

has the same continuity properties as the original one.
For any 𝑧 ∈ ℂ ∖ ℝ one has (𝑓 − 𝑧)(−1)𝔄 ∈ 𝔄 and (𝑓(𝑡) − 𝑧)(−1)𝔄(𝑡) =

𝔓(𝑡)
[
(𝑓 − 𝑧)(−1)𝔄

]
. Therefore the assumptions of Proposition 3.2 are fulfilled both

in the upper semi-continuous and in the lower semi-continuous case, so we obtain
the desired continuity properties for the family of sets {𝑆(𝑡) ∣ 𝑡 ∈ 𝑇 } . □

Of course, the conclusion also holds for non-smooth self-adjoint elements
𝑓 ∈ 𝔄 . Very often they are much less “accessible” than the smooth elements, being
obtained by an abstract completion procedure, so we only make the statements
for 𝐶∞ vectors.

Specializing to the Abelian case and using the notations of Section 2 , one gets

Corollary 3.4. Assume that 𝑞 : Σ → 𝑇 is a Θ-covariant continuous surjection.
Let 𝑓 ∈ 𝒞∞(Σ) a real function and for each 𝑡 ∈ 𝑇 denote by 𝑆(𝑡) the spectrum
of 𝑓(𝑡) := 𝑓 ∣Σ𝑡 ∈ 𝒞∞(Σ𝑡) = ℭ∞(Σ𝑡) seen as an element of the non-commutative
𝐶∗-algebra ℭ(Σ𝑡) .
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Then the family {𝑆(𝑡) ∣ 𝑡 ∈ 𝑇 } of compact subsets of ℝ is outer continuous.
If 𝑞 is also open, the family of subsets is continuous.

Remark 3.5. One can use [24, Ex. 10.2] to identify quantum tori as Rieffel-type
quantizations of usual tori. One is naturally placed in the setting above and can
reproduce some known spectral continuity results [8, 3] on generalized Harper
operators.

4. Spectral continuity for operators

The standard approach of Quantum Mechanics asks for Hilbert space operators.
This can be achieved by representing faithfully the 𝐶∗-algebras 𝔄(𝑡) in a Hilbert
space of 𝐿2-functions in a way that generalizes the Schrödinger representation.
We are going to get continuity results for both spectra and essential spectra of the
emerging self-adjoint operators. We work in the following

Framework

1. (𝒞(Σ),Θ,Ξ) is an Abelian 𝐶∗-dynamical system, with Σ compact.
2. Ξ is symplectic, given in a Lagrangean decomposition Ξ = X ×X ∗ ∋ 𝑋 =

(𝑥, 𝜉) , 𝑌 = (𝑦, 𝜂) , where X is a 𝑛-dimensional real vector space, X ∗ is its
dual and the symplectic form on Ξ is given in terms of the duality between
X and X ∗ by [[(𝑥, 𝜉), (𝑦, 𝜂)]] := 𝑦 ⋅ 𝜉 − 𝑥 ⋅ 𝜂 .

3. 𝑞 : Σ → 𝑇 is a Θ-covariant continuous surjection. We also assume that each
Σ𝑡 := 𝑞−1({𝑡}) is a quasi-orbit, i.e., there is a point 𝜎 ∈ Σ𝑡 such that the
orbit 𝒪𝜎 := ΘΞ(𝜎) is dense in Σ𝑡 (we say that 𝜎 generates the quasi-orbit
Σ𝑡 ) .

4. We fix a real element 𝑓 ∈ 𝒞∞(Σ) . For each 𝑡 ∈ 𝑇 and for any point 𝜎
generating the quasi-orbit Σ𝑡 we define 𝑓(𝑡) := 𝑓 ∣Σ𝑡 and 𝑓𝜎(𝑡) := 𝑓(𝑡) ∘ Θ𝜎 :
Ξ → ℝ .

5. We set 𝐻𝜎(𝑡) := 𝔒𝔭 [𝑓𝜎(𝑡)] (self-adjoint operator in the Hilbert space ℋ :=
𝐿2(X )), by applying to 𝑓𝜎(𝑡) the usual Weyl pseudodifferential calculus. We
denote by 𝑆(𝑡) the spectrum of 𝐻𝜎(𝑡) .

