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Introduction 

1 The field concept 

The central concept in the modern theory of electromagnetism is that of the electromag
netic field. The forces that electrical charges, currents, and magnets exert on each other 
were believed by early thinkers to be of the action-at-a-distance type, i.e., the forces acted 
instantaneously over arbitrarily large distances. Experiments have shown, however, that 
this is not true. A radio signal, for example, can be sent by moving electrons back and 
forth in a metallic antenna. This motion will cause electrons in a distant piece of metal 
to move back and forth in response—this is how the signal is picked up in a radio or cell 
phone receiver. We know that the electrons in the receiver cannot respond in a time less 
than that required by light to travel the distance between transmitter and receiver. Indeed, 
radio waves, or electromagnetic waves more generally, are a form of light. 

Facts such as these have led us to abandon the notion of action at a distance. Instead, 
our present understanding is that electrical charges and currents produce physical entities 
called fields, which permeate the space around them and which in turn act on other 
charges and currents. When a charge moves, the fields that it creates change, but this 
change is not instantaneous at every point in space. For a complete description, one 
must introduce two vector fields, E(r, t), and B(r, t), which we will call the electric and 
magnetic fields, respectively. In other words, at every time t , and at every point in space r, 
we picture the existence of two vectors, E and B. This picture is highly abstract, and 
early physicists had great trouble in coming to grips with it. Because the fields did not 
describe particulate matter and could exist in vacuum, they seemed very intangible, and 
early physicists were reluctant to endow them with physical reality. The modern view is 
quite different. Not only do these fields allow us to describe the interaction of charges and 
currents with each other in the mathematically simplest and cleanest way, we now believe 
them to be absolutely real physical entities, as real as a rhinoceros. Light is believed to be 
nothing but a jumble of wiggling E and B vectors everywhere, which implies that these 
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fields can exist independently of charges and currents. Secondly, these fields carry such 
concrete physical properties as energy, momentum, and angular momentum. When one 
gets to a quantum mechanical description, these three attributes become properties of a 
particle called the photon, a quantum of light. At sufficiently high energies, two of these 
particles can spontaneously change into an electron and a positron, in a process called 
pair production. Thus, there is no longer any reason for regarding the E and B fields as 
adjuncts, or aids to understanding, or to picture the interactions of charges through lines 
of force or flux. Indeed, it is the latter concepts that are now regarded as secondary, and 
the fields as primary. 

The impossibility of action at a distance is codified into the modern theory of relativity. 
The principle of relativity as enunciated by Galileo states that the laws of physics are 
identical in all inertial reference frames.1 One goes from Galilean relativity to the modern 
theory by recognizing that there is a maximum speed at which physical influences or 
signals may propagate, and since this is a law of physics, the maximum speed must 
then be the same in all inertial frames.2 This speed immediately acquires the status of 
a fundamental constant of nature and is none other than the speed of light in vacuum. 
Needless to say, this law, and the many dramatic conclusions that follow from considering 
it in conjunction with the principle of relativity, are amply verified by experiment. 

The application of the principle of relativity also leads us to discover that E and B are 
two aspects of the same thing. A static set of charges creates a time-independent electric 
field, and a steady current creates a time-independent magnetic field. Since a current can 
be regarded as a charge distribution in motion, it follows that E and B will, in general, 
transform into one another when we change reference frames. In fact, the relativistic 
invariance of the laws of electrodynamics is best expressed in terms of a single tensor 
field, generally denoted F . The fields E and B are obtained as different components of F . 
At low speeds, however, these two different components have so many dissimilar aspects 
that greater physical understanding is obtained by thinking of them as separate vector 
fields. This is what we shall do in this book. 

2 The equations of electrodynamics 

The full range of electromagnetic phenomena is very wide and can be very complicated. 
It is somewhat remarkable that it can be captured in a small number of equations of 

1 That such frames exist is a matter of physical experience, and actual frames can be made to approximate 
an ideal inertial reference frame as closely as we wish. 

