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Chapter 2
Rheological Schemes

Abstract The traditional rheological method is supplemented by a new
element—rigid contact, which serves to take into account different resistance of
a material to tension and compression. A rigid contact describes mechanical prop-
erties of an ideal granular material involving rigid particles for an uniaxial stress
state. Combining it with elastic, plastic, and viscous elements, one can construct
rheological models of different complexity.

2.1 Granular Material With Rigid Particles

The method of rheological models is the basis of the phenomenological approach to
the description of a stress-strain state of media with complex mechanical properties,
[18, 22, 30]. Ignoring the physical nature of deformation, this method enables one
to construct mathematical models which describe quantitative characteristics with a
satisfactory accuracy (from the point of view of engineering applications) and are of
a good mathematical structure. As a rule, for the models obtained with the help of the
rheological method, solvability of main boundary-value problems can be analyzed
and efficient algorithms for numerical implementation can be easily constructed. At
the same time, with the use of conventional rheological elements (a spring simulating
elastic properties of a material, a viscous damper, and a plastic hinge) only, it is
impossible to construct a rheological scheme for a medium with different resistance
to tension and compression or for a medium with different ultimate strengths under
tension and compression.

To make it possible, we supplement the method by a new, fourth element, namely,
a rigid contact, [26–28]. It is represented schematically as two plates being in contact
(Fig. 2.1). A granular material with rigid particles, i.e. a system of absolutely rigid
balls being in contact with each other, is an ideal material whose behavior at a uniaxial
stress-strain state corresponds to this element. With tension of a system, balls roll
about and stress turns out to be zero. Following previous tension, compression goes
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8 2 Rheological Schemes

Fig. 2.1 Rigid contact
element

on with zero stresses until the balls touch each other and the system in fact returns to
its original position. Compressive strains are impermissible and compressive stresses
can be arbitrary with strain being equal to zero.

With the conventional notations, we represent the constitutive relationships of a
rigid contact as the system

σ ≤ 0, ε ≥ 0, σ ε = 0. (2.1)

The inequalities involved in this system exclude arising tensile stresses and compres-
sive strains in a granular material with rigid particles. From the equation (so-called
complementing condition) it follows that one of the quantities being considered
(stress or strain) must be zero.

It should be noted that the constitutive relationships (2.1) are incorrect in the
mechanical sense because in the general case they do not enable one to determine
uniquely acting stress from given strain and, conversely, to determine strain from
given stress. However, as will be shown further, this incorrectness can be easily
eliminated by adding regularizing elements to the rheological scheme.

Similar systems of inequalities with complementing conditions arise, for example,
in mathematical economics when solving problems of multiple objective optimiza-
tion (see, [8, 23]). It is known that such a system can be reduced to two variational
inequalities equivalent to one another (arbitrary varying quantities are marked by
tilde):

σ (ε̃ − ε) ≤ 0, ε, ε̃ ≥ 0; (σ̃ − σ) ε ≤ 0, σ, σ̃ ≤ 0. (2.2)

Indeed, let the system (2.1) be valid for σ and ε. Then either σ = 0 and ε ≥ 0,
or σ < 0 and ε = 0. In either case both inequalities (2.2) hold since, on the one
hand, σ ε̃ ≤ 0 and, on the other hand, σ̃ ε ≤ 0. Now assume that on the contrary
σ and ε satisfy the first inequality of (2.2). Then either ε = 0 and the relationships
(2.1) are evident, or ε > 0 and from the fact that strain variation may be positive
(ε̃ > ε) as well as negative (ε > ε̃ ≥ 0) it follows that σ equals zero. In this case the
relationships (2.1) are also evident. If σ and ε satisfy the second inequality of (2.2)
rather than the first one, then the system (2.1) is valid for them. This is proved in a
similar way.

The advantage of the formulation of constitutive relationships of a rigid contact in
terms of variational inequalities over the equivalent formulation (2.1) lies in the fact
that these inequalities admit a generalization to the case of a spatial stress-strain state
of a medium. This generalization is given in Chap. 4. It is performed with the help



2.1 Granular Material With Rigid Particles 9

Fig. 2.2 Stress potential a and strain potential b

of tensor representations by introducing cones of admissible strains and stresses.
In the uniaxial state considered now these cones are equal to C = {ε ≥ 0} and
K = {σ ≤ 0}, respectively. To state the potential nature of the relationships, we
represent (2.2) in the following form:

σ ∈ ∂Φ(ε), ε ∈ ∂Ψ (σ). (2.3)

HereΦ and Ψ are the stress and strain potentials, the symbol ∂ denotes subdifferen-
tial.

Contrary to the classical models of mechanics of deformable media, in this case
the potentials are not differentiable and even continuous. They are defined in terms
of the indicator functions of the cones C and K :

Φ(ε) =
{

0, if ε ∈ C,
+∞, if ε /∈ C,

Ψ (σ ) =
{

0, if σ ∈ K ,
+∞, if σ /∈ K ,

for which the conventional notations δC (ε) and δK (σ ) are used further. The graph
of the former function is formed by two positive semi-axes on the ε y plane and the
graph of the latter one by negative and positive semi-axes on the σ y plane (Fig. 2.2).
Both of them can be obtained by passage to the limit with the help of sequences
of continuously differentiable functions whose graphs are shown as dashed lines.
Smoothed functions can be considered as potentials of special nonlinearly elastic
media with different strength properties to tension and compression. For such media
the nonlinear Hooke law is valid: stresses are expressed in terms of derivatives with
respect to strains and vice versa. In the limit the derivatives, with which the angular
coefficients of tangents to graphs of smooth potentials are identified, are transformed
to subdifferentials of the indicator functions. For the interior points of the cones C
and K they tend to zero and for the boundary points (ε = 0 and σ = 0, respectively)
they may take any limit position shown in Fig. 2.2 as a fan of straight lines.

A rigorous mathematical definition of subdifferential of a convex function and
some its properties required for the study of models of spatial deformation of a
granular material are given in Chap. 3. Here, basing on the intuitive notion described
above, we only state that subdifferential of a function at a given point is the set formed
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by angular coefficients of all straight lines, “tangent” to the graph of the function at
this point and lying below the graph. Thus, if ε ∈ C and σ ∈ K then

∂δC (ε) = {
σ̃

∣∣ σ̃ (ε̃ − ε) ≤ 0 ∀ ε̃ ≥ 0
}
,

∂δK (σ ) = {
ε̃

∣∣ (σ̃ − σ) ε̃ ≤ 0 ∀ σ̃ ≤ 0
}
,

and going from Eq. (2.2) to (2.3) is a trivial change of notations for a more illustrative
geometric interpretation. We also note that it makes no sense to look for a form
of phenomenological constitutive relationships for an ideal granular material with
rigid particles which is more simple than (2.3) since the notions and notations being
used describe a threshold nature of deformation of a material with extreme precision.
Besides, they are a simple generalization of the constitutive equations of the nonlinear
elasticity theory to the case of non-differentiable potentials.

2.2 Elastic-Visco-Plastic Materials

A known way of regularization of incorrect mechanical model is in going to a more
complex model describing adequately special features of deformation of a material
which are not taken into account. As a version of complication, we consider the
model of an ideal granular material with elastic particles whose rheological scheme
is given in Fig. 2.3a. According to this scheme, strain is equal to the sum of an elastic
component εe = a σ (computed by the Hooke law), where a > 0 is the modulus of
elastic compliance of a spring, and strain εc = ε − εe of a rigid contact. If σ < 0
then εc = 0 and ε = a σ < 0, i.e. elastic compression takes place. If σ = 0 then
εe = 0 and ε ≥ 0, i.e. the loosening of a material is observed. In the general case
the real stress is determined in terms of the strain by the formula

σ = ε − |ε|
2 a

. (2.4)

On the contrary, generally speaking, the strain is not uniquely determined in terms of
given stress. Thus, the model of an elastic granular material is as much incorrect as
the model of an elastic-plastic material with hardening being not taken into account,
[9]. The constitutive relationships can be represented in the potential form (2.3) with
potentials

Φ(ε) =
{
ε2/(2 a), if ε < 0,
0, if ε ≥ 0,

Ψ (σ ) = a σ 2

2
+ δK (σ ).

The former potential is a differentiable function and the latter one takes infinite
values exterior to the cone K . This expression for the stress potential is obtained as a
solution of the differential equation ∂Φ/∂ε = σ with the right-hand side (2.4), and
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Fig. 2.3 Rheological
schemes: a elastic granu-
lar material, b viscoelastic
material (Maxwell model),
c viscoelastic material
(Kelvin–Voigt model)

for the strain potential it is obtained as a consequence of an additive representation
in the form of the sum of potentials of an elastic spring and a rigid contact.