Some explanations are needed. It is easy to see that each 𝑓𝜎(𝑡) belongs to
𝐵𝐶∞(Ξ), i.e., it is a smooth function with bounded derivatives of any order.
Therefore, using oscillatory integrals, one can define the self-adjoint operator in
𝐿2(X ) ∋ 𝑢

[𝐻𝜎(𝑡)𝑢] (𝑥) ≡ [𝔒𝔭(𝑓𝜎(𝑡))𝑢
]
(𝑥)

:= (2𝜋)−𝑛
∫

X

d𝑦

∫
X ∗

d𝜉 𝑒𝑖(𝑥−𝑦)⋅𝜉 [𝑓𝜎(𝑡)]

(
𝑥 + 𝑦

2
, 𝜉

)
𝑢(𝑦) .

This operator is bounded by the Calderón-Vaillancourt Theorem [9]. Using the
notation (2.2), we see that for every 𝑋 ∈ Ξ one has [𝑓𝜎(𝑡)] (𝑋) := 𝑓 [Θ𝑋(𝜎)] ; this
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depends on 𝑡 ∈ 𝑇 through 𝜎 and only involves the values of 𝑓 on the dense subset
𝒪𝜎 of Σ𝑡 . The same is true about 𝐻𝜎(𝑡), which can be written

[𝐻𝜎(𝑡)𝑢] (𝑥) = (2𝜋)−𝑛
∫

X

d𝑦

∫
X ∗

d𝜉 𝑒𝑖(𝑥−𝑦)⋅𝜉𝑓
[
Θ(𝑥+𝑦2 ,𝜉)(𝜎)

]
𝑢(𝑦) . (4.1)

It is shown in [16] that if 𝜎 and 𝜎′ are both generating the same quasi-orbit Σ𝑡 ,
then the operators 𝐻𝜎(𝑡) and 𝐻𝜎′(𝑡) are isospectral (but not unitarily equivalent
in general). Thus the compact set 𝑆(𝑡) only depends on 𝑡 and not on the choice of
the generating element 𝜎 .

Theorem 4.1. Assume the Framework above. Then the family {𝑆(𝑡) ∣ 𝑡 ∈ 𝑇 } is
outer continuous.

If 𝑞 is also open, than the family is continuous.

Proof. By Corollary 3.4, it would be enough to show for every 𝑡 that 𝑆(𝑡) coincides
with the spectrum of 𝑓(𝑡) ∈ ℭ(Σ𝑡). For this we define

𝒩𝜎 : 𝒞∞(Σ𝑡) → 𝐵𝐶∞(Ξ), 𝒩𝜎(𝑔) := 𝑔 ∘Θ𝜎

and then set

𝔒𝔭𝜎 := 𝔒𝔭 ∘ 𝒩𝜎 : 𝒞∞(Σ𝑡) → 𝔹(ℋ) .

Then one has 𝐻𝜎(𝑡) := 𝔒𝔭 [𝑓𝜎(𝑡)] = 𝔒𝔭𝜎 [𝑓(𝑡)] . It is not quite trivial, but it has
been shown in [16], that 𝔒𝔭𝜎 extends to a faithful representation of the Rief-
fel quantized 𝐶∗-algebra ℭ(Σ𝑡) in ℋ . Faithfulness is implied by the fact that 𝜎
generates the quasi-orbit Σ𝑡 , which results in the injectivity of 𝒩𝜎, conveniently
extended to ℭ(Σ𝑡) . It follows then that sp [𝐻𝜎(𝑡)] = sp [𝑓(𝑡)] , as required, so the
family {𝑆(𝑡) ∣ 𝑡 ∈ 𝑇 } has the desired continuity properties. □

We recall that the essential spectrum of an operator is the part of the spec-
trum composed of accumulation points or infinitely-degenerated eigenvalues. Let
us denote by 𝑆ess(𝑡) the essential spectrum of 𝐻𝜎(𝑡) ; once again this only depends
on 𝑡 . To discuss the continuity properties of this family of sets we are going to
need some preparations relying mainly on results from [16].

First we write each Σ𝑡 as a disjoint Θ-invariant union Σ𝑡 = Σg
𝑡 ⊔ Σn

𝑡 . The
elements 𝜎1 of Σg

𝑡 are generic points for Σ𝑡, meaning that each of them is generating
Σ𝑡 . The points 𝜎2 ∈ Σn

𝑡 are non-generic, i.e., the closure of the orbit 𝒪𝜎2 is strictly
contained in Σ𝑡 .