2 Einstein took the frame invariance of the speed of light as a postulate in addition to the principle of 
relativity. It was recognized fairly soon after, however, that this postulate was not strictly necessary: the relativity 
principle alone was enough to show that the most general form of the velocity addition law was that derived by 
Einstein, with some undetermined but finite limiting speed that any object could attain. That this speed is that 
of light is, then, a wonderful fact, but not of essential importance to the theory. Some works that explore this 
issue are W. V. Ignatowsky, Arch. Math. Phys. 17, 1 (1911); 18, 17 (1911); V. Mitavalsky, Am. J. Phys. 34, 825 
(1966); Y. P. Terletskii (1968); A. R. Lee and T. M. Kalotas, Am. J. Phys. 43, 434 (1975); N. D. Mermin, Am. J. 
Phys. 52, 119 (1984); A. Sen, Am. J. Phys. 62, 157 (1994). 
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relatively simple form: 

Law Equation (Gaussian) Equation (SI) 

Gauss/s law  ∇ · E = 4pq ∇ · E = 
q 

E0 

4p 1 ∂E ∂E 
Ampere-Maxwell law ∇ × B = j + ∇ × B = µ0j +µ0E0 

c c ∂t ∂t 
(2.1) 

1 ∂B ∂B 
Faraday/s law  ∇ × E + = 0 ∇ × E + = 0 

c ∂t ∂t 

No magnetic monopoles ∇ · B = 0 ∇ · B = 0 

1 
Lorentz force law F = q E + v × B F = q (E + v × B) 

c 

These laws are confirmed by extensive experience and the demands of consistency with 
general principles of symmetry and relativistic invariance, although their full content can 
be appreciated only after detailed study. We have written them in the two most widespread 
systems of units in use today and given them the names commonly used in the Western 
literature. The first four equations are also collectively known as the Maxwell equations, 
after James Clerk Maxwell, who discovered the last term on the right-hand side of the 
Ampere-Maxwell law in 1865 and thereby synthesized the, till then, separate subjects of 
electricity and magnetism into one.3 

We assume that readers have at least some familiarity with these laws and are aware 
of some of their more basic consequences. A brief survey is still useful, however. We 
begin by discussing the symbols. The parameter c is the speed of light, and E0 and µ0 

are constant scale factors or conversion factors used in the SI system. The quantity q is a 
scalar field q(r, t), denoting the charge distribution or density. Likewise, j is a vector field 
j(r, t), denoting the current distribution. This means that the total charge inside any closed 
region of space is the integral of q(r, t) over that space, and the current flowing across 
any surface is the integral of the normal component of j(r, t) over the surface. This may 
seem a roundabout way of specifying the position and velocity of all the charges, which 
we know, after all, to be made of discrete objects such as electrons and protons.4 But, it is 
in these terms that the equations for E and B are simplest. Further, in most macroscopic 

3 Although modern practice attaches the names of particular scientists to these laws, it should be 
remembered that they distill the collective efforts of several hundred individuals over the eighteenth and 
nineteenth centuries, if not more. A survey of the history may be found in E. M. Whittaker (1951). For a more 
modern history covering a more limited period, see O. Darrigol (2000). 

4 In fact, in dealing with discrete point charges, or idealized current loops of zero thickness, the distributions 
q(r, t) and  j(r, t) must be given in terms of the Dirac delta function. A certain amount of mathematical quick
stepping is then necessary, which we shall learn how to do in chapter 2. 
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situations, one does not know where each charge is and how fast it is moving, so that, at 
least in such situations, this description is the more natural one anyway. 

