
Chapter 2
Foundations of Context Management in
Distributed and Dynamic Environments

Abstract Context information is data that describes the state of a certain entity
at a specific moment. A context management system is a computational element
responsible for binding context providers, which produce context information, and
context consumers, typically represented by context-aware applications. The main
task of a context management system is to match consumer’s interests with probed
context information. The complexity of context management in a distributed scenario
is defined by the wideness of an interest, i.e. the number of context management
systems that should be involved in an interest matching. If a distributed scenario is
also open, heterogeneous and dynamic, than the wideness of an interest is variable, as
a result of characteristics such as dynamic introduction of new sensors and evolution
of context models. The support of context interest of variable wideness imposes
challenging requirements for context management systems.

Keywords Distributed context management · Context-aware computing ·
Middleware · Open distributed systems

2.1 Introduction

In context-aware applications, adaptations are triggered by changes of certain context
information. For example, smart applications designed to support meetings may
automatically transfer a presentation to a projector as soon as the presenter enters the
meeting room [5]. In this case, both the location of the presenter and his/her role in
the meeting room are basic pieces of context information used to trigger the transfer
of the presentation. Basically, the development of a context-aware application, as in
this example, involves the description of the actions to be triggered according to a
set of contextual conditions.

R. C. A. da Rocha and M. Endler, Context Management for Distributed and Dynamic 9
Context-Aware Computing, SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4471-4020-7_2, © The Author(s) 2012

10 2 Foundations of Context Management in Distributed and Dynamic Environments

A same piece of context information may be used for different purposes. The
location of the presenter, for example, may also be used by another application
to disseminate his availability status for an instant communicator. Moreover, this
context information may be provided by different sensors, such as a proximity sensor
to identify if the user is inside the classroom and using a microphone connected to
a voice recognition software to identify specific users in the classroom, as in [22].
This requirement of reuse calls for middleware systems to enable context-aware
computing, instead of requiring that applications be developed from scratch.

The main goal of middleware in context-aware computing is to enable decou-
pled communication between sensors that provide context data and applications
interested in context information. Most middleware systems have developed mech-
anisms that ease incorporation of sensors (e.g., ContextToolkit [6]), and enable
high-level description of context conditions that applications are interested in, thus
avoiding applications having to poll sensors. Typically, these middleware systems
adopt asynchronous communication mechanisms, such as publish/subscribe [7] or
tuple-space systems [23], as the basis of interactions among sensors and applications.
These mechanisms allow applications to register interests in context information and
to asynchronously receive notifications of events that match their interests. RCSM
[24], Confab [13], PACE [10] and MoCA [19] are examples of middleware systems
that adopt such communication paradigm. Even higher-level programming abstrac-
tions for context-aware computing, such as profiles [24] and preferences [9], require
lower-level mechanisms based on asynchronous notifications. In fact, asynchronous
communication is the most elementary mechanism of context-aware middleware
systems, which is in charge of three main tasks: storage of context information, man-
agement of application’s subscriptions, and dissemination of events that represent a
situation of interest. Some systems delegate this management task to general-purpose
asynchronous event systems, which constitutes the context management layer of
most middleware systems, as proposed by Henricksen and Indulska [9]. However,
general-purpose asynchronous systems do not satisfy adequately the requirements to
enable context-aware computing in a distributed and dynamic scenario. In general,
publish/subscribe systems focus only on efficient event dissemination and routing in
a distributed scenario.

This chapter discusses this challeging problem using the following organization.
Section 2.2 defines the foundational concepts of context management. Sections 2.3
and 2.4 present the conceptual layers of context interest management and discusses
challenges of enabling context management in a distributed and dynamic environ-
ment, respectively. These challenges call for a new class of context interest called
interest of variable wideness, as presented in Sect. 2.4.2.

2.2 General Concepts 11

2.2 General Concepts

In order to exemplify the general concepts of context-aware computing, consider the
following running example:

UMessenger is a location-aware messaging application that enables commu-
nication of a user with a group of people (his buddies), integrating function-
alities of a mobile phone and of an instantaneous communicator. By knowing
the position of his/her buddies on a map, the user can initiate location-oriented
interactions based on their location. The user can also define location-based
notification conditions, e.g., “tell me when buddy x arrives at home”. The
location of the user and his/her buddies are obtained from GPS sensors on
their devices. The map is obtained from a geolocation map service. UMessen-
ger has also the ability to adapt the communication mechanism (e.g. voice,
video, asynchronous and synchronous messages) to the current device’s net-
work connectivity.

2.2.1 Context, Entity, Types and Instances

In a context-aware application, any interaction is based on two elementary concepts:
entity and context information, as defined below.

Entity is any object that has a state and that can be represented in a
computational environment, such as a physical object, a user,
or computational resource.

Context Information is an abstract information that describes the state of an entity.