The rheological schemes shown in Figs. 2.3b,c correspond to granular materials
which show viscoelastic properties in the compression process. In both cases, ideal
(cohesionless) materials are considered. The scheme in Fig. 2.3b describes compres-
sion with the help of the Maxwell model and the scheme in Fig. 2.3c with the help of
the Kelvin–Voigt model. For the former scheme from Eq. (2.4), taking into account
the Newton law σ = η ε̇v , we have

2 a η ε̇v = ε − εv − |ε − εv| ≤ 0. (2.5)

Here η is the viscosity coefficient and ε̇v is the rate of the viscous strain. If the
time-dependence of stress σ(t) ≤ 0 is known, then the viscous strain component
is determined by integration of the equation corresponding to the Newton law. To
determine total deformation, Eq. (2.5) whose solution is, in general, ambiguous is
used. When, on the contrary, the dependence ε(t) is given, then, integrating the
differential Eq. (2.5), we can determine the dependence εv(t) and, hence, σ(t).

The solution of the differential equation is conveniently interpreted geometrically
on the ε εv plane. For ε ≥ εv the rate of viscous strain equals zero and for ε < εv

the equation a η ε̇v = ε − εv holds. Hence,

εv = εv0 exp
(
− t − t0

a η

)
+ 1

a η

t∫
t0

ε(t1) exp
(
− t − t1

a η

)
dt1,

where εv0 and t0 are constants. In Fig. 2.4 the typical deformation curve is shown.
The ray O P0 corresponds to tension of a material for εv0 = 0 and the curve O P1 P2
depending on ε(t) corresponds to compression. At the point P1 the strain rate changes
its sign from negative to positive. At the point P2 an irreversibly compressed material
transforms to a loosened state. In the case of slow (quasistatic) compression, the curve
O P1 P2 tends to the rectilinear segment O P2 of the ray ε = εv ≤ 0 shown as a dashed
line. When repeating a deformation cycle, a similar curve issues out of the point P2
rather than of O .
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Fig. 2.4 Deformation curve
(Maxwell model)

Fig. 2.5 Deformation curve
(Kelvin–Voigt model)

For the latter scheme, stress consists of two components (elastic and viscous)
σ = σ e + σ v and strains of viscous and elastic elements coincide. Thus,

ε = εc + εv, σ = εv

a
+ η ε̇v. (2.6)

For εc > 0, when a material is loosened, stress equals zero, hence,

εv = εv0 exp
(
− t − t0

a η

)
. (2.7)

For εc = 0, when a material is in a compact state, stressσ ≤ 0 is calculated from given
strain by Eq. (2.6) for εv = ε. The typical deformation curve for given dependence
ε(t) is shown in Fig. 2.5. Tension is described by the ray O P0 and compression
by the rectilinear segment O P1. At the point P1 the strain rate ε̇ changes sign. In
the segment P1 P2 unloading is performed for εc = 0 and σ < 0. The viscoelastic
component of strain relaxes. Stress turns out to be equal to zero at some point P2
and the further process is consistent with Eq. (2.7). The curve P2 P3 P4 is associated
with this equation. At the point P4 a cycle of repeated deformation starts.

Total strain is uniquely determined from a given dependence σ(t) ≤ 0 only in a
viscoelastic compression state for εc = 0,
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Fig. 2.6 Rheological scheme
with plastic element

εv = εv0 exp
(
− t − t0

a η

)
+ 1

η

t∫
t0

σ(t1) exp
(
− t − t1

a η

)
dt1.

In a tension state the model remains incorrect due to ambiguity of strain of a contact.
The rheological scheme of an ideal elastic-plastic granular material is shown

in Fig. 2.6. With tension or compression under the action of stress whose absolute
value does not exceed the yield point σs of a plastic hinge, such a material behaves
according to the scheme shown in Fig. 2.3a. As the yield point is achieved, with
compression the material passes to a plastic flow state. In this state, the strain rate ε̇
can take an arbitrary negative value. If, following a plastic flow state, stress decreases
(unloading occurs) but remains compressing, then the strain rate is expressed in terms
of the stress rate by the linear Hooke law. Stresses exceeding σs are impermissible.

Total strain involves three components associated with three elements of the
scheme: ε = εe + εc + ε p. Due to (2.4)

2 a σ = ε − ε p − |ε − ε p| ≤ 0.

Taking into account the sign of stress, we write the constitutive relationships of a
plastic hinge as a system of inequalities with the complementing condition

ε̇ p ≤ 0, σ ≥ −σs, (σ + σs) ε̇
p = 0.

Similarly to (2.1), this system can be transformed to equivalent variational inequal-
ities or reduced to the potential form. To this end, we first consider the potential
representation of the Newton law for a viscous flow:

σ = ∂D(ε̇v)

∂ε̇v
, ε̇v = ∂H(σ )

∂σ
.
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(a) (b)

Fig. 2.7 Dissipative potentials of stresses a and strain rates b

If the coefficient of viscosity is constant, the dissipative potentials D = η (ε̇v)2/2
and H = σ 2/(2 η) are quadratic functions (curves 1 in Fig. 2.7). Deforming the
graphs with preservation of convexity, we can obtain potentials for a material with
a variable viscosity coefficient depending on achieved stress or instant strain rate.
To retain consistency of potentials, the graphs D and H should be deformed so that
these functions are expressed in terms of one another with the help of the Legendre
tangent transform

H(σ ) = σ ε̇v − D(ε̇v).

Convexity is required for a viscosity coefficient to be positive. The limit version
of convex curves (the piecewise linear curves 2) corresponds to the plastic state of
a material. The existence of corner points on graphs of plastic dissipative poten-
tials leads to the necessity of using subdifferential which generalizes the notion of
derivative. The constitutive relationships σ ∈ ∂D(ε̇ p) and ε̇ p ∈ ∂H(σ ) in terms of
subdifferentials result in two inequalities

σ (ẽ − ε̇ p) ≤ D(ẽ)− D(ε̇ p) ∀ ẽ,

(σ̃ − σ) ε̇ p ≤ 0, |σ | ≤ σs, |σ̃ | ≤ σs .

Their equivalence can be proved on the basis of the results given in the next chapter.
For an elastic-plastic granular material (Fig. 2.6), this leads to the variational

inequality
(σ̃ − σ)(a σ̇ − ε̇) ≥ 0, |σ | ≤ σs, |σ̃ | ≤ σs, (2.8)

which provides an exact description of rheology of a plastic element. Consider the
σ – ε diagrams of the uniaxial deformation for such a material (Fig. 2.8) constructed
with the help of (2.8). The σ – ε diagram shows the active loading as a three-segment
broken line whose segments correspond to the loosening of a material (the segment
O P0) and to the elastic and plastic compression (O P1 and P1 P2, respectively). The
unloading following the plastic flow of a material is described as the rectilinear
segment P2 P3 which is parallel to the original elastic segment of the diagram.
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Fig. 2.8 Diagram of uniaxial
tension–compression

Fig. 2.9 Complex rheological schemes: a elastic-plastic granular material, b elastic-visco-plastic
granular material (Schwedoff–Bingham model), c regularized variant of previous scheme

Combining elastic, plastic and viscous elements with a rigid contact, we can
construct constitutive relationships for granular materials of more complex rheology.
Examples of more complex schemes are given in Fig. 2.9. The scheme in Fig. 2.9a
describes a granular material whose deformation with compressive stresses is defined
by the theory of elastic-plastic flow with linear hardening. The schemes in Figs. 2.9b,c
correspond to the theory of viscoplastic Schwedoff–Bingham flow.

In conclusion, it should be noted that a rigid contact, using in the given approach
to take into account different compression and tension strength properties of the
granular material and being in fact a nonlinearly elastic element, describes a thermo-
dynamically reversible process. Irreversible deformation of a material which results
in dissipation of mechanical energy is taken into account only when viscous or plastic
elements are involved into the rheological scheme.

2.3 Cohesive Granular Materials

Further development of the model of a granular material leading to constitutive rela-
tionships correct in the mechanical sense consists in the phenomenological descrip-
tion of connections between particles. To this end, in parallel with a rigid contact,
an elastic, viscous, or plastic element is involved into a scheme depending on prop-
erties of the binder. The simplest rheological scheme taking into account elastic
connections between absolutely rigid particles is given in Fig. 2.10a. Figure 2.10b
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Fig. 2.10 Elastic connec-
tions: a elastic material with
rigid particles, b heteromodu-
lar elastic material

corresponds to a model of a heteromodular elastic material whose elastic properties
with tension are characterized by two series-connected springs and with compression
by only one of these springs. In this case the constitutive equations

ε =
{
(a + b) σ, if σ ≥ 0,
a σ, if σ < 0,

(a and b are the moduli of elastic compliance) describe a one-to-one dependence
between stress and strain.