The four Maxwell equations allow one to find E and B if q and j are known. For this 
reason, the terms involving q and j are sometimes known as source terms, and the E and 
B fields are said to be “due to” the charges and currents. However, we began by talking 
of the forces exerted by charges on one another, and of this there is no mention in the 
Maxwell equations. This deficiency is filled by the last law in our table—the Lorentz force 
law—which gives the rule for how the fields acts on charges. According to this law, the 
force on a particle with charge q at a point r and moving with a velocity v depends only on 
the instantaneous value of the fields at the point r, which makes it a local law. Along with 
Newton’s second law, 

dp = F, (2.2)
dt  

equating force to the rate of change of momentum,5 it allows us to calculate, in principle, 
the complete motion of the charges. 

Let us now discuss some of the more salient features of the equations written above. 
First, the Maxwell equations are linear in E and B, and in q and j. This leads immediately 
to the superposition principle. If one set of charges and currents produces fields E1 and 
B1, and another set produces fields E2 and B2, then if both sets of charges and currents 
are simultaneously present, the fields produced will be given by E1 + E2, and  B1 + B2. 
This fact enables one to simplify the calculation of the fields in many circumstances. In 
principle, one need only know the fields produced by a single moving charge, and the 
fields due to any distribution may be obtained by addition. In practice, the problem of 
addition is often not easy, and one is better off trying to solve the differential equations 
directly.6 A large part of electromagnetic theory is devoted to developing the classical 
mathematical machinery for this purpose. This includes the theorems named after Gauss, 
Stokes, and Green, and Fourier analysis and expansions in complete sets of orthogonal 
functions. With modern-day computers, direct numerical solution is the method of choice 
in many cases, but a sound grasp of the analytic techniques and concepts is essential if 
one is to make efficient use of computational resources. 

The second point is that the equations respect the symmetries of nature. We discuss 
these in considerably greater detail in chapter 6, and here we only list the symmetries. The 
first of these is invariance with respect to space and time translations, i.e., the equivalence 
of two frames with different origins or zeros of time. As in mechanics, this symmetry 
is connected with the conservation of momentum and energy. The fact that it holds 

5 In the form (2.2) the equation remains relativistically correct. This is not so if we write F = ma, with  m 
and a being the mass and the acceleration, respectively. The reason is that for particles with speeds close to c , 
p �= mv. 

6 Supplemented, one might add, by boundary conditions. Note though, that not all boundary conditions 
that lead to a well-posed mathematical problem are physically sensible. The physically acceptable boundary 
conditions are that in static problems, the fields die off at infinity, and in dynamic problems, they represent 
outgoing solutions, i.e., that there be no flow of energy from infinity into the region of interest, unless such 
irradiation is specifically known to be present. 
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for Maxwell’s equations automatically leads us to assign energy and momentum to the 
electromagnetic field itself. The second symmetry is rotational invariance, or the isotropy 
of space. That this holds can be seen directly from the vector nature of E and B, and the 
properties of the divergence and curl. It is connected with the conservation of angular 
momentum.7 The third symmetry is spatial inversion, or parity, which in conjunction 
with rotations is the same as mirror symmetry.8 We shall find that under inversion, 
E → −E, in the same way that a “normal” vector like the velocity v behaves, but B → B. 
One therefore says that E is a polar vector, or just a vector, while B is a pseudovector or 
axial vector. The fourth symmetry is time reversal, or what might be better called motion 
reversal. This is the symmetry that says that if one could make a motion picture of the 
world and run it backward, one would not be able to tell that it was running backward.9 

The fifth symmetry is the already mentioned equivalence of reference frames, also known 
as relativistic invariance or Lorentz invariance.10 This symmetry is extremely special and, 
in contrast to the first three, is the essential way in which electromagnetism differs from 
Newtonian or pre-Einsteinian classical mechanics. We shall devote chapter 23 to its study. 
Historically, electromagnetism laid the seed for modern (Einsteinian) relativity. The 
problem was that the Maxwell equations are not Galilean invariant. This fact is mostly 
clearly seen by noting that light propagation, which is a consequence of the Maxwell 
equations, is described by a wave equation of the form 