In the UMessenger example, location and network connectivity are pieces of
context information that characterizes the state of the entity user device. Hence,
the device’s state at a specific instant could be: (location = home) and (network
connectivity = using wired network). For the sake of simplicity, consider that the
user’s device location in fact represents the user’s location. This definition of context
information is consistent to the definition already proposed by Dey [6]. Context-
aware systems implement context information through context types and instances
of these types.

Context type is a computational implementation of a context information which
specifies, at least, its data structure.

For example, to represent the data provided by the GPS sensor, the UMessenger
may implement a GPSLocation type composed of three float numbers: latitude,
longitude and elevation.

12 2 Foundations of Context Management in Distributed and Dynamic Environments

Fig. 2.1 Example of a
Context Instance

A middleware may adopt various types to represent an abstract context informa-
tion. For example, location may have various representations [12], such as symbolic
location [17] (e.g., RoomA, BuildingFPLF) and proximity-based location [18]. As a
result, each representation could be modeled in a particular context type. However,
an application may be only prepared to deal with some of these types. For example,
if the UMessenger is prepared only to display the location on a map based on geo
coordinates, then a location sensor that provides symbolic location will not be useful
for this application.

This book uses the term context instance to describe a piece of data that contains
context information, as defined below.

Context instance is a value or an aggregate of values that describes the state of an
entity at a specific instant of time and which conforms to a certain
context type. A context instance i is an object of context type T
defined by the tuple CT

i = (e, t, VT), where
• e: the entity.
• t : a timestamp.
• VT : a set of values for each attribute defined in type T .

A GPSLocation instance could be described by the tuple shown in Figure 2.1.
A context instance is a snapshot of the state of an entity, at a specific instant of time.
The relationship between a context type and an instance is similar to the relation-
ship between a class and an object in the object-oriented programming paradigm.
Although the concept of context information is an abstraction of context instance,
for an implementation of a context-aware system, these two terms can be used inter-
changeably.

2.2.2 Context Model and Modeling Approach

Context Model A context model determines the set of all context types and entities,
and relationships among them.

The definition of a context model is a part of the implementation of a context-
aware system. A context model defines relevant concepts to the application domain,
which the middleware is prepared to deal with. For example, the CoBrA middle-
ware [5] models entities such as Agent, Person, Meeting, Event and Schedule, which
are the basis of the implementation of smart meeting applications. In the case of

2.2 General Concepts 13

UMessenger , since the application basically deals with location and resources of a
device, the application should adopt a model that, at least, describes context types to
represent location and resources, as well as an entity type to represent devices.

The expressiveness and complexity of a context model depends on the modeling
approach adopted in the system, which defines how the concepts and their relation-
ships are described. We define context modeling approach as follow.

Context Modeling Approach is the schema used to describe concepts and their rela-
tionships in a context model.

A context modeling approach also defines the kinds of relationships a model may
support and the meaning of each relationship. An example of a simple context mod-
eling approach is the pair key-value schema, which uses tuples of pairs (key, value)
to describe context information, as adopted in [20]. Using this modeling approach,
an instance of GPSLocation would be described by the following set of pairs:
((lati tude = −22.979997), (longitude = −43.234302), (elevation = 17)).

Other examples of context modeling approaches [2, 21] are markup schema,
graphical, object-oriented, logic based, ontology based and hybrid approaches (e.g.
[11]), as discussed in [1].

Some modeling approaches support the formal description of how a context infor-
mation is inferred from previous existing information. For example, ontology-based
approaches use first-order logic to describe how a concept may be inferred from
another concept.

2.2.3 Context Providers and Consumers

A context-aware scenario is composed of interations between elements that produce
context, called context providers, and elements that consume context, called context
consumers, as defined below.

Context provider is a computational element that populates the context-aware sys-
tem with context instances of a particular type.

Context consumer is a computational element that consumes context instances to
achieve some application-specific purpose.

A context provider translates raw data probes obtained from a low-level
sensor (e.g., accelerometer, GPS sensor) into context instances on a context model.
A provider is a proxy of a sensor in the context-aware system, translating raw data to
information that can be used in the system. In the case of UMessenger , an application
module may be responsible for collecting data from the GPS sensor and for creating
the corresponding instances of GPSLocation type. The GPS sensor does not need
to know the application’s context model, and thus another computational element -
the provider - generates the useful data for the application.

14 2 Foundations of Context Management in Distributed and Dynamic Environments

Typically, a context consumer is a context-aware application, such as the UMes-
senger , which consumes location information. A computational element may act
both as a context consumer and producer, generating a new context information
from another lower-level context. For example, some location positioning systems
(e.g., [15, 17]) infer a location of a device from triangulation of radio frequency sig-
nal strengths from reference points (e.g., 802.11 access points). If such positioning
systems model both signal strengths and location as context types, then they infer
a context type from another one. This inference is called context reasoning. The
external element that produces this reasoning is an inference agent.

Inference Agent is a computational element that consumes context instances to
deduce a new context of a different type. The inference agent
publishes the resulting context in the system, thus also acting as
a context provider.

