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Abstract 

A main objective of many line simplification methods is to progressively

 
reduce the scale of shape properties and, in turn, provide a more explicit 
representation of global shape properties. However, current simplification

 
methods which attempt to achieve this objective, while also maintaining

 
non-planar topological relationships, are restricted and cannot always

 
achieve an optimal result. In this paper, we present a line simplification

 
method which removes these restrictions. This is achieved through the use

 
of a computable set of topological invariants, which is complete and al-
lows the topological consistency of an arbitrary simplification to be deter-
mined. 
Keywords: line simplification, map generalisation, topology 

1 Introduction 

Given a detailed map representation it is common to reduce the scale of 
this representation through the application of a cartographic process known 
as map generalisation. The primary purpose of performing such a reduc-
tion is to transform the map into a representation more suitable for its pur-
pose (Lonergan and Jones 2001). Wilson et al. (2010) demonstrated that if

 

the purpose of the map is to communicate spatial information to a user per-
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forming a specific task a suitable reduction in scale can improve efficien-
cy. Map generalisation is performed by applying a set of generalisations 
operators of which Jones (1997) identified eight categories. These are eli-
mination, simplification, typification, exaggeration, enhancement, col-
lapse, aggregation and displacement. This paper focuses entirely on the 
generalisation operator of simplification. Simplification performs generali-
sation by selecting a subset of vertices that represents geometrical objects 
and does not move the vertices in this subset. (Corcoran et al. 2011). The 
purpose of any generalisation process is to reduce the scale of the map in 
question while simultaneously satisfying a set of objectives. Weibel (1996) 
identified four types of such objectives. These are shape (Gestalt), seman-
tic, metric and topological objectives. The purpose of a shape objective is 
to reduce the scale of object shape properties to give a more explicit repre-
sentation of global shape properties. A semantic objective integrates in-
formation regarding object semantics when determining the actual type 
and scale of reduction which should be applied to individual objects. Me-
tric objectives achieve the best possible result in terms of some error crite-
rion. Finally, a topological objective ensures that all generalised maps are 
topologically equivalent to the original detailed map. Two maps topologi-
cally equivalent if a topological or homeomorphism transformation exists 
between the two maps in question (de Berg et al. 1998, Mortenson 2007), 
where a topological transformation corresponds to an arbitrary stretching, 
bending or twisting without tearing of the map. If a homeomorphism exists 
between a map and its generalised form the generalised map is said to be 
topologically consistent; otherwise it is said to be topologically inconsis-
tent. The set of all maps which are topologically equivalent form a topo-
logical equivalence class. 

Many authors have proposed generalisation techniques, which attempt 
to satisfy a single objective. For example, Douglas and Peucker (1973) and 
Saalfeld (1999) proposed techniques which attempt to satisfy metric and 
topological objectives respectively. Kulik et al. (2005) proposed a line 
simplification technique which satisfies a  semantic objective. However in 
many situations it is necessary to perform generalisation in a manner 
which satisfies multiple objectives. For example, the generation of destina-
tion or metro maps is an application where such a method is necessary 
(Kopf et al. 2010, Stott et al. 2011, Agrawala and Stolte 2001, Nollenburg 
and Wolff 2011). For such maps, it is generally accepted that topological 
equivalence to the original map should be preserved, while only those 
shape features of the most abstract nature should be preserved. That is, 
such an application requires a generalisation method, where both shape 
and topological objectives are satisfied. 
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In this paper, we focus exclusively on simplification methods which at-

tempt to satisfy both shape and topological objectives. Such simplification 
methods generally follow a common iterative optimization strategy which 
begin with an initial solution and then iteratively improve until conver-
gence (Corcoran et al. 2011, Kulik et al. 2005). A single iteration functions 
as follows. The vertex which contributes least to the overall shape proper-
ties, such that its removal does not introduce a topological inconsistency, is 
determined. This vertex is then removed. The simplification process termi-
nates when the scale of the corresponding shape properties has been re-
duced sufficiently, or no further vertices can be removed without the intro-
duction of a topological inconsistency.  