1 ∂2 f ∇2 f − = 0. (2.3) 
c2 ∂t2 

Here, f stands for any Cartesian component of E or B. As is well known, classical wave 
phenomena are not Galilean invariant. Sound, e.g., requires a material medium for its 
propagation, and the frame in which this medium is at rest is clearly special. The lack 
of Galilean invariance of Maxwell’s equations was well known to physicists around the 
year 1900, but experimental support for the most commonly proposed cure, namely, that 
there was a special frame for light as well, and a special medium (the ether) filling empty 
space, through which light traveled, failed to materialize. Finally, in 1905, Einstein saw 
that Galilean invariance itself had to be given up. Although rooted in electromagnetism, 
this proposal has far-reaching consequences for all branches of physics. In mechanics, 
we mention the nonabsolute nature of time, the equivalence of mass and energy, and 

7 The connection between space translation invariance and the conservation of momentum, time translation 
invariance and the conservation of energy, and rotational invariance and the conservation of angular momentum 
is a general consequence of Noether’s theorem, which states that any continuous symmetry leads to a 
conservation law and also gives the form of the conserved quantity. Noether’s theorem is proved in almost 
all texts on mechanics. See, e.g., Jose and Saletan (1998), secs. 3.2.2., 9.2. 

8 The weak interactions do not respect this symmetry, but they lie outside the realm of classical physics. The 
same comment applies to time reversal. 

9 Anyone who has seen the Charlie Chaplin gag where he rises from his bed, stiff as a corpse, while his heels 
stay glued in one spot, will disagree with this statement. In fact, the laws of physics possess only microscopic 
reversibility. How one goes from this to macroscopic irreversibility and the second law of thermodynamics is a 
profound problem in statistical mechanics, and continues to be a matter of debate. 

10 This term is sometimes expanded to include the previous four symmetries also, and one then speaks of 
full or general Lorentz invariance. 
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the impossibility of the existence of rigid bodies and elementary particles with finite 
dimensions. Today, relativity is not regarded as a theory of a particular phenomenon 
but as a framework into which all of physics must fit. Much of particle physics in the 
twentieth century can be seen as an outcome of this idea in conjunction with quantum 
mechanics. 

Another feature of the Maxwell equations that may be described as a symmetry is that 
they imply charge conservation. If we add the time derivative of the first equation, Gauss’s 
law, to the divergence of the second, the Ampere-Maxwell law, we obtain the continuity 
equation for charge, 

∂q = −∇ · j. (2.4)
∂t 

If we integrate this equation over any closed region of space, and any finite interval of 
time, the left-hand side gives the net increase in charge inside the region, while, by 
Gauss’s theorem, the right-hand side gives the inflow of charge through the surface 
bounding the region. Thus, eq. (2.4) states that charge is locally conserved. This conser
vation law is intimately connected with a symmetry known as gauge invariance. We shall  
say more about this in chapter 12. 

The last symmetry to be discussed is a certain duality between E and B. Let us consider 
the second and third Maxwell equations and temporarily ignore the current source term. 
The equations would then transform into one another under the replacements E → B, 
B → −E. The same is true of the remaining pair of equations if the charge source term 
is ignored. This makes it natural to ask whether we should not modify the equations for 
∇ · B and ∇ × E to include magnetic charge and current densities qm and jm, in other 
words, to write (in the Gaussian system), 

1 ∂B 4p∇ × E = −  + jm, (2.5) 
c ∂t c 

∇ · B = 4pqm. (2.6) 

All the existing experimental evidence to date, however, indicates that free magnetic 
charges or monopoles do not exist.11 

In the same connection, we should note that there is another source of magnetic field 
besides currents caused by charges in motion. All the charged elementary particles, the 
electron (and the other leptons, the muon and the taon) and the quarks, possess an 
intrinsic or spin magnetic moment. This moment cannot be understood as arising from 
a classical spinning charged object, however. The question then arises whether we should 