Hence, an inference agent acts both as a context provider and a consumer.

2.2.4 Contextual Event and Context Interest

A context consumer specifies the situation it is interested in terms of contextual
events and context interests.

Contextual Event is a change in the state of one or more entities that is relevant for
some consumer.

For example, the contextual event phone is offline could be triggered when
the connection with a cellular network is no more available. Upon this event, the
UMessenger may disable the sending of SMS messages.

Context Interest is a representation of a class of contextual events that a con-
sumer is interested in. A context interest n is defined as a tuple
In = (E, T, ε(VT)), where
• E is a set of entities.
• T is the context type
• ε(VT) is a boolean function that contains a logic expression
based on the values of the attributes VT . It defines the constraint
on context instances that satisfies the interest.

The complexity of ε(VT) evaluation depends directly on the context modeling
approach adopted. For example, in a middleware that adopts a pair key-value model-
ing approach, a constraint is a composition of logic expressions based on the values
of each attributes (i.e. key).

2.2 General Concepts 15

2.2.5 Context Selection and Matching

One of the core responsibilities of a context-aware system is to decide, in a set of
context instances, which ones satisfy interests of each consumer, as specified by its
context matching function. This responsility still envolves two tasks: context selection
and notification composition.

Context Matching Function is a boolean function Match(n, i) that determines if
an context instance i satisfies an interest n.

A context matching function is executed against context instances to check if an
instance change must produce a notification for the consumer. Every return true
results in a notification to a consumer. Basically, a matching function is a translation
of interest’s ε(VT) to the context of the computational element responsible for an
interest matching. The complexity of a matching depends directly on the modeling
approach adopted. For example, for a pair key-value approach, the matching is a
comparison of the values of the keys that appear in the interest expression. For an
ontology-based approach, the matching is based on the execution of inference on
ontology models. In general, the more flexible the matching is, the more complex
the implementation of the matching function becomes.

The matching function must be executed when there is a change in the state of an
instance, which may correspond to a contextual event.

Context Selection is the task of selecting a subset of context instances to which an
interest applies.

A context selection function determines the context instances that should be
applied to an interest match, according to the interest specification. In theory of
event-based systems, context selection is corresponding to a task called event filter-
ing [16]. The complexity of context selection depends on the modeling approach
adopted in the system and, in general, defines the class of context the consumer
is interested in. Context selection typically depends on the implementation of the
underlying asynchronous communication mechanism that a middleware adopts. For
example, in a middleware that adopts context management based on a topic-based
[7] publish/subscribe system, context selection is based on the topic used in subscrip-
tions. In general, context selection is based on the entity and additional properties
of a context interest. In the aforementioned example, the additional property is the
topic name.

Notification Composition is the task of choosing the more appropriate notification
resulting from an interest match, when more than one con-
text instance satisfies an interest.

Multiple matches may occur when more than one context provider produces
the same context information. The resulting information may be complementary
or inconsistent, so a consumer must use only one of the notifications to trigger their
adaptation. In general, an application may use meta-attributes or quality-of-context

16 2 Foundations of Context Management in Distributed and Dynamic Environments

information, to select the notification that is more appropriate for an application. For
example, an application may specify that it is only interested in the most trustable
notification.

Some middleware systems have developed mechanisms to deal with these noti-
fication conflicts, such as PACE [10] and CARISMA [3]. When the middleware is
responsible for the notification composition, the interest description must support
such meta-attributes. Notification composition may be implemented as a part of
the middleware or as an external element, as another middleware component or the
application.

2.2.6 Context Management System

A context management system (CMS) is an independent computational infrastructure
that enables interactions among context providers and consumers, as define below.

Context Management System A context management system (CMS) is an architec-
tural component in context-aware computing respon-
sible for storing context information, published by
context providers, and matching previously registered
interest to context instances.

A CMS must both store context instances published by providers, as register con-
text interest of consumers, and check them against context instances, thus executing
context selection and matching. A CMS is also responsible for managing the context
model, validating the consistency of interest and instances according to the model.
The underlying modeling approach plays an important role in defining the complexity
of implementing the CMS. Depending on the context model approach, management
of a model may be resource-intensive. For example, ontology-based models require
constant execution of inference rules, which usually degrades the performance of the
CMS.

Four main elements characterize a CMS, as illustrated in Fig. 2.2: primitives, the
context model, context interests, and context instances. Each CMS is responsible for
a particular set of context interest and instances, as result of context providers and
consumers interacting with it. The CMS’s primitives correspond to the interaction
paradigm, context modeling approach and the underlying communication middle-
ware on which the CMS is based. An application that interacts with a CMS, is capable
for interacting with any other CMS that adopts the same primitives.

Some middleware systems, such as Nexus [8], support heterogeneity among
CMS’s context models, i.e. each CMS can adopt a particular context model.

Table 2.1 shows the primitives of interaction with a CMS, considering only the
asynchronous mode of operation, which is the focus of the work presented in this
book.