Viscous properties of a binder are taken into account in the rheological schemes
in Fig. 2.11. The scheme given in Fig. 2.11a serves to describe a cohesive granular
material with absolutely rigid particles. In the scheme shown in Fig. 2.11b particles
with compression are deformed according to the elastic law. More complicated rhe-
ology can be taken into account with the help of the models considered in the above
section. According to the second scheme, for εc = ε − a σ > 0 the strain of the
material obeys the Maxwell model. If the dependence σ(t) is given, the unknown
time-dependence of strain is uniquely determined by integrating the equation

ε̇ = a σ̇ + σ

η
, (2.9)

whose solution describes a real process provided that ε ≥ a σ . With violating this
condition, strain is determined from the Hooke law as ε = a σ . If the dependence
ε(t) is given, then the function σ(t) describing the stress state of a material with
the same condition is determined by integrating Eq. (2.9). Otherwise real stress is
determined from the Hooke law. Thus, the model is correct for an arbitrary program
of deformation or loading.

In Fig. 2.12a the rheological scheme of a material involving rigid particles with
plastic connections is given. Deformation of such a material is possible provided that
the absolute value of stress is equal to the yield point of a plastic hinge. Compression
is admissible only after previous tension. Any deformation is thermodynamically
irreversible. The rheological scheme given in Fig. 2.12b takes into account, along
with plastic properties of a binder, its elastic properties and elastic properties of
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Fig. 2.11 Viscous connec-
tions: a cohesive material with
rigid particles, b viscoelastic
granular material

Fig. 2.12 Plastic connec-
tions: a plastic material with
rigid particles, b elastic-plastic
granular material

particles. This model is quite correct since the corresponding diagram of uniaxial
tension–compression (Fig. 2.13) is strictly monotone on the active loading segments
O P0 and O P1 P2 as well as on the unloading segment P2 P3 P4. On the segments
O P0 and O P1 elastic deformation of a material is observed. The segment P1 P2
of the diagram describes the process of plastic tension of natural (no hardening)
material. In this case

ε = a σ + b (σ − σs).

On the elastic unloading segment P2 P3 strain of the upper spring is equal to a σ and
the strain of the system of parallel elements is constant:

εe = ε p = const, σ e = ε p

b
, σ p = σ − σ e.

At the point P3 stress of a plastic hinge achieves the yield point (−σs) with com-
pression and a material is transformed into a state of plastic flow (the segment P3 P4)
described by the equation

ε = a σ + b (σ + σs).

At the point P4 symmetric to P1 contact is closed up, i.e. its strain εc = b (σ + σs)

turned out to be zero. Thus, in the framework of the model with the rheological scheme
given in Fig. 2.12b, with the cyclic loading, the translational strain hardening of the
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Fig. 2.13 Diagram of uniaxial
tension–compression

Fig. 2.14 Scheme involving
four different elements

material is observed. However, as the cycle is completed, the yield surface takes its
original position.

More complex rheological properties of particles and the binder are taken into
account in the scheme involving four elements of different types shown in Fig. 2.14.
This is probably the only version of the configuration of four elements which results in
a model correct in the mechanical sense. Judging by this scheme, in the tension state,
where εc = εv − ε p > 0, a plastic hinge has no effect, hence, behavior of a material
is described by the Maxwell model of a viscoelastic medium. In the compression
state, where a contact is closed up, a material behaves as the Schwedoff–Bingham
elastic-visco-plastic medium. The equations

σ = σ e = σ v, ε = εe + εv, εe = a σ, η ε̇v = σ

form a total system for determining strain from given stress or stress from given
strain for εv > ε p. Hence it follows that strain is determined in terms of stress by
integrating the differential equation (2.9) with respect to ε and stress is determined
in terms of strain with the help of the same equation with respect to σ . In this case
the general solution is given by the integral

σ = s(t) ≡ σ0 exp
(
− t − t0

a η

)
+ 1

a

t∫
t0

exp
(
− t − t1

a η

)
dε(t1), (2.10)



2.3 Cohesive Granular Materials 19

where the integration constant σ0 is determined from the condition for continuity
of stress with change of mode, t0 is the instant of going to a given mode. Thus, all
unknown functions turn out to be uniquely determined.

With compression, different variants may take place. If compression follows pre-
vious tension of a material and, hence, εc > 0, then the process is described by
Eqs. (2.9), (2.10) up to the instant at which a contact is closed up. For εc = 0 the
equations

σ = σ e = σ v + σ c, σ c = σ p, ε = εe + εv, εv = ε p

are valid. For 0 > σ > −σs a plastic element blocks deformation of a viscous
damper and viscous stress σ v turns out to be zero. In this state a material is deformed
according to the Hooke law ε = a σ . Finally, for σ ≤ −σs the equality σ p = −σs

holds, hence,

ε̇ = a σ̇ + σ + σs

η
, σ = s(t)− σs . (2.11)

All unknown functions are also uniquely determined.
If a loading or deformation program involves alternating tension and compression

segments then the unknown time-dependences of strain and stress, respectively, can
be obtained in a closed form with the help of Eqs. (2.9), (2.10), and (2.11). Only a
choice of an appropriate mode presents difficulties. To give a rigorous mathematical
formulation of the problem in the general case (for arbitrary loading and deformation
programs) which allows one to solve the problem of choice implicitly, we supplement
the equations with universal constitutive relationships for a rigid contact and a plastic
hinge in the form of variational inequalities (2.2) and (2.8):

σ c (ε̃ − εc) ≤ 0, εc ≥ 0, ε̃ ≥ 0,

(σ̃ − σ p) ε̇ p ≤ 0, |σ p| ≤ σs, |σ̃ | ≤ σs,

which involve arbitrary admissible variations of stress and strain. Besides, we for-
mulate initial conditions for viscous and plastic elements for which the constitutive
relationships are of the differential form: εv(0) = ε p(0) = 0.

2.4 Computer Modeling

The construction and study of constitutive relationships for materials whose rheo-
logical schemes involve a reasonably large number of elements are rather tedious.
In this section, a way of the solution of this problem with the use of general-purpose
computational algorithms implemented in the form of a computer system with ele-
ments of visual design, [31], is proposed.

In the general case the analysis of rheological properties of materials with uniaxial
deformation is reduced to two problems considered above. In the first problem a
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loading program (the time-dependence of stressσ ) is known and the time-dependence
of strain ε(t) is unknown. In the second one, conversely, a deformation program is
given and the time-dependence of stress is to be determined. In the case of constant
tensile or compressive stress, the solution of the first problem enables one to construct
the creep diagrams of a material. The second problem provides curves of the stress
relaxation in the case of constant strain.

If the scheme of a material being studied involves nonlinear elements (plastic
hinges or rigid contacts) then in a natural way the question of correctness of a rheo-
logical model arises. A model is assumed to be correct if both problems are uniquely
solvable and stable. For example, the model of ideal plasticity whose rheological
scheme involves a single element, namely, a plastic hinge, is among incorrect mod-
els. For given stress being equal to the yield point, strain can not be uniquely deter-
mined in the framework of this model. The model of an ideal granular material with
absolutely rigid particles, whose rheological scheme is represented by a rigid contact
(Fig. 2.1), is another example of an incorrect model. In this case, for σ = 0 strain is
not uniquely determined, besides, stress is not uniquely determined for ε = 0.

Among correct models, further we consider only the models which enable us to
determine stresses and strains of all elements of a rheological scheme. Most likely
it is difficult to formulate in the general case the conditions under which a model
has this property. Because of this, further this question is related to correctness
of a computational algorithm being applied. An example of a rheological scheme
involving four base elements of different types which is correct in this sense is given
in Fig. 2.14 of the previous section.

In the general case a rheological scheme involving n elements is subdivided into m
levels depending on the position of connective elements. Each level is characterized
by strain εi , i = 1, . . . ,m. Elements are numbered in a strictly specified order: first
elastic elements, next viscous ones, then rigid contacts, and finally plastic hinges.
To each of them, there corresponds stress σ j , j = 1, . . . , n. Let U be a vector of
dimension N = m + n + 1 such that these m + n quantities and one more quantity
(the unknown value of total strain or of resulting stress, according to the type of
a problem) are its components. A rheological scheme of the general form leads
to a system involving algebraic equations (equilibrium conditions and constitutive
equations for elastic elements)

N∑
j=1

ai j U j = fi (t), i = 1, . . . , N1, (2.12)

ordinary differential equations specifying viscous elements

N∑
j=1

ai j U̇ j = Ui , i = N1 + 1, . . . , N2, (2.13)

and variational inequalities for rigid contacts
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Fig. 2.15 Graphical repre-
sentation of a scheme

(Ṽi − Vi )Ui ≤ 0, Vi ≡
N∑

j=1

ai j U j ≥ 0, Ṽi ≥ 0, i = N2 + 1, . . . , N3, (2.14)

and for plastic hinges

(Ũi − Ui )

N∑
j=1

ai j U̇ j ≤ 0, |Ui | ≤ U∗
i , |Ũi | ≤ U∗

i , i = N3 + 1, . . . , N , (2.15)

with the initial conditions

N∑
j=1

ai j U j (0) = 0, i = N1 + 1, . . . , N2, N3 + 1, . . . , N .

The coefficients ai j involved in the system (2.12)–(2.15) may be equal to 0, ± 1 or
take the values of the moduli of elasticity and the viscosity coefficients.