Let us now fix a point 𝑡 ∈ 𝑇 and a generating element 𝜎 ∈ Σ𝑡 . The monomor-
phism 𝒩𝜎 extends to an isomorphism between 𝒞(Σ𝑡) and a 𝐶∗-subalgebra ℬ𝜎(𝑡)
of the 𝐶∗-algebra 𝐵𝐶u(Ξ) of all the bounded uniformly continuous complex func-
tions on Ξ . It is shown in Lemma 2.2 from [16] that only two possibilities can
occur, and this is independent of 𝜎 : either 𝒞(Ξ) ⊂ ℬ𝜎(𝑡) (and then 𝑡 is called of
the first type), or 𝒞(Ξ)∩ℬ𝜎(𝑡) = {0} (and then we say that 𝑡 is of the second type).
Correspondingly, one has the disjoint decomposition 𝑇 = 𝑇𝐼 ⊔ 𝑇𝐼𝐼 .

Theorem 4.2. Assume the Framework above. Then the family {𝑆ess(𝑡) ∣ 𝑡 ∈ 𝑇 } is
outer continuous.
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Proof. One must rephrase the essential spectrum 𝑆ess(𝑡) := spess[𝐻𝜎(𝑡)] in conve-
nient 𝐶∗-algebraic terms. Assume first that 𝑡 is of the second type. By [16, Prop.
3.4], the discrete spectrum of 𝐻𝜎(𝑡) is void, thus one has 𝑆ess(𝑡) = 𝑆(𝑡) . If 𝑡 is of
the first type, the subset Σn

𝑡 is invariant under the action Θ and it is also closed
by [16, Prop. 2.5] . Denoting by 𝑓n(𝑡) the restriction of 𝑓(𝑡) to Σn

𝑡 , one gets an
element of 𝒞∞(Σn

𝑡 ) ⊂ ℭ(Σn
𝑡 ) with spectrum 𝑆n(𝑡). But [16, Th. 3.7] states among

others that 𝑆n(𝑡) coincides with 𝑆ess(𝑡) .

We need to construct now a suitable restricted dynamical system. Let us
consider the decomposition

Σ =
( ⊔
𝑡∈𝑇𝐼

Σ𝑡

) ⊔ ( ⊔
𝑡∈𝑇𝐼𝐼

Σ𝑡

)
=
( ⊔
𝑡∈𝑇𝐼

Σg
𝑡

) ⊔ {( ⊔
𝑡∈𝑇𝐼

Σn
𝑡

) ⊔ ( ⊔
𝑡∈𝑇𝐼𝐼

Σ𝑡

)}
=: Σd ⊔Σess .

One might set Σess
𝑡 := Σn

𝑡 if 𝑡 ∈ 𝑇𝐼 and Σess
𝑡 := Σ𝑡 if 𝑡 ∈ 𝑇𝐼𝐼 . Notice that each Σess

𝑡

is not void. This is clear for 𝑡 ∈ 𝑇𝐼𝐼 , since 𝑞 has been supposed surjective. If 𝑡 ∈ 𝑇𝐼

and Σn
𝑡 = ∅ , then Σ𝑡 = Σg

𝑡 is minimal and compact, so 𝑡 ∈ 𝑇𝐼𝐼 by Lemma 2.3
in [16], which is absurd. The disjoint union Σess := ⊔𝑡∈𝑇 Σess

𝑡 (with the topology
induced from Σ ) is a compact dynamical system under the restriction of the action
Θ of Ξ and 𝑞ess := 𝑞∣Σess : Σess → 𝑇 is a covariant continuous surjection. Thus we
can apply the previous results and conclude that {ℭ(Σess) → ℭ(Σess

𝑡 ) ∣ 𝑡 ∈ 𝑇 } is an
upper semi-continuous field of 𝐶∗-algebras; the arrows are Rieffel quantizations of
obvious restriction maps.