A CMS may be implemented as a set of distributed infrastructural components,
such as proposed in [4]. However, to adhere to the proposed definition, the CMS

2.2 General Concepts 17

Fig. 2.2 Diagram of a CMS structure and its interaction with providers and consumers

Table 2.1 Main Asynchronous Primitives of Context Management Systems

Operation Direction Meaning

publish Provider → CMS publishes a context information
registerInterest Consumer → CMS registers an interest
notifyMatching CMS → Consumer notifies a consumer that a previously registered

interest has matched to a context information
unregisterInterest Consumer → CMS unregisters a context interest

distribution must be totally transparent for providers and consumers, that address
the CMS through the same addressing abstraction. Thus, in the perspective of con-
sumers and providers, there is no difference between accessing distributed CMSs
and accessing a unique CMS. Section 2.3 discusses a scenario of distributed CMSs
and the role of middleware to confer transparency to such distribution.

2.3 Conceptual Layers of Context Interest Management

The support of context interest in distributed environments, i.e. distributed CMSs,
brings up challenges in terms of context management infrastructures and program-
ming abstractions, besides the traditional problems of scalability and distribution1.
The goal of a middleware for open and evolutionary scenarios is to support context

1 E.g., event notification routing and mobility management.

18 2 Foundations of Context Management in Distributed and Dynamic Environments

Fig. 2.3 Layers of interest implementation on context-aware ecosystems

interest without increasing the application’s complexity. Middleware systems should
make transparent the diversity and distribution of a CMS.

Figure 2.3 shows distributed context management systems organized in the con-
ceptual layers. These layers range from the application to CMSs responsible for
managing and storing context information. In the figure, the different shading of
each CMS’s component represents heterogeneity in such aspect among the CMSs.
For example, CMSs A, B and C adopt a particular context model, whereas A and
C adopt a same primitive which is different from B’s primitives. In addition, the
different style of CMS C represents that the CMS is not included in the processing
of the application’s interest.

The interest specification layer comprises applications, frameworks and middle-
ware systems that specify and register context interests and that receives notifications
when a context data matches an interest. The interest processing layer comprises
CMSs responsible for storing context information and matching context interests.
The interest delivery layer comprises middleware infrastructures that route context
interests to the corresponding CMS and deliver notifications to the corresponding
clients. It also may implement transparent access to distributed CMSs and translate
a higher-level interest to lower-level interest. The set of computational elements of
all interest layers is called context-aware ecosystem.

Several context providers may provide the same context type regarding a specific
entity, and those may change dynamically. Thus, an application may need to register
its interest on several CMSs that are responsible for that interest, or require that the
interest delivery layer translates its high-level interest to the corresponding lower-
level interests. The interest translation needs to conform the context model of each
CMS, if they are heterogeneous.

The interest delivery layer may also need to implement a distributed notification
composition if more than one CMS disseminates notifications for the same interest
match. This composition may either be done on the specification layer (application’s

2.3 Conceptual Layers of Context Interest Management 19

side) or in the delivery layer. The drawback of the first case is that it increases
application complexity.

Consider the case of UMessenger . To obtain the updated location of each buddy,
the application needs to register in any CMS that stores the location of a buddy. Peer-
to-peer messaging applications tipically obtain references to peers to connect and
their current connectivity states from a centralized server. This architecture could be
suitable for UMessenger if location is limited to a GPS embedded sensor. However, a
distributed scenario for context management suggests the implementation of a more
flexible application, which we call UMessenger 2.0, as described below.

UMessenger 2.0 is an extension of UMessenger that can work with flexi-
ble semantics of location information and different location providers. In the
default mode of operation, UMessenger 2.0 obtains a map from a centralized
map provider, as in the previous application version. In this mode, UMessen-
ger 2.0 describes interests for geo locations of all user’s buddies, specifying a
preference to obtain location from the most precise provider, which is typically
a GPS provider. If GPSLocation is not available, e.g., the user is not using
a GPS-enabled device or the user is in an indoor environment, the application
shows the location using other alternative providers (e.g., E911 and Active
Bats). If the location provider is based on an indoor position system, as in
Active Bats, the application provides an option to the user to switch the map
view to the view directly associated to the provider (e.g., a building map for an
indoor positioning system). Then, the application starts showing the buddy’s
location according to this new map view, so a buddy who is not present in
the area covered by the map will not be shown. UMessenger 2.0 still enables
the corresponding location-based notifications, using the place semantic of the
new map view: instead of geo locations, semantic locations, such as Room510
and 5thFloor. When required, the user can switch to the previous or another
map view. UMessenger 2.0 still maintains the ability to adapt the commu-
nication mechanism (e.g., voice, video, async/synchronous messages) to the
current device’s network connectivity.