For example, the rheological scheme shown in Fig. 2.14 has three levels (m = 3,
n = 4) whose boundaries pass through the nodes of connections (see Fig. 2.15).
Strains of elements are determined by the formulae εe = ε1, εv = ε2 + ε3, ε p = ε2,
εc = ε3. The elements are numbered in the following order: elastic (e), viscous (v),
a rigid contact (c), and a plastic hinge (p). For this scheme N1 = 5, N2 = 6, N3 = 7,
N = 8. In the first problem a vector of unknown functions is represented in the form
U = (ε, ε1, ε2, ε3, σ1, σ2, σ3, σ4). In the second problem, in place of total strain
ε = εe + εv , stress σ = σ e = σ1 is repeated in this vector. Rectangular matrix
A ∼ ai j and vector F ∼ fi can be composed of the coefficients of the equations and
inequalities. For the first problem
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 −1 1 0 1
0 0 0 0 0 0 1 −1
0 −1 0 0 a 0 0 0
0 0 η η 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛
⎜⎜⎜⎜⎝

0
σ(t)

0
0
0

⎞
⎟⎟⎟⎟⎠ .

For the second problem

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 0 0
−1 0 0 0 1 0 0 0
0 0 0 0 −1 1 0 1
0 0 0 0 0 0 1 −1
0 −1 0 0 a 0 0 0
0 0 η η 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛
⎜⎜⎜⎜⎝

ε(t)
0
0
0
0

⎞
⎟⎟⎟⎟⎠ .

It is evident that a rheological scheme of any level of complexity can be described
with the help of the system (2.12)–(2.15). Approximation of the derivatives involved
in this system leads to the equations and inequalities

N∑
j=1

ai j U k+1
j = f k+1

i ,

N∑
j=1

ai j
(
U k+1

j − U k
j

) = 	t U k+1
i , (2.16)

(
Ṽi − V k+1

i

)
U k+1

i ≤ 0, V k+1
i =

N∑
j=1

ai j U k+1
j ≥ 0, Ṽi ≥ 0, (2.17)

(
Ũi − U k+1

i

) N∑
j=1

ai j
(
U k+1

j − U k
j

) ≤ 0,
∣∣U k+1

i

∣∣ ≤ U∗
i , |Ũi | ≤ U∗

i . (2.18)

The limits of variation of subscript i which are given in the corresponding formulae
(2.12)–(2.15) are omitted here for brevity.

Repeating the reasoning, given in Sect. 2.1 when justifying the formulation of
constitutive relationships for a rigid contact in the form of the variational inequalities
(2.2), it is easy to show that the inequality (2.17) is equivalent to the alternative: either
V k+1

i = 0 and at the same time U k+1
i ≤ 0 or V k+1

i > 0 and U k+1
i = 0. In a similar

way, the inequality (2.18) is reduced to the choice of one of three alternatives:
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(i)
∣∣U k+1

i

∣∣ < U∗
i ,

N∑
j=1

ai j
(
U k+1

j − U k
j

) = 0,

(ii) U k+1
i = U∗

i ,

N∑
j=1

ai j
(
U k+1

j − U k
j

) ≥ 0,

(iii) U k+1
i = −U∗

i ,

N∑
j=1

ai j
(
U k+1

j − U k
j

) ≤ 0.

For the first variant, stress of a plastic hinge is lower than the limit level, hence, the
plastic strain rate equals zero. For the second variant, on tension the stress coincides
with the yield point, hence, the strain rate is non-negative. For the third variant,
on compression the stress achieves the yield point, therefore the strain rate is less
than or equal to zero. Thus, the system (2.16)–(2.18) can be solved numerically
with the help of an search algorithm among a finite number of admissible variants.
At each step of this algorithm, a linear system involving Eqs. (2.16) and equations
corresponding to the variational inequalities (2.17), (2.18) is solved. Going to the
next step is performed only if an obtained solution does not satisfy some restriction
(inequality). In this case the corresponding equation is replaced with the alternative
one. If all restrictions are satisfied, then the process of search is finished with going
to the next time level.

To accelerate calculation, the multiple solution of the system (2.16) may be elimi-
nated. To this end, all components of the vector U except stresses of plastic hinges are
determined from Eqs. (2.16) and the equations for V k+1

i involved in (2.17). Stresses
of plastic hinges are assumed to be arbitrary. Strains of rigid contacts remain undeter-
mined as well. More exactly, a basis of the space of solutions of the system of linear
algebraic Eqs. (2.16), (2.17) is constructed. The dimension of this space must be
equal to the number of rigid contacts and plastic hinges. This requirement is among
the conditions of correctness of a rheological scheme. In practice this condition is
easily verified. If the rank of a matrix consisting of the coefficients of the system is
less than N3 then the scheme is inappropriate.

Then the problem is reduced to the solution of the variational inequalities (2.17),
(2.18) for stresses in plastic hinges and strains of rigid contacts with the help of the
search algorithm described above. At each step of the algorithm the equations sets
of dimension N − N2 are solved. The requirement of existence and uniqueness of a
solution of the variational inequalities as well as the condition of convergence of the
algorithm impose additional restrictions on correctness of a scheme.

In the general case the system of linear algebraic equations, which follows from
(2.16), (2.17), at the (k + 1)st time step has the form
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N3∑
j=1

ai j U k+1
j = f k+1

i −
N∑

j=N3+1

ai j U k+1
j , i = 1, . . . , N1,

N3∑
j=1

āi j U k+1
j =

N∑
j=1

ai j U k
j −

N∑
j=N3+1

ai j U k+1
j , i = N1 + 1, . . . , N2,

N3∑
j=1

ai j U k+1
j = V k+1

i −
N∑

j=N3+1

ai j U k+1
j , i = N2 + 1, . . . , N3,

where āi j = ai j −	t δi j (δi j is the Kronecker symbol). We assume that the determi-
nant of the square matrix, composed of the coefficients in the left-hand side of this
system, differs from zero. Thus, from the system we can express

U k+1
i =

N∑
j=N2+1

bi j V k+1
j + gk+1

i , i = 1, . . . , N3. (2.19)

Here bi j are the coefficients calculated from the coefficients ai j and the inverse matrix
of the system, gk+1

j are the quantities depending on f k+1
j and U k

j , V k+1
j = U k+1

j for
j = N3 + 1, . . . , N .

Substituting Eqs. (2.19) into the inequalities (2.17), (2.18), we obtain a variational
inequality in the matrix form with simple constraints (individual for each component
of the unknown vector)

(Ṽ − V)(C V − Y) ≥ 0, V− ≤ V ≤ V+, V− ≤ Ṽ ≤ V+, (2.20)

where C and Y are a square matrix and a vector, respectively, (rows and columns are
numbered beginning with N2 + 1 rather than with 1) composed of the coefficients
ci j = −bi j , yk+1

i = gk+1
i for i = N2 + 1, . . . , N3 and

ci j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
N3∑

l=1
ail bl j , if j = N2 + 1, . . . , N3,

−ai j −
N3∑

l=1

ail bl j , if j = N3 + 1, . . . , N ,

yk+1
i =

N3∑
j=1

ai j gk+1
j −

N∑
j=1

ai j U k
j
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for i = N3 + 1, . . . , N . The components of the vector V+ corresponding to rigid
contacts are equal to +∞, for plastic elements V +

i = U∗
i . The vector V− is composed

of zeroes and negative quantities −U∗
i , respectively.

If the matrix C is positive definite then by the existence and uniqueness theorem
(its proof is given in Sect. 3.2 of the next chapter) the variational inequality (2.20)
has a unique solution. Numerical experiments with different rheological schemes
show that the search process also converges. At the same time, for a wide class
of schemes, in particular, for the scheme involving four rheological elements of
different types considered above, the matrix C is nonnegative definite rather than
positive definite. In this case the algorithm sometimes leads to infinitely repeating
cycles. This situation can be improved by adding a small regularizing parameter to
the diagonal elements which corresponds to involving a system of elastic elements
of small rigidity in a rheological scheme in parallel with plastic hinges and rigid
contacts. There is no assurance that a sequence of successive solutions converges
as a regularization parameter tends to zero, however, it is sufficient to make an a
posteriori convergence test by monotone decreasing the value of this parameter in
computations.

This algorithm is implemented in the general form in the Delphy 5 object program-
ming environment. The values of phenomenological parameters for elastic, viscous,
and plastic elements are input variables for the computer system worked out. A
scheme to be studied is constructed by tools of visual design with the use of graphic
primitives. An example of the assignment of a concrete scheme involving four ele-
ments of different types is shown in Fig. 2.15. At the output the system enables one to
obtain graphs of the strains and stresses variation in elements of a scheme depending
on time as well as graphs of total strain ε(t) and resulting stress σ(t). Testing the
algorithm was performed on the solutions obtained by the formulae (2.10), (2.11)
and showed that the computational error of the algorithm corresponds to the first
order of approximation of the implicit scheme.