From all these applied to 𝑓 ∣Σess ∈ ℭ∞(Σess) it follows that{
𝑆ess(𝑡) = sp

[
𝑓(𝑡)∣Σess(𝑡)

] ∣ 𝑡 ∈ 𝑇
}

is outer continuous. □

Remark 4.3. Even in simple situations, the surjective restriction of a continuous
open surjection may not be open. So 𝑞ess may fail to be open and in general we
don’t obtain inner continuity for the family of essential spectra. On the other hand,
if openness of the restriction 𝑞ess is required explicitly, one clearly gets the inner
continuity. Since only the dynamical system (Σess,Θ,Ξ) is involved in controlling
the family of essential spectra, some assumptions weaker than those above would
suffice.

Example 4.4. To show that our results cover families of zero-order standard pseu-
dodifferential operators, one has to make some simple choices. Recall that 𝐵𝐶u(Ξ),
the unital 𝐶∗-algebra of all bounded uniformly continuous functions on Ξ, is sta-
ble under the action 𝜃 of Ξ by translations. The ∗-algebra of smooth elements is
𝐵𝐶∞(Ξ), formed of smooth functions with bounded derivatives; such functions
can be regarded as zero-order symbols in the sense of Hörmander. By Gelfand
theory, 𝐵𝐶u(Ξ) is isomorphic to 𝒞(Ω) for a compactification Ω of Ξ. Actually, if
𝑔 ∈ 𝐵𝐶u(Ξ), its image 𝑔 in 𝒞(Ω) is just the extension of 𝑔 from the dense subset
Ξ to the entire Ω. The action by translations 𝜃 of Ξ on itself extends to an action
by homeomorphisms of Ω.
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Let now 𝑇 be a locally compact space and for each 𝑡 ∈ 𝑇 let 𝑔(𝑡) be a real ele-
ment of 𝐵𝐶∞(Ξ) and 𝑔(𝑡) its continuous extension to Ω. We are also requiring that
the map 𝑇 ∋ 𝑡 �→ 𝑔(𝑡) ∈ 𝐵𝐶u(Ξ) be continuous. Denote by 𝐻(𝑡) := 𝔒𝔭[𝑔(𝑡)] the
zero-order pseudodifferential operator obtained by Weyl quantization. We claim
that both the spectra 𝑆(𝑡) and the essential spectra 𝑆ess(𝑡) of these operators form
inner and outer continuous families of compact subsets of ℝ.

To see this, construct the locally compact space Σ := Ω × 𝑇 and endow it
with the action Θ𝑋(𝜔, 𝑡) := (𝜃𝑋(𝜔), 𝑡). Of course, 𝑞 : Σ → 𝑇, 𝑞(𝜔, 𝑡) := 𝑡 is a Θ-
covariant continuous open surjection. Each quasi-orbit Σ𝑡 := 𝑞−1({𝑡}) = Ω × {𝑡}
is of the first type and can be identified with Ω. The generic points of Ω are the
elements of Ξ, while the non-generic ones are those of Ω ∖ Ξ. The restriction of 𝑞
to Σess = (Ω ∖ Ξ)× 𝑇 is still (continuous and) open.

We use the family {𝑔(𝑡) ∣ 𝑡 ∈ 𝑇 } to define a function 𝑓 : Σ → ℝ by 𝑓(𝜔, 𝑡) :=
[𝑔(𝑡)](𝜔). One checks easily that 𝑓 ∈ 𝒞∞(Σ). Choosing the generating point 𝜎 :=
(0, 𝑡) ∈ Σ𝑡, one gets 𝑓(0,𝑡) = 𝑔(𝑡), so 𝐻𝜎(𝑡) := 𝔒𝔭[𝑓𝜎(𝑡)] = 𝔒𝔭[𝑔(𝑡)] =: 𝐻(𝑡). So
the continuity of the families {𝑆(𝑡) ∣ 𝑡 ∈ 𝑇 } and {𝑆ess(𝑡) ∣ 𝑡 ∈ 𝑇 } follows from
Theorems 4.1 and 4.2. Obviously, the result for essential spectra still holds if to
each Hamiltonian 𝐻(𝑡) one adds a compact perturbation 𝑉 (𝑡).
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[7] I. Beltiţă and M. Măntoiu: Rieffel Quantization and Twisted Crossed Products, sub-
mitted.

[8] G. Elliott: Gaps in the Spectrum of an Almost Periodic Schrödinger Operator, C. R.
Math. Rep. Acad. Sci. Canada, 4, 255–259, (1982).

[9] G.B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies,
122. Princeton University Press, Princeton, NJ, 1989.



24 F. Belmonte and M. Măntoiu
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