In this scenario, an application may need to specify broader or narrower interests,
in terms of the CMS involved in the resolution and the context types that satisfy
the interest. The complexity of managing an application depends on how broad are
its context interests. An interest is more abstract if it involves context managed in
more CMSs and if its type is implemented by specific means in more than one CMS.
For example, an interest in the Location of a Person p is more abstract than
an interest in the GPSLocation of a Buddy p of user u, although both contexts
may describe locations of the same person p. Whenever interests are more abstract,
applications may need to specify more context interests at different CMSs to describe
the condition that triggers the intended adaptation. Such concepts may need to be

20 2 Foundations of Context Management in Distributed and Dynamic Environments

translated to context model of each CMS. Consequently, the notification composition
involves more interest matches.

2.4 Context Interest Management in a Dynamic
Context-Aware Ecosystem

In a dynamic context-aware ecosystem, the components of each interest layer may
change, as the result of the evolution of the whole ecosystem. Such changes may com-
promise the consistency of interests and cause disruptions in a context-aware interac-
tion. The main issue regarding this scenario is how to support a context interest that
involves more that one CMS. Composing isolated CMSs do not enable to deal with
the challenges of this scenario with efficiency and achieving scalability. Furthermore,
by supporting a dynamic ecosystem, instead of just isolated CMSs, applications may
describe more complex interests. As the ecosystem grows in size, the complexity of
dealing with context interests increases, since CMSs may be dynamically introduced
or changed.

Five characteristics make challeging the implementation of distributed and
dynamic context-aware ecosystems:

• Dynamic deployment of new context providers,
• Dynamic deployment of new context types,
• Scoping of context models,
• Lack of in-advance knowledge of CMS, and
• Dynamic deployment of new CMSs.

The following paragraphs discuss each of these characteristics.

Dynamic Deployment of New Context Providers

New sensors may be constantly introduced in the ecosystem, as a result of the
development of new devices, more precise sensors, new sensing mechanisms or
new inference mechanisms. If a new sensor provides context involved in an interest,
then it must be included in the interest matching. From the point of view of an appli-
cation, perceiving a new sensor means to have the provided context included in the
interest selection and matching. On the matching of interests, running applications
with alive interests should be able to recognize the new provider, without requiring
them to be restarted, recompiled or redeveloped.

The need to perceive a sensor may be the result of client mobility. For example,
if a device enters in a physical environment that provides location sensors, than
any context consumer interested in the device’s location must have its interests also
registered in the corresponding CMS.

2.4 Context Interest Management in a Dynamic Context-Aware Ecosystem 21

Table 2.2 Example of context location providers (sensors) and the placement of their CMS

Provider CMS Location Applicability

GPS Locally placed Outdoor
E911 Cellular network Indoor/Outdoor
ActiveBadges Building infrastructure Indoor

Dynamic Deployment of Context Types

As the result of the introduction of new sensors, the context model may also need
to conform to particularities of the new provided context information. For example,
location sensors that provide geographic coordinates and relative location must have
different representations in the context model. Although both describe a location, the
structure of the provided context is completely different. If a consumer can deal with
the information of the new provider/type, then his/her active interests for an already
existing type must include the new type in the interest matching.

Scoping of Context Models

Applications should be prepared to describe context interests based on various context
models, and some of them may be restricted or relevant only within their adminis-
trative domains. The heterogeneity of CMS’s context models is also desirable, since
it promotes efficiency and security.

Lack of In-Advance Knowledge of CMS

For some interests, the CMSs responsible for managing the context can be statically
discovered. For example, both a GPS sensor and an accelerometer are internal device
sensors, so applications may be statically prepared to collect and deal with context
information they provide. For other providers, however, a consumer does not know
previously the CMSs that contain the desired context and, thus, where its interests
must be registered. For example, there may be many CMSs, as Table 2.2 exemplifies,
each one from a different administrative domain, that provide a particular location
information for some users. If the context-aware ecosystem requires that all con-
sumers make an explicit addressing of CMSs where their interest has be registered,
then applications should be developed to have a previous knowledge of existing
CMSs. In a highly distributed ecosystem, dealing with all CMSs may introduce a
heavy burden to applications, which have to deal with an amount of interest registry
and the composition of the resulting notification matches.

The interest delivery layer plays an important role to identify the CMSs where a
specific consumer interest must be registered.

22 2 Foundations of Context Management in Distributed and Dynamic Environments

Dynamic Deployment of CMSs

As a result of the incremental introduction of context-aware computing, new CMSs
may be dynamically deployed and start participating in the ecosystem. This fact
introduces a more challenging scenario in terms of addressing and delivering interests
to CMS, discussed in the previous characteristic.

These five characteristics produce a dynamic and unpredictable behavior on the
interest processing layer. A middleware for context-aware computing should deal
with such dynamics, keeping it transparent to the upper level interest description
layer. In fact, the challenges for the implementation of dynamic context-aware
ecosystems, relates both in the interest delivery layer and in the interest descrip-
tion layer. The following sections discuss the resulting middleware requirements for
the layer of interest delivery and interest description.