The work technique with the system is as follows. To develop a new rheological
scheme, one should choose an option or to press a key on the toolbar. In so doing,
the scheme editor, i.e. a program dealing with a set of tools and objects with the
help of which an arbitrary scheme is created, is started. Rheological elements are
successively marked on a workspace with simultaneously specifying the parameters.
A workspace is a space with a grid marked on it intended for the exact positioning
of elements. For convenience, the so-called object inspector being a set of elements
which can be placed in the workspace is located at the top right (Fig. 2.16). The
object inspector has several editing fields which serve for the change of parameters
and elements of a scheme. Thus, parameters of elements remain available for editing
after they are introduced into a rheological scheme. It is sufficient to click the required
elements and to change the corresponding values in the object inspector.

When placed in the workspace, an element can be stretched or compressed ac-
cording to topology of a scheme. An element introduced mistakenly can be deleted
or moved to other part of the workspace by the choice of corresponding option of
the contextual menu which is defined for each element. The operation with elements
can be also performed by “hot keys”.
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Fig. 2.16 Object inspector

The results of the assignment of a rheological scheme are saved in a file of special
format formed by the system. Moreover, the system by itself keeps track of changes in
a scheme and, if any, on exit a dialog window on its save is displayed. An alternative
way of the assignment of a scheme, namely, loading from an existing file, is provided.
When loading, a file name is displayed and file format is tested for compliance with
the system.

Once the system has been defined, it should be pointed out which of two problems
is to be solved (the problem on determining strain from given stress or, conversely,
stress from given strain). The possibility to use time-dependent functions is realized
with the help of a syntax analyzer of formulae. A syntax analyzer is a special function
subprogram exported from a dynamic library involved in the project. A line with a
formula and a list of values of the variables involved in the formula are transferred to
the subprogram as parameters and at the output the calculated value of the function is
obtained. The formula may involve the signs of mathematical operations (addition,
subtraction, multiplication, division, raising to a power, extraction of a root) as well
as all elementary functions.

Further computational procedures implementing this algorithm are started. In
these procedures, a basis of the space of the solutions of the system (2.16) is con-
structed with the Gauss method with the choice of principal element. This method
is also applied in the solution of the systems of equations which arise when imple-
menting the variational inequality (2.20). Once computations have been performed,
the system provides a possibility to output data in the form of graphs on a display or
to an output file (a text file with separators) which can be used for analysis in other
graphic editors.

The results of calculations obtained with the help of the computer system for the
scheme involving four rheological elements (Fig. 2.14) are shown in Figs. 2.17–2.23.
They represented in the form of diagrams of variation of strain with time for the cyclic
loading with a constant and linearly increasing stress amplitude. On all graphs the
curves 1 correspond to the time-dependence of stress σ(t), the curves 2 to total strain
ε(t), and the curves 3 to strain εc(t) of a rigid contact. The solution is given in the
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Fig. 2.17 Loading for
σ(t) = −0.01 cos t

Fig. 2.18 Loading for
σ(t) = −0.001 t cos t

Fig. 2.19 Loading for
σ(t) = −0.001 t cos 2 t

dimensionless variables (τ = a η is the characteristic time of relaxation):

t̄ = t

τ
, σ̄ = a σ, ε̄ = ε, ā = 1, σ̄s = a σs, η̄ = a η

τ
= 1.



28 2 Rheological Schemes

Fig. 2.20 Loading for
σ(t) = −0.001 t cos 3 t

Fig. 2.21 Loading for
σ(t) = −0.001 t cos 5 t

The dimensionless yield point σ̄s (further a bar over dimensionless quantities is
omitted) is equal to 0.005.

Analysis shows that for a constant amplitude a rigid contact is in a closed state
only during the initial time interval within the first period of loading. Later on a
medium adapts itself to the periodic load and never achieves a compaction mode
(Fig. 2.17). In the case of an increasing amplitude, the interval of a closed state of a
contact is periodically repeated (Figs. 2.18 and 2.19).

With increasing frequency (see Figs. 2.20 and 2.21), the curve 2 approaches to
the curve 1. These curves can coincide exactly only in the case of a rheological
scheme involving a single elastic element, hence, the influence of viscosity, plastic-
ity, and heterostrength in comparison with elastic properties of a material becomes
insignificant with increasing a loading frequency.

The graphs which describe variations of stresses and strains for the same rhe-
ological scheme with the same parameters for given total strain ε(t) varying by a
periodic law are given in Figs. 2.22 and 2.23. As before, the curves 1 correspond to
time-dependence of stress and the curves 2—of strain. From the graphs of strain of a
rigid contact (curves 3) it follows that a medium does not adapt itself to periodic de-



2.4 Computer Modeling 29

Fig. 2.22 Deformation for
ε(t) = −0.015 cos t

Fig. 2.23 Deformation for
ε(t) = −0.015 cos 2 t

formation with a constant amplitude. At each cycle a compaction state of a medium
where a contact is closed up is changed by a loosening state.

A comparison of Figs. 2.22 and 2.23 shows that with increasing a frequency the
stress and strain curves approach to each other. Thus, in the case of a high-frequency
deformation viscoplastic properties have a weak effect on a stress state of a material.
An elastic element of a rheological scheme for which dimensionless dependencies
σ(t) and ε(t) coincide is of first importance.

Other examples of the studies of rheological schemes for materials with different
tensile and compressive strengths with the help of the computer system presented
above are given in the following sections.

2.5 Fiber Composite Model

At the present level of development of a production technology of artificial materials,
including those of engineering plastics, high-polymeric materials, and composites
of various structures, rheology being a classical field of mechanics goes from the
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Fig. 2.24 Rheological
scheme of a thread: a rigid
contact of opposite polarity,
b rigid contact with initial
strain

solution of the direct problem of description of mechanical properties of existing
materials to the study of the inverse problem of production of materials with preas-
signed properties. This approach requires development of new theoretical methods
and improvement of known ones as well as software for mathematical modeling of
the behaviour of continuous media which, at first glance, possess exotic properties.
It seems likely that materials which are compression compliant more than tension
compliant belong to this class.

A flexible non-stretchable thread (membrane) is the simplest example of a het-
eroresistant mechanical system without the compression strength and the tensile
stress deformation. The stretched state is a natural state of a thread for zero strain
and stress. Positive strain is impermissible, i.e. ε ≤ 0, and negative stress is also
impermissible, so σ ≥ 0. If ε < 0 then σ = 0, and if σ > 0 then ε = 0. Thus,
the constitutive relationships for a thread for uniaxial tension–compression coincide
with the relationships (2.1) for an ideal granular medium accurate within the change
of signs of the inequalities. The corresponding rheological scheme (Fig. 2.24a) is a
rigid contact of opposite polarity.

When modeling finite strains of a thread, it is necessary to take into account
restrictions from below related to the fact that, when changing positions of the ends
in the compression process, a thread is stretched again. So, a more detailed rheological
scheme must involve a rigid contact with a given value of initial strain (Fig. 2.24b).
But this purpose is not pursued here.

A rheological scheme which describes the compression–tension process for a uni-
directional fiber composite consisting of elastic-plastic fibres in a viscous binder is
shown in Fig. 2.25. According to this scheme, with compression a sequential chain
consisting of elastic and plastic elements is broken and only a viscous damper is de-
formed. By the Newton law in this case σ = η ε̇. With tension, matched deformation
of all elements takes place except for a rigid contact being in the closed state. For
σ ≤ σs a plastic hinge also is not deformed, hence,

σ = σ e + σ v = ε

a
+ η ε̇.

For σ > σs stress in a chain equals σs , therefore

σ = σs + σ v = σs + η ε̇, εe = a σs, ε p = ε − εe.
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Fig. 2.25 Rheological
scheme of a composite

Stresses and strains of all elements are uniquely determined in any version of loading
considered here. Thus, this system is correct.

Results of computations for this scheme are given in Figs. 2.26–2.29, [25]. A
series of creep diagrams for a constant stress level σ = ±0.015, ±0.01, and ±0.005
(the curves 1, . . . , 6, respectively) is presented in Fig. 2.26. For compressive stresses
the diagrams are linear, they describe the strain of a viscous element. For tensile
stresses the curves are of nonlinear nature, besides, on the initial segment where
their convexity is more pronounced elastic deformation takes place and with arising
plastic deformation the curves become more flat. The stress relaxation diagrams
for strain ε(t) = ε0

(
1 − e−3 t

)
which exponentially tends to a constant value ε0 are

shown in Fig. 2.27. Here the curves 1, . . . , 6 correspond to ε0 = ±0.015, ±0.01, and
±0.005, respectively. The salient points on the upper graphs correspond to going from
an elastic stage of the fibres tension to a plastic one. Observe that with compression
stresses are rapidly reduced to zero whereas with tension they relax to a constant
value equal to the yield point of a plastic hinge. It turns out that for a moderate level
of tensile strain ε0, when a hinge remains in the rigid state, dimensionless stress
σ0 = ε0 of an elastic spring is the limit value in the relaxation process.