When performing simplification in a manner which satisfies both shape 
and topological objectives, it is necessary that the following two tasks can 
be performed effectively. Firstly, a method for determining the signific-
ance of an individual vertex is necessary. This is typically a function of lo-
cal properties such as the length of both sides adjacent to the vertex in 
question. Secondly, a method for determining if a given simplification is 
topologically consistent is necessary. In this paper, we focus on the devel-
opment of an optimal methodology to perform the second of these tasks in 
the context of simplifying line features. In a geographical context, line fea-
tures may correspond to roads, rivers, etc. Although such methods have 
previously been proposed, as will be discussed later, they are not optimal 
and can return unsatisfying results. In this paper, we propose a new line 
simplification method which, under certain assumptions, overcomes this 
limitation and is, in fact, optimal. 

The layout of this paper is as follows. In section 2, we introduce some 
background material necessary for discussing topological relationships. In 
section 3, we critique existing line simplification techniques which attempt 
to satisfy both shape and topological objectives. Section 4 proposes a me-
thodology for determining the topological consistency of two arbitrary 
scenes. This method is based on the computation of a set of topological in-
variants. Section 5 states a property associated with the problem of deter-
mining if a simplification is topologically consistent. This property reduces 
the computational complexity of determining the topological consistency 
of a simplification. Finally in sections 6 and 7 we present results and draw 
conclusions respectively. 

Line Simplification in the Presence of Non-Planar Topological Relationships 27



2 Topological relations between lines

In this section, we introduce some concepts which help describe the topo-
logical relationships that may exist between a set of lines. Corcoran et al.
(2011) proposed that all possible topological relations between objects
may be classified as planar or non-planar. A planar topological relationship
exists between a set of objects if at all intersection points between the ob-
jects a vertex exists and belongs to all objects which intersect at that point. 
For example, a planar topological relationship exists between the two lines
p=(p1, p2, x, p3, y, p4, p5) and r=(r1, x, r2, y, r3, r4, r5) displayed in Figure
1(a). A non-planar topological relationship exists between a set of objects
if the objects intersect without a vertex existing at all intersection points
and belonging to all objects which intersect at that point. An example of 
such a relationship is displayed in Figure 1(b).

(a) (b)
Fig. 1. Planar and non-planar topological relationships exist between the pair of
lines in (a) and (b) respectively

When discussing non-planar topological relationships it is important that
we define the properties of dimension and multiplicity which describe a 
particular intersection between lines (Clementini and Di Felice 1998). If
the intersection in question takes place in a point, its dimension is zero;
this is the case for all intersections in Figure 1(b). If the intersection in
question takes place in a line, its dimension is one. The multiplicity of an
intersection refers to the number of lines which pass through a given inter-
section.

Due to the difficulty involved in determining the topological consisten-
cy of a simplification, we make the following assumptions regarding all
scenes to which the methodology proposed in this paper is applied. We as-
sume that all intersections are of degree zero and that the multiplicity of 
each intersection is two. We assume that lines do not self-intersect; this
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property is common in many spatial datasets such as the road network. Fi-
nally, we assume that removing the endpoint of a line feature introduces a 
topological inconsistency; this is a common assumption made when sim-
plifying lines (Saalfeld 1999). We return to this discussion regarding as-
sumptions made in the conclusions section of this paper. 

3 Existing methods for determining topological 
consistency 

In this section, we review existing methods for determining the topological 
consistency of a given simplification. Before that, we review a framework 
proposed by Corcoran et al. (2011) for structuring the constraints imposed 
by such methods. Corcoran et al. (2011) state that any method for deter-
mining topological consistency of a given simplification can be summa-
rised in terms of the following three constraints:  
1) Constraints on the types of topology for which the technique can deter-

mine consistency without returning a false-positive; that is, incorrectly 
classifying a simplification as topologically consistent.  

2) Constraints on the types of topology for which the technique can deter-
mine consistency without returning a false-negative; that is incorrectly 
classifying a simplification as topologically inconsistent.  

3) Constraints on the types of simplification to which the technique can be 
applied. 

 
If a particular method exhibits none of the above constraints, it may be 

considered optimal. Corcoran et al. (2011) presented a mathematical anal-
ysis of existing techniques for determining the topological consistency of 
an arbitrary simplification. With respect to planar topological relation-
ships, the authors demonstrated that using existing techniques it is possible 
to determine the topological consistency of an arbitrary simplification in 
an optimal manner. However, determining the topological consistency of 
an arbitrary simplification with respect to non-planar topological relation-
ships is still an open research question (Corcoran et al. 2011). Two me-
thods, by Agrawala and Stolte (2001) and Kulik et al. (2005), currently ex-
ist for performing this task. In the following two subsections, we present a 
review of these and demonstrate neither to be optimal with respect to the 
third constraint of Corcoran et al. (2011) above. 
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3.1 Agrawala and Stolte (2001) method