2.4.1 Requirements of the Interest Delivery Layer

A middleware that supports dynamic context-aware ecosystems must satisfy five
requirements: (i) support for seamless evolution of context management systems,
(ii) dynamic context discovery, (iii) domains of context perception, (iv) uniform
representation of context interests, and (v) distributed context management.

The interest delivery layer directly handles changes of the elements of the interest
processing layer, as result of the dynamic deployment of CMSs, sensors, and types
(context model). Hence, the interest delivery layer is responsible for accommodating
such changes for the currently active context interests, without the need to restart
or invalidate registered context interests, i.e. supporting seamlessly the evolution of
context management systems.

This dynamics within an ecosystem also requires the dynamic discovery of CMSs.
For example, in UMessenger 2.0, to track the location of a specific buddy, the interest
delivery layer must register the application’s interest at the corresponding CMSs that
maintain location information for the selected buddy. If the buddy moves to another
environment and, as a consequence, sensors connected to other CMSs start publishing
the location of the buddy, then the application’s interest must be registered at those
CMSs. Registering an interest at all available CMSs is not an acceptable approach
because the middleware will not scale with the number of application’s interests.
Ideally, the middleware should dynamically discover which CMSs may contains
context involved in a context interest. This book uses the term dynamic context
discovery to express this requirement.

A middleware for context management must support domains of context percep-
tion, i.e. must allow each CMS to adopt a particular context model. In addition, the
middleware must be aware of this model heterogeneity among CMSs, and then reg-
ister an interest at the CMSs for which it applies. Also, in this case, the middleware
would not scale if the whole ecosystem is based on a single context model.

2.4 Context Interest Management in a Dynamic Context-Aware Ecosystem 23

Table 2.3 Mapping between requirement for context management middleware and Kindberg and
Fox’s principle for ubiquitous computing

Requirement Related Principles

Support for seamless evolution of context-aware Volatility
management systems

Dynamic context discovery Volatility & System boundary
Domains of context perception System Boundary
Uniform Interest Description Spontaneous Interoperation
Distributed Context Management Scalability & System boundary

The dynamics of the ecosystem calls for heterogeneous CMSs, specially in terms
of models and managed sensors. The middleware must adopt a primitive to describe
context interests that can be the interpreted and registered at any CMS, in spite of their
heterogeneity. This requirement is called uniform representation of context interests.

Finally, since an ecosystem is inherently composed of distributed CMSs, the
middleware also must support distributed context management.

These five requirements are aligned with the following three principles of Kind-
berg and Fox [14] for system software for ubiquitous computing:

• Volatility: the set of participating users, hardware, and software is highly dynamic
and unpredictable.

• System boundary: an ecosystem is divided into environments with boundaries that
demarcate their content, creating the notion of environment’s scope.

• Spontaneous interoperation: software components may spontaneously enter in the
ecosystem and start interactions with each other.

In fact, the goal of proposed approach for context management is to promote
ubiquity in a dynamic context-aware ecosystem. In addition to Kindberg and Fox’s
principle, a context-aware ecosystem also demands for scalability as an orthogonal
principle. Table 2.3 shows the relationship between each discussed requirement for
a context management middleware and the corresponding principle proposed by
Kindberg and Fox.

2.4.2 Requirements for Interest Description Layer

The characteristics of a distributed and dynamic context-aware ecosystem may
impact on the complexity of a context interest. For example, an application may
need to describe the specific CMS to which an interest applies. In this case, the CMS
assumes the meaning of the interest’s scope.

In contrast, if an interest is not explicitly restricted to a particular CMS then the
set of CMSs responsible for its processing cannot be solved in interest description
time. In a context-aware ecosystem, each CMS may have a particular context model,

24 2 Foundations of Context Management in Distributed and Dynamic Environments

Table 2.4 Classification of Context Interest Expressions

Aspect Type Description

Domain of CMS Closed domain (DC) Expression applies to a specific (and well-known)
CMS.
Ex: Application adapts its mode of communication
according to device resources (local domain).

Relative domain (DR) Expression only applies to the current CMS to
which an application or the contextualized entity
is associated.
Ex: Obtain the map of the current domain.

Open domain (DO) Expression must be applied to a broader domain
space of CMS.
Ex: UMessenger 2.0uses location obtained from
any provider to track the user’s buddy location.

Type Coverage Specific Type (TS) Expression applies to a very specific and previ-
ously known context type.
Ex: UMessenger 2.0uses wireless bandwidth to
adapt its communication mechanisms/protocol.

Abstract Type (TA) Interest expression applies to a general and
abstract context type, which may be specialized
by different and specific context types, that in turn
is provided by different context sources.
Ex: UMessenger 2.0requests abstract location to
locate a user in a map, which may be either a
coordinate-based location or a symbolic location.

as a result of the particularities of the corresponding environment. Consequently, a
type involved in a specific interest may be recognized only in a subset of ecosystem’s
CMSs. Thus, the CMSs that process an interest may range from a particular one to
the whole ecosystem’s CMSs. We call wideness of an interest such behavior of being
more broad or more narrow. The set of CMSs that recognizes a certain context type
must be evaluated at runtime, so we say that a context-aware ecosystem enables
context interests of variable wideness, as defined below.