Results of calculation for the uniaxial cyclic loading and the cyclic deformation
of a composite are shown in Figs. 2.28 and 2.29. The curves 1 correspond to the
dependence σ(t), the curves 2 characterize the dependence ε(t), the curves 3 describe
the variation of strain of a rigid contact with time, and the curves 4 describe the
variation of strain of a plastic element. Analysis shows that plastic strain takes place
only in the first cycle of loading or deformation of a material. After irreversible
elongation the fibres remain elastic in all subsequent cycles.

Consider a more complicated rheological scheme of a fiber composite which is
heteroresistant with respect to tension and compression (Fig. 2.30). A coupled chain
of elastic and plastic elements in this scheme serves to model a double system of
reinforcing fibres differing in elastic and plastic properties which show themselves
only with tension. As in the previous scheme, compression of a composite is de-
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Fig. 2.26 Creep diagrams

Fig. 2.27 Stress relaxation
curves

Fig. 2.28 Loading for
σ(t) = 0.0125 sin t

scribed by a model of a viscous medium. With tension, one of three alternatives is
implemented. If strain does not exceed the critical value equal to min {a σs, a′σ ′

s}
where a, a′ and σs , σ ′

s are the moduli of elastic compliance and the yield points
of elements, respectively, then visco-elastic deformation of a material takes place
according to the Kelvin–Voigt theory:
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Fig. 2.29 Deformation for
ε(t) = 0.0125 sin t

Fig. 2.30 A double system of
fibres

σ =
(

1

a
+ 1

a′

)
ε + η ε̇.

Exceeding a critical level results in the fact that in the chain with a lesser value of
the product a σs a plastic hinge is broken. In this case

σ = σs + ε

a′ + η ε̇, a σs < ε ≤ a′σ ′
s .

Finally, if strain is higher than a′σ ′
s then both hinges are broken. In this case the

constitutive equation has the form:

σ = σs + σ ′
s + η ε̇.

Thus, the active loading takes place for ε̇ ≥ 0. When unloading, for ε̇ < 0, both
hinges are simultaneously blocked. The increments of total stress and strain satisfy
the equation

dσ =
(

1

a
+ 1

a′

)
dε + η dε̇,
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Fig. 2.31 Creep diagrams

Fig. 2.32 Stress relaxation
curves

from which it follows that

σ = σs + σ ′
s +

(
1

a
+ 1

a′

)
(ε − εmax)+ η ε̇,

where εmax is the maximal tensile strain achieved at the loading stage. A rigid con-
tact is broken if stress σ c = σ − η ε̇ calculated by this formula becomes zero in
the unloading process. Further deformation for ε̇ < 0 is described by the Newton
equation.

One can make sure that in each of these variants stresses and strains of all elements
of the rheological scheme are uniquely determined, so this scheme is correct. In
Figs. 2.31 and 2.32, the diagrams of creep and stress relaxation similar to those
in Figs. 2.26 and 2.27 are presented. The results are obtained with the help of the
computer system for the following values of the dimensionless parameters of the
model: a = a′ = 2, σs = 0.0025, σ ′

s = 0.0075. Comparison of the diagrams
shows that under tension of a material with a double reinforcing system the rigidity
essentially increases. Besides, the level of residual stresses after relaxation increases.
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Including additional elements in the rheological schemes considered above en-
ables one to take into account elastic and plastic properties of a composite binder as
well as viscous properties of reinforcing fibers.

2.6 Porous Materials

A number of books (see bibliography of [3–5, 10, 15, 20]) is devoted to the math-
ematical modeling of behavior of porous materials under the action of static and
dynamic loads. However, up to now there has been no unique theory. Main difficul-
ties here are related to the fact that porous materials also have the heteroresistance
property. Under the action of compressive stresses up to the instant of collapse of
pores these materials turn out to be more compliant than with subsequent compres-
sion. The unloading process for a compressed porous medium may be reversible or
irreversible. In the first case a pore space restores completely for zero stress and in
the second case in the limits of the “loading–unloading” cycle pores vary in size,
[19, 29]. Collapse of pores can be modeled as a result of loss of stability of a porous
sceleton, [6, 11].

New application of mechanics of porous materials is porous metals. These arti-
ficial materials can be widely used in engineering because of their low density and
good damping properties, [16]. The ability of porous metals effectively absorb me-
chanical energy on the stage of plastic deformation opens up prospects for their use
in the manufacture of bumper cars and elements of the car body, the so-called crushed
zones. They also can be used in gearboxes and actuators as destructible fuses which
dissipate the energy of dynamic impact preventing the destruction of all mechanical
system.

Deformation properties of porous metals are significantly different in tension and
in compression. In tension there are the stage of elastic deformation of skeleton and
the stage of plastic flow up to the destruction. In compression there are the stages
of elastic and plastic deformation of skeleton until the collapse of pores and the
subsequent stage of elastic or elastic-plastic deformation of a solid material without
pores. At small sizes of pores the collapse can occur on the elastic stage with the
appearance of plasticity only under a sufficiently high level of load.

At present the technologies of production of metal foams based on aluminum,
copper, nickel, tin, zinc and other metals are developed. According to the information
published in Internet, A. Rabiney from the University of North Carolina (USA) in
2010 created a technology for production of the most durable foam in the world.
High strength of this material is achieved by ensuring that the surface of a thin-wall
skeleton in the foam practically has no dislocations, i.e. defects that are initiators of
the destruction.

Extensive experimental researches of the mechanical properties of such a materials
were carried out. The diagrams of uniaxial tension and uniaxial compression on the
example of aluminum foam and porous copper were obtained, [1, 2]. The problems
of durability and cyclic fatigue of porous metals are considered in [17] etc.
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Fig. 2.33 General scheme of
porous material

Theoretical questions of the constructing constitutive equations and of the analysis
on this basis the spatial stress-strain state of structural elements of metal foams,
according to the available publications, have not been studied almost. At the level
of physical and mechanical representations, the deformation of metal foam is rather
complex process. Under compression it leads to the elastic-plastic loss of stability
of metal skeleton at high porosity and to the stable mechanism of collapse of pores
at low porosity. The collapse is accompanied by a contact interaction of skeleton
walls which is difficult for modeling at the discrete level. Besides, it is necessary
to consider the presence of compressed gas in closed pores. It is rather difficult
to describe the process of shear when, according to the experiments, the volume
of a material changes. Even more difficult to construct a universal model of the
spatial stress-strain state of a material under complex loading. The performance of
adequate computations based on discrete models of the metal foam as a structurally
inhomogeneous material is only possible with the use of multiprocessor systems with
high performance and large amount of random-access memory.

A simple and effective solution to these problems gives the rheological approach,
in the framework of which one can describe the main qualitative and quantitative
effects such as a significant difference of diagrams of uniaxial deformation before
and after the collapse of pores and a significant dissipation of energy at the stage of
plastic flow of a material.

A rheological scheme of the general form for a porous material is shown in
Fig. 2.33. Here block 1 consisting of elements placed parallel to a prestretched rigid
contact describes mechanical properties of a skeleton with open pores. Initial strain
ε0 of a rigid contact is defined by a specific volume of pores. Block 2 which consists of
elements placed in series with a rigid contact describes the hardening of a compressed
skeleton. In a more general case, one more block of rheological elements modeling
strain of a medium which does not depend on a pores state can be added to this
scheme in series, [24].

Replacing blocks 1 and 2 with elastic springs, we obtain the simplest model of
the ideal elastic porous medium whose rheological scheme is given in Fig. 2.34a.
According to this model, with tension of a material and with compression to the
critical value ε = −ε0 of strain the equation σ = ε/a holds, with compression
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Fig. 2.34 Rheological schemes of porous materials: a elastic material, b elastic-plastic material,
c elastic-visco-plastic material

Fig. 2.35 Diagrams of uni-
axial tension–compression:
a elastic porous material,
b elastic-plastic porous ma-
terial in the case of elastic
collapse of pores

over the critical value (ε < −ε0) the equation dσ = (1/a + 1/b) dε holds (a
and b are moduli of elastic compliance of springs). The deformation process for
such a medium is thermodynamically reversible. A diagram of uniaxial tension–
compression is shown in Fig. 2.35a as a two-segment broken line.

A rheological scheme of an elastic-plastic porous material, where the compression
process after collapse of pores is described with the model of linear hardening, is
presented in Fig. 2.34b. If stress in modulus does not exceed the yield point σs of
a plastic hinge, then deformation of a material exactly corresponds to the elastic
model. It is impossible to apply tensile stress higher than σs since for σ = σs flow of
a material due to increase of size of pores is observed. With compression the effect
of plastic hardening takes place.