The first of these methods was originally proposed by Agrawala and Stolte 
(2001). This method is optimal with respect to the first two constraints of
Corcoran et al. (2011) presented above. However, it is not optimal with re-
spect to the third constraint for the following reason. Before simplification
is performed an operation known both as map overlay and planar enforce-
ment (Wise 2002) is applied to the map in question which adds vertices to
all objects which intersect at the intersection points in question if such ver-
tices do not already exist. For example, consider the scene in Figure 2(a)
which contains the three lines a=(a1, a2, a3, a4), b=(b1, b2, b3) and c=(c1, 
c2, c3, c4). Applying planar enforcement returns the scene displayed in Fig-
ure 2(b) containing the three lines a=(a1, x, a2, y, a3, a4), b=(b1, w, x, y, b2, 
b3) and c=(c1, w, c2, z, c3, c4) which are represented using the four addi-
tional vertices w, x, y and z. The method of Agrawala and Stolte (2001) is
restricted by the fact that it cannot determine the topological consistency of 
any simplification which does not contain all vertices introduced through
planar enforcement.

(a) (b)
Fig. 2. Planar enforcement is applied to the scene in (a) with the result shown in
(b).

To illustrate the lack of optimality exhibited by this method, consider
again the scene in Figure 2(a). Applying the simplification step where the
line a is simplified by removing the vertices (a3, a2) returns the topologi-
cally consistent result displayed in Figure 3. It must be noted that the aim 
of this work is to maintain topological consistency with respect to lines 
and not the vertices which represent these lines. The method of Agrawala
and Stolte (2001) cannot determine if this simplification is topologically
consistent because it does not contain the vertices introduced by planar en-
forcement. 
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Fig. 3. A topologically consistent simplification of the scene in Figure 2(a) is dis-
played.

3.2 Kulik et al. (2005) method

The second method, which currently exists for determining topological 
consistency of a simplification with respect to non-planar topological rela-
tionships, was proposed by Kulik et al. (2005) and later used by Weihua
(2008) and Corcoran et al. (2011). Again this method is optimal with re-
spect to the first two constraints of Corcoran et al. (2011) presented above. 
However, it is not optimal with respect to the third constraint for the fol-
lowing reason. Before simplification is performed, those vertices belong-
ing to line segments which intersect without a vertex existing at the inter-
section point and belonging to all line segments in question are identified.
For example, in the context of the scene displayed in Figure 2(a), the ver-
tices (a1, a2, a3, b1, b2, b3, c1, c2, c3) would be identified as having this
property. The method of Kulik et al. (2005) is restricted by the fact that it
cannot determine the topological consistency of any simplification which
does not contain all vertices identified as having the above property. For
example, this method cannot determine if the simplification of Figure 2(a)
displayed in Figure 3 is topologically consistent, because it does not con-
tain the vertices belonging to the original intersecting line segments. Since 
both the methods of Agrawala and Stolte (2001) and Kulik et al. (2005) are 
constrained they may in turn constrain the corresponding simplification 
process by forbidding the removal of particular vertices.

4 Topological invariants

Comparing two scenes directly in order to determine if they are topologi-
cally equivalent represents an extremely difficult task. To overcome this
difficulty, many authors propose the use of topological invariants. A topo-
logical invariant is a property of a map which is invariant under a topolog-
ical transformation. That is, two maps which are topologically equivalent

Line Simplification in the Presence of Non-Planar Topological Relationships 31



       
will both exhibit the same topological invariants (Clementini and Di Felice 
1998). The use of invariants, therefore, allows the topology of two scenes 
to be compared in potentially an effective manner. A set of topological in-
variants are incomplete if they are necessary but not sufficient for deter-
mining topological equivalence. Two scenes, which are not topologically 
equivalent, may have an equal set of incomplete invariants. The most 
widely used incomplete sets of invariants are the 6- and 9-intersection ma-
trices of Egenhofer (1991). 

A set of topological invariants are complete if they are necessary and 
sufficient for determining topological equivalence. Therefore in order to 
insure that two scenes are topologically equivalent, in a manner which is 
optimal with respect to the first two constrains of Corcoran et al. (2011) 
presented above, a complete set of invariants must be used. In this section, 
we define a complete set of topological invariants which contains three 
elements. This set may be computed for an arbitrary scene and correspond-
ing simplification and, therefore, it is also optimal with respect to the third 
constraint of Corcoran et al. (2011).  