Context interest of variable wideness is a context interest in a context-aware ecosys-
tem that either involves an undefined number
of CMSs in its matching or undefined actual
context types.

Table 2.4 classifies context interest expressions according to two orthogonal
aspects: domains of CMS, i.e. which set of CMS may be involved in a context interest
resolution, and type coverage, i.e. how specific is the context type which the appli-
cation is interested in. Table 2.4 also shows some examples of these interests, using
UMessenger 2.0 as a reference.

The domain of CMS specifies which of the CMSs will participate in the processing
of a context interest. Since more than one CMS may contain providers for the same

2.4 Context Interest Management in a Dynamic Context-Aware Ecosystem 25

type of context information, a context interest may require the registration of lower-
level interests at several CMSs. Then the interest must be disseminated to each CMS
and the corresponding notifications must be delivered back to the application. If an
interest specifies exactly one CMS responsible for its processing, then we say that it
is a closed domain (DC) interest.

However, in a distributed and open scenario, where new CMSs and context
providers may be added and removed at anytime, an application may not be able
to identify the set of CMSs that provide a specific context. In this case, if a change
occurs at runtime, it may cause inconsistencies or disruptions in interest match noti-
fications. When an interest must be applied to an undefined set of CMSs, we call this
expression of an open domain (DO) interest. A relative domain expression (DR) is a
particular case of interest where it must be applied only to the closest scope of CMS
to which the application or the contextualized entity is associated.

The other aspect of interest expression is the scope of the context type requested in
an interest expression. In this case, we assume that the system supports hierarchical
context models with the notion of super and subtyping among context types. An
interest expression associated to an abstract type (TA) may be refined to interests
of any subtype, increasing the number of notifications and the complexity of result
interpretation. An expression for a specific type (TS), defines precisely the actual type
that must be involved in an interest match. Distributed and open CMSs increase the
complexity of implementing abstract type expression, since they allow each domain
to have its own context model.

The goal of a middleware for such an open and evolutionary scenario is to enable
those interest expressions without increasing the application’s complexity. Middle-
ware systems should make transparent the diversity and distribution of CMS, in terms
of context models and available context sources. Furthermore, the middleware’s
programming abstractions should allow applications to specify in just one context
interest expression, DO interests, leaving for the middleware to solve the inconsisten-
cies among interest match notifications, according to the application requirements.

Chapter 5 presents a case study of an implementation of the UMessenger 2.0,
discussing in more detail the different types of interest expressions that can be used
by the application.

2.5 Summary

This chapter has shown the fundamental concepts for context-aware computing
and the main components of an architecture for context-aware computing. This
chapter used as a running example a hypothetical application called UMessenger . In
special, two fundamental concepts were used: context interest and context manage-
ment system (CMS).

Section 2.3 introduced the term context-aware ecosystem to specify all elements
that interact among each other in an architecture of distributed context-aware com-
puting. The management of context interest in an ecosystem is composed of three

http://dx.doi.org/10.1007/978-1-4471-4020-7_5

26 2 Foundations of Context Management in Distributed and Dynamic Environments

conceptual layers: interest description, interest delivery, and interest processing lay-
ers.

Section 2.4 discussed how the dynamics of a context-aware ecosystem challenges
the implementation of management layers of context interests. As a result of this
discussion, Sect. 2.4.1 enumerated five requirements for a middleware for distrib-
uted context management in respect to interest delivery layer whereas Sect. 2.4.2
argued that in a context-aware ecosystem, applications demand for interest descrip-
tion approach that enable the description of interest with variable domain of CMS
and coverage of types. This interest is called context interest of variable wideness.

The next chapter presents distributed architectures for context management that
integrates and composes distributed CMSs, to build a context-aware ecosystem, and
discusses how they support context interests of variable wideness.

References

1. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A.,
Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput.
6(2), 161–180 (2010). doi:10.1016/j.pmcj.2009.06.002

2. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-oriented survey
of context models. SIGMOD Rec. 36(4), 19–26 (2007). doi:10.1145/1361348.1361353

3. Capra, L., Emmerich, W., Mascolo, C.: CARISMA: context-aware reflective middleware sys-
tem for mobile applications. IEEE Transact. Softw. Eng. 29(10), 929–945 (2003). doi:10.1109/
TSE.2003.1237173

4. Chen, G., Li, M., Kotz, D.: Design and implementation of a large-scale context fusion network.
In: The First Annual International Conference on Mobile and Ubiquitous Systems: Networking
and Services, Mobiquitous 2004, pp. 246–255 (2004). doi:10.1109/MOBIQ.2004.1331731

5. Chen, H.: An intelligent broker architecture for pervasive context-aware systems. Ph.D. thesis,
University of Maryland, Baltimore County (2004)

6. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16(2–4), 97–166
(2001). doi:10.1207/S15327051HCI16234_02