Typical diagrams of the active loading and unloading are shown in Figs. 2.35b and
2.36a. Figure 2.35b corresponds to the case where the phenomenological parameters
satisfy the condition ε0 < a σs . This condition holds for weakly porous materials
with small value of ε0 and means that the process of collapse of pores takes place in
the range of elastic strain. According to this scheme, at the point P of the transition
of a medium to the plastic state

σ = ε

a
+ ε + ε0

b
,

ε

a
= −σs .
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Fig. 2.36 Diagrams of uniaxial tension–compression in the case of plastic collapse of pores:
a elastic-plastic material, b rigid-plastic material

Hence, at this point σ = −σs(1 + a/b)+ ε0/b. The effect of the plastic hardening
of a compressed skeleton is described by the linear equation

σ = −σs + ε + ε0

b
.

The case of ε0 > a σs , where compression of pores is accompanied by plastic
dissipation of energy, is considered in Fig. 2.36a. It should be noted that the tangent of
the angle of slope of the segment, which corresponds to the unloading of a plastically
compressed material, equals 1/a until the instant of collapse of pores and after this
instant it increases to 1/a + 1/b.

Using the rheological scheme given in Fig. 2.34b, with a tending a to zero, we
can obtain a model in which strain of pores is completely irreversible and strain of
a compressed skeleton follows the law of linear hardening. With b tending to zero,
a model of an elastic-plastic porous medium with an absolutely rigid skeleton is
obtained. If a → 0 and b → 0 simultaneously, then a model of a rigid-plastic porous
medium with a rigid skeleton, whose diagram of uniaxial deformation is given in
Fig. 2.36b, can be obtained.

The diagrams show that the constitutive relationships of an elastic-plastic porous
medium are as much incorrect in the mechanical sense as ones of the classical theory
of ideal plasticity. To obtain an unambiguous description of deformation of a material
for a given loading program, we add a regularizing viscous element to the scheme
(see Fig. 2.34c). The model corresponding to this scheme takes into account viscous
properties of the skeleton. With η tending to zero, it is transformed into a model of
an elastic-plastic porous medium.

Graphs of the changing of resulting stress (the curve 1) and stress in a rigid
contact (the curve 2) for cyclic deformation of a medium with zero viscosity are
presented in Fig. 2.37. The results are obtained for a = b = 1, σs = 0.005, and
ε0 = 0.0025. This choice of the parameters corresponds to the case of elastic collapse
of pores. However, according to computations elastic collapse takes place only at
the first cycle. At the second and subsequent cycles, specific horizontal portions of
compressive stresses corresponding to the value of the yield point of a plastic hinge
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Fig. 2.37 Deformation for
ε(t) = −0.015 sin t (ε0 =
0.0025)

Fig. 2.38 Deformation for
ε(t) = −0.015 sin t (ε0 =
0.0075)

Fig. 2.39 Loading for σ(t) =
−0.015 sin t (ε0 = 0.0025)

appear on the curve 1 as a result of preliminary irreversible strain of a material.
According to the curve 2, in this case a rigid contact is in the broken state since its
stress turns out to be zero. Thus, even at the second cycle compression of pores is
accompanied by plastic strain of a material.

Similar graphs for ε0 = 0.0075 in the case of plastic collapse at the first cycle of the
deformation program are shown in Fig. 2.38. Comparison shows that as the porosity
increases, the level of compressive stresses in a medium considerably decreases.

Graphs of the changing of characteristics of the strained state for a viscoplastic
porous medium with the dimensionless viscosity coefficient η = 1 for the cyclic
loading are shown in Figs. 2.39 and 2.40. The curves 1 describe total strain ε(t), the
curves 2 describe strain of a rigid contact, and the curves 3 describe strain of a plastic
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Fig. 2.40 Loading for σ(t) =
−0.015 sin t (ε0 = 0.0075)

Fig. 2.41 Loading for σ(t) =
−0.015 sin 2 t (ε0 = 0.0025)

Fig. 2.42 Loading for σ(t) =
−0.015 sin 2 t (ε0 = 0.0075)

element. Fig. 2.39 corresponds to the case of ε0 < a σs and Fig. 2.40 corresponds to
the case of ε0 > a σs . In the first case plastic strain of a medium is observed after
the instant of collapse of pores and in the second case until this instant. However,
as before, this holds true only for the first cycle of loading, at all subsequent cycles
the compression of open pores is accompanied by plastic dissipation of energy.
From the presented graphs it follows that strain of a rigid contact differs from total
strain only when a contact is closed. In addition, the interval of the closed state
decreases depending on the number of a cycle and for a sufficiently large value of time
corresponding graphs completely coincide. Hence, for the multiple cyclic loading a
material gradually loses the heteroresistance property and collapse of pores comes
to a stop. Analysing the curves, we can notice that in a viscous medium the creep is
developed with time, i.e. the maximal value of strain increases during one cycle.

Similar graphs for the cyclic loading with doubled frequency (in comparison with
the graphs shown in Figs. 2.39 and 2.40) are represented in Figs. 2.41 and 2.42.

To conclude, we notice that a large series of methodical calculations performed
with the help of the computer system described above shows that as frequency of the
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cyclic loading increases, the level of strain of a medium considerably decreases, a
given stress amplitude turns out to be insufficient to provide collapse of pores, plastic
strain takes a negative value and remains constant during all loading process, and the
creep property completely disappears. In this case the behaviour of a porous material
is adequately described by the elasticity theory with initial (plastic) strain taken into
account.

2.7 Rheologically Complex Materials

In the previous sections, constitutive relationships of uniaxial deformation of ma-
terials with different strengths were constructed only on the basis of the method of
rheological schemes where four types of elements associated with elementary prop-
erties are used. If in a tension or compression state a material shows complicated set
of properties, then one has to use a large number of rheological elements to describe
it. This results in a multiparametric model which may be difficult of access for practi-
cal applications. An alternative approach which is well-developed in the application
to standard viscoelastic materials with symmetric properties with respect to tension
and compression, [12, 14, 21], is as follows. Constitutive equations are postulated
in the special form for which, generally speaking, there exists no appropriate rheo-
logical scheme. Generalizing this approach to materials with different strengths we
notice that, in combination with a system of rigid contacts, in a nonstandard rheo-
logical scheme blocks, which have no traditional rheological schemes, may be used
along with blocks involving traditional elements. For example, in a general scheme
of a porous material shown in Fig. 2.33, constitutive equations of the special form
mentioned above may correspond to the blocks 1 and 2. Similar conditional schemes
can be constructed for the description of composite and granular materials. However,
this way of the construction of constitutive relationships has some restrictions. One
of the most important restrictions is related to the requirement of dissipativity of the
derivable model.

For a model with the standard rheological scheme involving an arbitrary number of
elements of four types the dissipativity property holds automatically. In the classical
viscoelasticity theory this statement is assumed to be obvious since by the physical
sense dissipation of energy in a system is formed from dissipations on its elements. We
prove it more rigorously basing on the formal representation of rheological schemes
given in Sect. 2.4.

In the general case the sum of stress powers of elements of a rheological scheme
for corresponding strains is expressed by the next formula:

Ẇ =
n∑

j=1

σ j ε̇
j , ε j =

e j∑
k=b j

εk .
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Here, when calculating strain of the j-th element, the summation is performed over
the layers of a scheme numbered from b j where the element begins to e j where it
ends. Collecting similar terms, we can rewrite the expression for Ẇ in the form of a
linear combination of strain rates of layers

Ẇ =
m∑

k=1

σ̄k ε̇k

with the coefficients σ̄k equal to the sum of stresses of those elements whose ends pass
through the given layer. In view of the equilibrium equation, at the upper boundary
of the first layer σ̄1 = σ(t). To show that the remaining coefficients are equal to σ(t)
as well, we break in mind the ends of elements intersecting the interfaces between
layers and add paired systems of stresses σ j and −σ j , which are equivalent to zero, to
the corresponding boundaries. From the equilibrium equations written for interfaces
we successively obtain

σ̄1 = σ̄2, σ̄2 = σ̄3, . . . , σ̄m−1 = σ̄m .

Finally, we have

Ẇ = σ

m∑
k=1

ε̇k = σ ε̇.

Among rheological elements of four types, two elements (an elastic spring and a
rigid contact) represent conservative systems. For them

σ j ε̇
j = Φ̇ j

(
ε j ),

where � j are the corresponding stress potentials. The remaining two elements
(a viscous damper and a plastic hinge) are dissipative because for them

σ j ε̇
j = D j

(
ε̇ j ) ≥ 0.

Thus, the dissipativity property of a model consists in the following equality:

σ ε̇ = Φ̇ + D, (2.21)

where the functions Φ and D ≥ 0 are the sums of conservative and dissipative
potentials of the elements of a scheme.

Now consider the case of a nonstandard rheological scheme. Repeating the above
considerations, we can show that a model of uniaxial tension–compression is dis-
sipative if and only if all blocks involved in the scheme are dissipative. Keeping in
mind applications to granular materials, for description of which it makes sense to
use mathematical models of the hereditary elasticity theory as individual blocks in
combination with standard rheological elements, we present an independent deriva-
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tion of the dissipation condition for such block in the Breuer and Onat form, [7, 21].