11 For extremely precise-minded readers, we should note that there is a certain convention implicit in 
the making of this statement. By adopting a larger set of duality transformations, one could, in fact, modify 
Maxwell’s equations as per eqs. (2.5) and (2.6). Instead of asserting the absence of magnetic monopoles, one 
would then say that the ratio qm/qe (qe being the electric charge) was the same for all known particles. There is 
little to be gained from this point of view, however, and it is simpler to pick a fixed representation for E and B 
and write Maxwell’s equations in the usual form. See Jackson (1999), sec. 6.12, for more on this point. 
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not add a source term to the equation for ∇ · B to take account of this magnetic moment. 
If we are interested only in describing the field classically, however, we can do equally 
well by thinking of these moments as idealized current loops of zero spatial extent and 
including this current in the source term proportional to j in the Ampere-Maxwell law. 
The integral of the divergence of this current over any finite volume is always zero, so the 
equation of continuity is unaffected, and we need never think of the charge distribution 
carried by these loops separately. In fact, the alternative of putting all or some of the source 
terms into the equation for ∇ · B is not an option, for it leads to unacceptable properties 
for the vector potential. We discuss this point further in section 26. 

3 A lightspeed survey of electromagnetic phenomena 

Having surveyed the essential properties of the equations of electrodynamics, let us now 
mention some of the most prominent phenomena implied by them. First, let us consider 
a set of static charges. This is the subject of electrostatics. Then j = 0, and q(r) is time  
independent. The simplest solution is then to take B = 0, and the E-field, which is also 
time independent, is given by Gauss’s law. In particular, we can find E(r) for a point 
charge, and then, in combination with the Lorentz force law, we obtain Coulomb’s force 
law—namely, that the force between two charges is proportional to the product of the 
charges, to the inverse square of their separation, and acts along the line joining the 
charges. We study electrostatics further in chapter 3. 

Similarly, suppose we have a time-independent current density j(r), and q = 0. (The 
current density must be divergenceless to have a well-posed problem, for otherwise the 
equation of continuity would be violated.) This makes up the subject of magnetostatics. 
The simplest solution now is E = 0, and a time-independent B, which is given by the 
Ampere-Maxwell equation (now known as just Ampere’s law) and the equation ∇ · B = 0. 
There is now no analog of Coulomb’s law, but several simple setups can be considered. 
One can, for example, calculate the B field produced by a straight infinite current-carrying 
wire. A second wire parallel to the first will experience a force which is given by the 
Lorentz force law. The force per unit length on any wire is proportional to the product 
of the currents, is inversely proportional to the distance between the wires, and lies in the 
plane of the wires, perpendicular to the wires themselves. This relationship is the basis of 
the definition of the unit of current in the SI system, the ampere. We study magnetostatics 
in detail in chapter 4. 

The simplest time-dependent phenomena are described by Faraday’s law. This law says 
that a changing magnetic field, which could be created in several ways—a time-dependent 
current j(r, t), or a moving magnet—produces an electric field. If a metallic wire loop is 
placed in the region of the electric field, a current and an emf will be induced in the 
loop. This phenomenon, known as induction, is the basis of transformers, generators, 
and motors, and therefore of the unfathomable technological revolution wrought by these 
devices. We study this in chapter 5. A related phenomenon is seen when a wire loop, or, 
more generally, any extended conductor, moves in a static magnetic field. The induced 
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electric field can then drive currents through the conductor. This effect is exploited in 
dynamos and is believed to lie behind the earth’s magnetic field, as we shall see in 
section 131. 

The term ∂E/∂t in the Ampere-Maxwell law is needed to make the equations consistent 
with charge conservation. Its greatest consequence, however, is seen by considering 
the equations in the absence of any currents or charges. If we take the curl of the 
Faraday equation, for example, and use the Ampere-Maxwell and Coulomb’s laws, 
we obtain 

1 ∂2E ∇2E − = 0. (3.1) 
c2 ∂t2 

The same equation is obtained for B if we take the curl of the equation for ∇ × B. 
These two equations have nonzero solutions that are consistent with the first-order 
equations coupling together E and B, and  with  ∇ · E = ∇ · B = 0. These solutions de
scribe electromagnetic waves or light, and we study them in chapter 7, except for 
certain observer-dependent properties, such as the Doppler effect, which are covered in 
chapter 24. We have already commented on the implications of the existence of these 
solutions for the reality of the electromagnetic field. 