The remainder of this section is structured as follows. In section 4.1, the 
proposed set of topological invariants is presented and we state the compu-
tational complexity of their computation. Section 4.2 proves the necessity 
of each invariant; that is, no one invariant is implicitly contained in the 
others. In section 4.3, we prove that the above three invariants form a 
complete set. 

4.1 Invariants 

In this subsection, we define three topological invariants in the form of 
three corresponding definitions. These invariants are entitled intersection 
sequence (IS), direction sequence (DS) and orientation sequence (OS). 
These invariants are closely related to those proposed by Clementini and 
Di Felice (1998) but are specified in the context of line simplification and 
contain additional computational details. 

4.1.1 Intersection Sequence (IS) invariant 

Definition 4.1: Let a and b be two lines which intersect in m points. Fol-
lowing the order given by the line a assign the numeric labels 1,..., m to 
each intersection. The intersection sequence (IS) invariant is a permutation 
of the m-tuple (1, ..., m) which is obtained by traversing the line b in order 
and recording the labels previously assigned to each intersection. 
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To illustrate the IS invariant consider the topological relationship which
exists between the lines a and b in Figure 4. The intersection sequence in
this case is the 5-tuple (1, 4, 3, 2, 5). 

Fig. 4. Each intersection point is labeled in an order obtained by traversing the line
a. 

Theorem 4.2: Given two simple lines a and b represented by n vertices
in total and which intersect k times; the IS invariant can be computed in
O(n2 + k log(k)) time.

Proof: Determining all intersection points requires that all pairs of line
segments in a and b be evaluated to determine if an intersection occurs;
this requires O(n2) time. The resulting k intersections are then sorted in
terms of distance along a and this operation requires at most O(k log(k))
time. The computational complexity of computing the IS invariant is,
therefore, O(n2 + k log(k)) time.

4.1.2 Direction Sequence (DS) invariant

Definition 4.3: Let a and b be two lines which intersect in m points. Fol-
lowing the order given by the line b assign the numeric labels 1, ..., m to
each intersection. The direction sequence (DS) invariant is the m-tuple (c1, 
..., cm) where ci takes the value r if the line b crosses the line a from the 
right to the left of a as a is traversed at the intersection with numeric label
i. Otherwise ci takes the value l if the line b crosses the line a from the left
to the right of a at the intersection with numeric label i. 

To illustrate the DS invariant, consider again the topological relation-
ship which exists between the lines a and b in Figure 4. The DS invariant 
in this case is the 5-tuple (l, r, l, r, r). The DS invariant can be computed in
O(n2 + k log(k)) time. The proof of this fact is not presented, due to page 
space limitations.
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4.1.3 Orientation Sequence (OS) invariant

Given a sequence of intersections between two lines a and b, each section
of the line b between the pair of consecutive intersections (h, k) is called
and link and denoted b(h, k) (Clementini and Di Felice 1998). Given two
lines a and b and a link b(h, k), consider the cycle obtained by traversing
b(h, k) and return to h by traversing a. If such a cycle is counter-clockwise
the link orientation LOb(h, k) takes the value CCW; on the other hand if
such a cycle is clockwise the link orientation LOb(h, k) takes the value CW.
For example, consider the scene in Figure 4; LOb(1, 4) takes the value
CCW while LOb(3, 2) takes the value CW. 

Definition 4.4: Let a and b be two lines which intersect in m points. 
The orientation sequence (OS) invariant is an m-1 tuple containing the se-
quence of LOb(h, k) values between each consecutive pair of intersection h
and k obtained by traversing the line b. 

The OS invariant for the scene displayed in Figure 4 is (CCW, CCW,
CW, CW). The OS invariant can be computed in O(n2 + k log(k)) time. The 
proof of this fact is not presented, due to page space limitations. 

4.2 Necessity of invariants

In this section, we prove that the IS invariant is necessary. That is, this in-
variant cannot be expressed unambiguously in terms of the remaining in-
variants. This is achieved by construct a pair of non-topologically equiva-
lent scenes which have equal topological invariants apart from the IS 
invariant. Consider the two non-topologically equivalent scenes in Figure 
5(a) and Figure 5(b). Both scenes have equal DS and OS invariants of (r, l, 
r) and (CW, CCW) respectively. However, the scene in Figure 5(a) has an
IS invariant of (1, 2, 3) while the scene in Figure 5(b) has a IS invariant of 
(2, 3, 1). The necessity of the  DS and OS invariants can also be proved in 
a similar manner. The proof of this fact is not presented, due to page space 
limitations.