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-
lish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003). doi:10.1145/857076.857078

8. Grossmann, M., Bauer, M., Honle, N., Kappeler, U.P., Nicklas, D., Schwarz, T.: Efficiently
managing context information for large-scale scenarios. In: Third IEEE International Con-
ference on Pervasive Computing and Communications, PerCom 2005, pp. 331–340 (2005).
doi:10.1109/PERCOM.2005.17

9. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications:
models and approach. Pervasive and Mobile Computing 2(1), 37–64 (2006). doi:10.1016/j.
pmcj.2005.07.003

10. Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.: Middleware for distributed
context-aware systems. Lect. Notes Comput. Sci. 3760, 846–863 (2005)

11. Henricksen, K., Livingstone, S., Indulska, J.: Towards a hybrid approach to context modelling,
reasoning and interoperation. In: 1st International Workshop on Advanced Context Modelling,
Reasoning and Management, pp. 54–61. Orlando, Florida (2004)

12. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34(8),
57–66 (2001). doi:10.1109/2.940014

http://dx.doi.org/10.1016/j.pmcj.2009.06.002
http://dx.doi.org/10.1145/1361348.1361353
http://dx.doi.org/10.1109/TSE.2003.1237173
http://dx.doi.org/10.1109/TSE.2003.1237173
http://dx.doi.org/10.1109/MOBIQ.2004.1331731
http://dx.doi.org/10.1207/S15327051HCI16234_02
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1109/PERCOM.2005.17
http://dx.doi.org/10.1016/j.pmcj.2005.07.003
http://dx.doi.org/10.1016/j.pmcj.2005.07.003
http://dx.doi.org/10.1109/2.940014

References 27

13. Hong, J.I., Landay, J.A.: An architecture for privacy-sensitive ubiquitous comput-
ing. In: Proceedings of the 2nd international conference on Mobile systems, appli-
cations, and services, MobiSys ’04, pp. 177–189. ACM Press, New York (2004).
doi:10.1145/990064.990087

14. Kindberg, T., Fox, A.: System software for ubiquitous computing. IEEE Pervasive Comput.
1(1), 70–81 (2002). doi:10.1109/MPRV.2002.993146

15. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T.,
Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place
Lab: device positioning using radio beacons in the wild. In: 3rd International Conference on
Pervasive Computing. Munich, Germany (2005)

16. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer, New York (2006)
17. Nascimento, F.N.D.C.: A service for location inference of mobile devices based on IEEE

802.11. Master’s thesis, Departamento de Informática, PUC-Rio (2006)
18. Orr, R.J., Abowd, G.D.: The smart floor: a mechanism for natural user identification

and tracking. In: CHI ’00 extended abstracts on Human factors in computing systems,
pp. 275–276. ACM, New York, (2000). doi:10.1145/633292.633453

19. Sacramento, V., Endler, M., Rubinsztejn, H.K., Lima, L.S., Goncalves, K., do Nascimento,
F.N.: MoCA: a middleware for developing collaborative applications for mobile users. IEEE
Distrib. Syst. Online 5(10) (2004)

20. Strang, T., Linnhoff-Popien, C.: Service interoperability on context level in ubiquitous comput-
ing environments. In: Proceedings of International Conference on Advances in Infrastructure
for Electronic Business, Education, Science, Medicine, and Mobile Technologies on the Inter-
net. L’Aquila, Italy. (2003)

21. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: First International Workshop
on Advanced Context Modelling, Reasoning And Management. Nottingham, England (2004)

22. Undercoffer, J., Perich, F., Cedilnik, A., Kagal, L., Joshi, A.: A secure infrastructure for ser-
vice discovery and access in pervasive computing. Mob. Netw. Appl. 8(2), 113–125 (2003).
doi:10.1023/A:1022224912300

23. Wyckoff, P., McLaughry, S., Lehman, T., Ford, D.: TSpaces. IBM Syst. J. 37(3) (1998)
24. Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable context-sensitive

middleware for pervasive computing. IEEE Pervasive Comput. 1(3), 33–40 (2002)

http://dx.doi.org/10.1145/990064.990087
http://dx.doi.org/10.1109/MPRV.2002.993146
http://dx.doi.org/10.1145/633292.633453
http://dx.doi.org/10.1023/A:1022224912300

	2 Foundations of Context Management in Distributed and Dynamic Environments
	2.1 Introduction
	2.2 General Concepts
	2.2.1 Context, Entity, Types and Instances
	2.2.2 Context Model and Modeling Approach
	2.2.3 Context Providers and Consumers
	2.2.4 Contextual Event and Context Interest
	2.2.5 Context Selection and Matching
	2.2.6 Context Management System

	2.3 Conceptual Layers of Context Interest Management
	2.4 Context Interest Management in a Dynamic Context-Aware Ecosystem
	2.4.1 Requirements of the Interest Delivery Layer
	2.4.2 Requirements for Interest Description Layer

	2.5 Summary
	References