Maxwell’s equations also describe the production of electromagnetic waves via the 
phenomenon of radiation. We shall see this in chapters 9 and 10, when we consider 
the fields produced by moving charges. We shall see that an accelerating charge emits 
fields that die away only inversely with distance from the charge at large distances and 
that locally look like plane electromagnetic waves everywhere. These radiated fields carry 
energy and momentum. This phenomenon underlies radio, TV, cell phones, and all other 
wireless communications. If the charges are moving at speeds close to that of light, the 
properties of the radiation change dramatically. This is illustrated by the phenomenon 
of synchrotron radiation, which we study in chapter 25 after we have discussed special 
relativity in chapters 23 and 24. 

The interaction of radiation or light with matter opens a whole new set of phenomena, 
which can be divided into large subclasses. First, when the matter is microscopic— 
individual charges, atoms, and molecules—interest attaches to scattering, i.e., the 
acceleration of the charges by the incident radiation, and reradiation of an electromagnetic 
field due to this acceleration. One now obtains the phenomena of Compton scattering, 
atomic and molecular spectra, etc. A proper treatment of these must be quantum 
mechanical. Nevertheless, much can be learned even in a classical approach, and 
we do this in chapter 22 using phenomenological models of atoms and molecules. 
Second, when the matter is in the form of a bulk medium, the most striking fact is 
that at certain wavelengths, light can propagate through matter, e.g., visible light goes 
through window glass. How this happens is examined in chapter 20. We also examine 
the attendant phenomena of reflection and refraction at interfaces between different 
media. If the medium is inhomogeneous, then, in addition to propagation, one also gets 
some scattering of the light. We see this phenomenon every day in the sky, and it also 
occurs when the medium is denser, such as a liquid. These topics are also discussed 
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in chapter 22. Third, when the matter is in the form of opaque obstacles, large on the 
scale of the wavelength, application of the superposition principle to light fields leads 
to distinctive phenomena known as interference and diffraction. We take these up in 
chapter 8. 

Next, let us turn to the behavior of charges in external fields. This is described 
by the Lorentz force equation. A large variety of motions is obtained, especially in 
inhomogeneous magnetic fields. We discuss these in chapter 11. Motion of charges in 
the earth’s magnetic field is discussed in appendix G. The motion of magnetic moments 
in a magnetic field is also discussed in chapter 11. 

We have already touched on the phenomena encountered when light interacts with 
bulk matter, without indicating how these are to be understood. For that, one must 
first tackle the larger problem of describing electromagnetic fields in matter more 
generally, not just for radiation fields. This is a very complex problem, as evidenced 
by the huge variety in the types of matter: conductors, insulators, magnets, and so 
on. Indeed, matter is itself held together largely by electromagnetic forces, and much 
of the distinction between the broadly different types of matter we have mentioned 
above is based on the response of these types to electromagnetic fields. Thus, it 
would seem that one first needs to develop a theory of matter, so that one may 
understand how some materials can be, say, conductors, and other materials insulators. 
Fortunately, one can make substantial progress by relying on intuitive and simplified 
notions of these terms. The key property that helps us is that matter is neutral on 
a very short distance scale, essentially a few atomic spacings. Thus, coarse-grained 
or macroscopic electromagnetic fields may be defined by spatially averaging over this 
length scale. These fields obey equations that resemble those for the fields in vacuum. 
The resemblance is only skin deep, however. The response of the medium cannot 
be trivialized. It is modeled through so-called constitutive relations that differ from 
medium to medium. In conductors, e.g., we have Ohm’s law, which says that an 
internal electric field is accompanied by a proportionally large transport current. In 
insulators (also known as dielectrics), it relates the polarization of the matter to the internal 
electric field. It is in these constitutive relations that the complexity of the material 
is buried. Finding them from “first principles” is the province of condensed matter 
physics and statistical mechanics, which we shall not enter. Instead, we will work with 
semiempirical and phenomenological constitutive laws. Essentially all phenomena can 
be understood in this way. The coarse-graining procedure is discussed in chapter 13, 
and Ohm’s law and the related topics of emf and electrical circuits in chapter 17. 
A simple but widely applicable constitutive model for time-dependent phenomena in 
many materials is developed in chapter 18. 