(a) (b)
Fig. 5. The scenes (a) and (b) are not topologically equivalent.
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4.3 Completeness of invariants 

We now prove that the IS, DS and OS invariants form a set of invariants 
which is complete in the context of the topological relationships which 
may exist between two lines. This is achieved by proving that each unique 
set of invariants identifies a class of topologically equivalent scenes. This 
is in turn proved by giving a procedure to construct a representative scene 
of the class from such a set of invariants. The uniqueness of such a scene is 
guaranteed by the fact that each step of the construction process does not 
exhibit any topological indeterminacy. This form of proof by geometrical 
construction was originally proposed by Clementini and Di Felice (1998).  

The construction process we propose is incremental in the sense that it 
gradually constructs the topological relationship between two lines, a and 
b, by adding one intersection at each construction step. The order of con-
struction is specified by the order which the intersections occur along a 
traversal of the line b. The following theorem defines this construction 
process. 

 
Theorem 4.5: The set of IS, DS and OS invariants define a class of to-

pologically equivalent scenes. 
 
Proof: Given the set of IS, DS and OS invariants we describe a method 

to construct a corresponding scene containing two lines. This process ei-
ther returns a unique scene representing a class of topologically equivalent 
scenes or an impossible scene. The process contains the following steps:  

1)  Draw a simple line a (all simple lines are topologically equiva-
lent).  

2)  If IS, DS and OS all contain zero elements, draw a line b which 
does not intersect a. Terminate the construction process.  

3)  Draw the first intersection between a and b so that it is consistent 
with the first element of DS.  

4)  Mark the next intersection point so that its location is consistent 
with respect to the corresponding element in IS and the set of intersection 
labels already added.  

5)  Draw the link between this intersection point and the one pre-
viously added such that it is consistent with the corresponding elements of 
DS and OS. 

6)  Repeat steps 4 and 5 until all intersections have been added. 
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To demonstrate this construction process, we will construct the scene in 
Figure 4 which has topological invariants IS = (1,4,3,2,5), DS = (l,r,l,r,r) 
and OS = (CCW, CCW, CW, CW). Firstly, we draw the line a as illustrated 
in Figure 6(a). Next, we draw the first intersection between a and b such 
that the intersection is consistent with the first element of DS; that is, the 
intersection crosses a from the left. This is illustrated in Figure 6(b). Next 
we mark the location of the next intersection. This has the label 4 in IS and 
therefore it occurs to the right of the previous intersection along the line a. 
This step is illustrated in Figure 6(c). Next, we join this intersection with 
the previous one, created such that the link is consistent with the corres-
ponding elements in DS and OS. That is, it is a counter-clockwise link 
which intersects a from the right. This step is illustrated in Figure 6(d). 
Next, we mark the location of the next intersection. This has the label 3 in 
IS and, therefore, it occurs between the intersections previously marked, 
which have labels 1 and 4. This is illustrated in Figure 6(e). Next, we join 
this intersection with the previous one, created such that the link is consis-
tent with the corresponding element in DS and OS. That is, it is a counter-
clockwise link which intersects a from the left. This is illustrated in Figure 
6(f). This process continues until each of the remaining intersections has 
been processed; the result of this process is illustrated in Figure 6(g). It is 
evident that the scene constructed in Figure 6(g) is topologically equiva-
lent to Figure 4. 

Therefore, using the proposed set of invariants the topological equiva-
lence of a map and corresponding simplification can be determined indi-
rectly, in a manner which is optimal with respect to the three constraints of 
Corcoran et al. (2011), by comparison of these invariants. In the following 
section, we state a property associated with the problem of determining if a 
scene and corresponding simplification are topologically equivalent. This 
property allows the associated computational complexity to be reduced. 
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 
  

(g)  
Fig. 6. Steps in the construction of a scene topologically equivalent to Figure 4 are 
illustrated. 

5 Determining topological consistency – associated 
properties 

The problem of determining if two unrelated scenes are topologically 
equivalent has been studied significantly in the domain of Geographical 
Information Science (GIS). The problem of determining if a scene and cor-
responding simplification are topologically equivalent, exhibits a property 
which makes it distinct from the problem of determining if two unrelated 
scenes are topological equivalent. This property offers the potential to re-
duce the difficulty of the problem substantially.  