Assume that the constitutive equation of a model is written in the convolution
form

σ(t) = (ϕ ∗ ε)(t) ≡
t∫

−∞
ϕ(t − t1) ε(t1) dt1. (2.22)

Here the relaxation kernelϕ(t) is an arbitrary function constructed from experimental
data. We can extend this function putting it equal to zero for negative values of t ,
since (2.22) involves only the values corresponding to t ≥ 0. Then Eq. (2.22) is
reduced to the form

σ(t) =
∞∫

−∞
ϕ(t − t1) ε(t1) dt1 =

∞∫
−∞

ϕ(t2) ε(t − t2) dt2 = (ε ∗ ϕ)(t).

It is known that the Fourier transform

σ̂ (ω) =
∞∫

−∞
σ(t) e−ı ω t dt

of the convolution of two functions, one of which vanishes for t < 0, is the product
of the Fourier transform. Therefore the equality

σ̂ (ω) = ϕ̂(ω) ε̂(ω)

is valid. Hence, Eq. (2.22) can be represented in the inverted form

ε(t) = (ψ ∗ σ)(t), (2.23)

where ψ(t) is the creep kernel being a function which is put to be equal to zero for
negative t and for which ψ̂(ω) = 1

/
ϕ̂(ω).

For the Kelvin–Voigt classical model ϕ̂(ω) = 1/a+ı ω η. For the Maxwell model
ϕ̂(ω) = 1

/(
a + 1/(ı ω η)

)
. For the parallel connection of two blocks of elastic and

viscous elements, the Fourier transform of the relaxation kernel is equal to the sum
of the Fourier transforms of the kernels of the blocks. For the series connection it is
equal to the reciprocal value of the sum of the reciprocal values. Hence, in the case of
a viscoelastic scheme of the general form the quantity ϕ̂(ω) is a fractionally rational
complex-valued function P(ı ω)/Q(ı ω) for which the difference of degrees of the
polynomials P(z) and Q(z) does not exceed one.

If in the constitutive Eq. (2.23) ε(t) is a periodic function with period T then
the function σ(t) is also periodic with the same period. According to the second
principle of thermodynamics, the energy produced by stress per one deformation
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period (cycle) can not be negative, i.e.

W =
T∫

0

σ(t) dε(t) ≥ 0. (2.24)

If this property is violated, then a mathematical model with the constitutive
Eqs. (2.22), (2.23) is incorrect in the physical sense, since in its framework there
exists “perpetuum mobile”. Expand an arbitrary periodic function into the Fourier
series

ε(t) = c0

2
+

∞∑
k=1

(
ck cosωk t + sk sinωk t

)
,

whereωk = 2π k/T . For an individual term of the type εk(t) = sinωk t the inequality
(2.24) takes the following form:

Wk = ωk

T∫
0

σk(t) cosωk t dt = ωk �
T∫

0

σk(t) eıωk t dt ≥ 0.

Here the fact that the value of stress is real is taken into account. Due to Eq. (2.22)

σk(t) =
∞∫

−∞
ϕ(t − t1) sinωk t1 dt1 =

∞∫
−∞

ϕ(t − t1)
eıωk t1 − e−ıωk t1

2ı
dt1

= eıωk t

2ı

∞∫
−∞

ϕ(t − t1) e−ıωk (t−t1) dt1 − e−ıωk t

2ı

∞∫
−∞

ϕ(t − t1) eıωk (t−t1) dt1

= eıωk t

2ı
ϕ̂(ωk)− e−ıωk t

2ı
ϕ̂(−ωk).

The complex-conjugate value is calculated by the formula

σk(t) = −e−ıωk t

2ı
ϕ̂(ωk)+ eıωk t

2ı
ϕ̂(−ωk).

Stress turns out be real, i.e. σk(t) = σk(t), provided that

ϕ̂(ω) = ϕ̂(−ω). (2.25)

In particular, from this condition it follows that if ϕ̂(ω) is a fractionally rational func-
tion then P(z) and Q(z) must be polynomials with real coefficients. The immediate
calculation of the integral
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T∫
0

σk(t) eıωk t dt = ı T

2
ϕ̂(−ωk)

enables one to determine

Wk = ωk T

2
 ϕ̂(ωk) = πk  ϕ̂(ωk)

taking into account (2.25). For a term of the type εk(t) = cosωk t stress is determined
by the formula

σk(t) = eıωk t

2
ϕ̂(ωk)+ e−ıωk t

2
ϕ̂(−ωk).

It also is real provided that the condition (2.25) holds. The value of the energy
dissipation per one deformation cycle is calculated as the integral

Wk = −ωk

T∫
0

σk(t) sinωk t dt = ωk 
T∫

0

σk(t) e−ıωk t dt.

Considering that

T∫
0

σk(t) e−ıωk t dt = ı T

2
ϕ̂(ωk), we arrive at the previous expres-

sion for Wk .
Thus, the condition of non-negativity of internal dissipation of energy for indi-

vidual harmonics of the Fourier series is reduced to Eq. (2.25) and the inequality

 ϕ̂(ω) ≥ 0. (2.26)

To write it for an arbitrary deformation program, we represent the Fourier series in
the complex form

ε(t) =
∞∑

k=−∞
ak eıωk t , ak = 1

T

T∫
0

ε(t)e−ıωk t dt.

Here a0 = c0/2 and ak = (
ck − ı sk

)
/2, a−k = (

ck + ı sk
)
/2 for k = 1, 2, . . . .

Because of (2.22), stress is expanded into the series

σ(t) =
∞∑

l=−∞
al

∞∫
−∞

ϕ(t − t1) eωl t1 dt1 =
∞∑

l=−∞
al ϕ̂(ωl) eıωl t .
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Taking into account orthogonality of the system of the functions eıωl t on the segment
[0, T ], the inequality (2.24) can be written in the form:

0 ≤ W = ı
∞∑

k,l=−∞
ak al ωk ϕ̂(ωl)

T∫
0

eı(ωk+ωl )t dt = ı T
∞∑

k=−∞
ak a−k ωk ϕ̂(−ωk)

= ı T

4

∞∑
k=1

(
c2

k + s2
k

)
ωk

(
ϕ̂(−ωk)− ϕ̂(ωk)

)
.

It holds automatically provided that the conditions (2.25) and (2.26) are valid since

ı
(
ϕ̂(−ωk)− ϕ̂(ωk)

) = ı
(
ϕ̂(ωk)− ϕ̂(ωk)

) = 2  ϕ̂(ωk)

and, hence, W =
∞∑

k=1

(
c2

k + s2
k

)
Wk .

Considering that the period T is arbitrary, we can make the following conclusion:
a model of a linear hereditary medium with a relaxation kernel ϕ(t) is dissipative if
and only if the Eq. (2.25) and the inequality (2.26) are valid for any ω > 0. In terms
of a creep kernel this system of conditions is written as

ψ̂(ω) = ψ̂(−ω),  ψ̂(ω) ≤ 0.

In an equivalent form the inequality (2.26) was first obtained by Breuer and Onat
from other considerations related to the fact that work of stresses on strains, which
are identically equal to zero for t ≤ 0, is positive. For viscoelastic materials whose
constitutive equations are constructed with the help of standard rheological schemes
this inequality holds automatically since integration of Eq. (2.21) within the limits
of one cycle yields

T∫
0

σ(t) dε(t) =
T∫

0

D(t) dt ≥ 0.

The inequality of internal dissipation holds for a number of known models as well,
in particular, for models with fractional exponential kernels, [21]. It gives nontrivial
restrictions on the form of constitutive equations of the differential type. As an
example we consider the Hohenemser–Prager equation, [22]:

a0 σ + a1 σ̇ = b0 ε + b1 ε̇

with constant phenomenological coefficients ak and bk . In this case the Fourier
transform of the relaxation kernel is as follows
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ϕ̂(ω) = b0 + ı ω b1

a0 + ı ω a1
= (b0 + ı ω b1)(a0 − ı ω a1)

a2
0 + ω2a2

1

,

and the inequality (2.26) results in the condition a0 b1 ≥ a1 b0.
For the description of rheological properties of materials the Cole–Cole model,

[13], with coefficients E0, E∞, η, and α ≥ 0, for which

ϕ̂(ω) = E∞ − E∞ − E0

1 + (
ı ω/ωη

)α , ωη = E∞ − E0

η
,

is often used. This is a version of a model with a fractional exponential relaxation
kernel. For it Eq. (2.25) holds only if all coefficients are real. From (2.25) for ω → 0
it follows that E0 = E0. Similarly for ω → ∞ we have E∞ = E∞. If ωη �= 0 or
α �= 0 then the equation is not valid for intermediate values of ω.

To satisfy the inequality (2.26), the difference E∞ − E0 must be non-negative
and the coefficient α may not exceed 2. Indeed, since

ı α = eıπα/2 = cos
πα

2
+ ı sin

πα

2
,

the quantity

 ϕ̂(ω) =
(
E∞ − E0

)(
ω/ωη

)α
1 + (

ω/ωη
)2α  ı α

is non-negative that provides dissipation of a model.
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