The simplest kinds of phenomena involving matter are static. Electrostatic fields in 
the presence of conductors and insulators (or dielectrics) are discussed in chapters 14 
and 15. In the first case, the central phenomenon is the expulsion of the electrical field 
from the interior of the conductors and from any hollow cavity inside a conductor. In the 
second case, the field is not expelled entirely, but is reduced, and the concern shifts to 
understanding why and estimating the reduction. 



January 20, 2012 Time: 02:32pm chapter1.tex

Copyrighted Material

Copyrighted Material 

10 | Chapter 1 Introduction 

In contrast to the electric case, the response of most materials to static magnetic fields 
is rather tame. Permanent or ferromagnets are a notable exception. Unfortunately, the 
most interesting phenomena that they exhibit, such as hysteresis, domain formation, 
etc., are rather difficult to analyze or even formulate, since the particulars are dom
inated by material properties and even the shape of the body because of long-range 
dipole–dipole interactions. Still, several general aspects can be studied, and we do so 
in chapter 16. 

When matter is subjected to time-dependent fields, even more phenomena emerge. 
In conductors, when the frequency is low, one gets eddy currents, and the expulsion of 
electric fields that was perfect in the static case is only slightly weakened. We discuss this 
in chapter 19. When the frequency is high, we get plasma oscillations and waves, as dis
cussed in chapter 21. The near-perfect reflectivity of metals is also discussed in this chap
ter, along with the waveguides and resonant cavities that this property makes possible. 

Needless to say, in attempting to understand such a vast array of phenomena, one 
must develop and draw upon many general concepts. These include conservation laws, 
relativistic invariance, thermodynamics and statistical mechanics, causality, stochasticity, 
the action principle, and the Lagrangian and Hamiltonian formulations of mechanics. 
The discussion of these concepts is woven into the entire text intimately, for it is 
in this way that we see the relation between electromagnetism and other branches 
of physics. The two exceptions are the action formalism, to which we devote an 
entire chapter, chapter 12, and the formalism of special relativity, which is covered 
in chapter 23. We shall, by and large, stay away from quantum mechanics, although 
a knowledge of some elementary quantum mechanical ideas is presumed in a few 
places. 

4 SI versus Gaussian 

Two common systems of units and dimensions are used today in electromagnetism. 
These are the Gaussian and the SI or rationalized MKSA systems. The Gaussian system is 
designed for use with the cgs (centimeter–gram–second) system of mechanical units, and 
the SI is designed for use with the MKS (meter–kilogram–second) system. Unfortunately, 
converting between Gaussian and SI is not as easy as converting between dynes and 
newtons, or even foot-pounds and newtons, as physical quantities do not even have the 
same engineering dimensions in the two systems. In the Gaussian system, E and B have 
the same dimensions, while in the SI system, E has dimensions of velocity times B. This  
means that equations intended for use in the two systems do not have the same form, and 
one must convert not only amounts but also equations. For example, in the SI system, the 
factor 1/c does not appear in Faraday’s law or the Lorentz force law. Additional differences 
are present in the relations for macroscopic fields D and H that arise in the discussion 
of material bodies. Further, the SI system entails two dimensional constants, E0 and µ0, 
known as the permittivity and permeability of the vacuum, respectively. The net result is 
that converting between the two systems is almost invariably irritating, but there seems to 
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be little that can be done to bring about a standardization. A prominent twentieth-century 
magnetician captures the frustration perfectly: 