In the context of determining the topological equivalence of two unre-
lated scenes, in general, the correspondence between objects in each scene 
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is not known (Clementini and Di Felice 1998). Consider the problem of 
determining if the unrelated scenes in Figure 7(a) and Figure 7(b) are topo-
logically equivalent where each scene contains three objects. As a first step 
towards determining topological equivalence, the correspondence between 
objects in each scene must be determined. If it is determined that the ob-
jects a, b and c in Figure 7(a) correspond to objects y, z and x in Figure 
7(b) respectively, topological equivalence can subsequently be determined. 
If any other correspondence was considered, topological equivalence in 
that case could not be determined. Clementini and Di Felice (1998) pro-
pose to overcome this challenge using a depth first search procedure which 
evaluates many possible correspondences until a suitable one is found or 
the process terminates.  

On the other hand, in the context of determining the topological equiva-
lence of a scene and a corresponding simplification, the correspondence 
between objects in each scene is known. This, therefore, removes the re-
quirement to perform any searching procedure to determine a suitable cor-
respondence. 

 

 

(a) (b) 
Fig. 7. The scenes in (a) and (b) are unrelated. 

6 Results 

The line simplification method proposed in this paper functions as follows. 
At each step, the vertex which contributes least to the overall shape proper-
ties such that its removal does not introduce a topological inconsistency is 
removed. The function by Latecki and Lakmper (1999) is used to deter-
mine the significance of a given vertex. Determine the topological equiva-
lence of a map and corresponding simplification involves the following 
three steps. First the correspondence between the objects in both maps is 
determined using the property described in section 5. Next the complete 
set of topological invariants for each topological relationship in the origi-
nal and simplified scenes are computed using the methods of section 4. Fi-
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nally, all corresponding invariants in each scene are compared. If all inva-
riants are equal, it is determined that the simplification is topologically 
consistent; otherwise, it is determined that the simplification is topologi-
cally inconsistent. The simplification process terminates when no further 
vertices can be removed without the introduction of a topological inconsis-
tency.

In order to demonstrate the effectiveness of the proposed simplification 
method in the presence of non-planar topological relationships, we used 
the simplification method of Corcoran et al. (2011) as a benchmark. The 
method of Corcoran et al. (2011) in turn uses the method of Kulik et al. 
(2005) (see section 3.2) to ensure all non-planar topological relationships 
are preserved. That is, those vertices belonging to line segments which in-
tersect without a vertex existing at the intersection point and belonging to 
all line segments in question cannot be removed through simplification. 
Three example scenes with corresponding simplification results are dis-
played in Figures 8, 9 10. In each figure the original scene, the result 
of simplification using the method of Corcoran et al. (2011) and the result 
of simplification using the proposed method are displayed in sub-figures 
(a), (b) and (c) respectively.

It is evident from these results that the proposed simplification method
returns a more abstract representation of shape properties compared to the 
simplification method of Corcoran et al. (2011). This is due to the fact that
the proposed method is not constrained in terms of the types of simplifica-
tion to which it can be applied; it is, in fact, optimal with respect to the
three constrains of Corcoran et al. (2011) discussed in section 3. The ab-
stract nature of the shapes returned by the proposed method makes it very
suitable for applications such a metro-map generation, where a schematic 
representation is necessary.

(a) (b) (c)
Fig. 8. The scene in (a) is simplified in (b) and (c).
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and 



(a) (b) (c)
Fig. 9. The scene in (a) is simplified in (b) and (c).

(a) (b) (c)
Fig. 10. The scene in (a) is simplified in (b) and (c).

7 Conclusions

This paper proposes a new line simplification method which can simplify
lines in the presence of non-planar topological relationships in an optimal 
manner. The results returned by the proposed method show an improve-
ment when compared to an existing state-of-the-art technique. Despite this,
many opportunities to extend and improve the proposed method exist. Cur-
rently the proposed method can only simplify lines. In order to be applica-
ble in a more general context, it would be desirable to extend this method 
so that polygons may also be simplified. Also, currently the proposed me-
thod can only simplify scenes where all intersections are of dimension zero
and multiplicity two. Again it would be desirable to extend the proposed 
method so that scenes not satisfying this constraint could be simplified. As
a final note, the authors hope that the work presented here will stimulate
new research on the topic of line simplification. Despite its long history, as
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demonstrated in this paper, this topic is not yet a completely solved prob-
lem. 
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