Devotees of the Giorgi system will not be happy with my units; but I can assure them 

that the unhappiness that my system inflicts upon them will be no greater than the 

unhappiness that their system over the last thirty years has inflicted on me.12 

In this book, we shall give the most important formulas in both systems, but intermediate 
calculational steps will be given in Gaussian only. From the point of view of physics 
and conceptual understanding, the Gaussian system is better. From the point of view 
of practical application, on the other hand, the SI system is better, as it gives currents 
in amperes, voltages in volts, etc. Thus, a hard insistence on using one system or the 
other gets one nowhere, and it is necessary for everyone who works with electricity and 
magnetism to understand both systems and to have an efficient and reliable method of 
going back and forth between them. Conversion tables that achieve this end can be found 
in almost all textbooks.13 We too give such tables (see tables 1.1 and 1.2, pages 16 and 
17). However, we also show how to derive these conversion factors. For now, we limit 
ourselves to the basic quantities E, B, charge, etc. Relationships for the macroscopic fields 
D, H, etc., and related quantities are discussed in chapter 13. 

The scheme given here requires knowing (i) that the symbols for all mechanical 
quantities—mass, length, time, force, energy, power, etc.—are the same in the two 
systems, and (ii) formulas for three mechanical quantities in both systems. Other choices 
for this set of three are possible, but the one that we find most easy to remember is 
tabulated below. 

Quantity Formula (Gaussian) Formula (SI) 

2 2q q
Coulomb force 

r 2 4pE0r 2 (4.1) 

−1Energy density 
1

(E2 + B2) 
1

(E0E2 + µ0 B2)
8p 2

1 
Lorentz force q E + v × B q (E + v × B) 

c 

The first formula is for the Coulomb force between two equal charges q separated by a 
distance r . Since the symbols for force and distance are the same, it follows that 

 
qSI = 4pE0qGau, (4.2) 

12 Brown (1966). By the Giorgi system, Brown means SI. He himself uses a mixed system he calls Gaussian 
mks, which allows for conversion between SI and Gaussian at the expense of introducing a multiplicative factor 
in Coulomb’s law whose value is different depending on the unit system, and replacement rules for the current 
and emf. 

13 See, e.g., Jackson (1999), appendix, or Pugh and Pugh (1970), chap. 1. 



January 20, 2012 Time: 02:32pm chapter1.tex

Copyrighted Material

� 

� 

Copyrighted Material 

12 | Chapter 1 Introduction 

where the suffix “Gau” is short for Gaussian. The same conversion applies to charge 
density q, current I, and current density j. (Recall that current is the amount of charge 
flowing through a surface per unit time.) 

The second formula is for the energy density in the electromagnetic field. Since we can 
vary E and B independently, this is a “twofer”—it gives us two conversions for the price 
of one. Since energy and volume are the same in the two systems, we see that 

ESI = 
EGau√ 
4pE0 

, (4.3) 

� 

BSI = 
µ0 

4p 
BGau. (4.4) 

The Lorentz force formula is the third one. It too is a “twofer.” Consider a situation 
in which there is only an electric field. Since the symbol for force is unchanged in going 
from one system to the other, so must be the product qE : 

(qE)SI = (qE)Gau. (4.5) 

But, this is exactly what we get from eqs. (4.2) and (4.3), so we already knew this. 
Something new is learned when we apply the same reasoning to the magnetic field term. 
We get 

1 
(qB)SI = (qB)Gau. (4.6) 

c 

Changing q and B to the Gaussian system using eqs. (4.2) and (4.4), we get 

√ 1 
E0µ0 = . (4.7) 

c 

These relationships are enough to convert any formula in the SI system to the 
Gaussian, or vice versa. Take, for example, the magnetic field of an infinite current-
carrying wire. In the Gaussian system this is given by the formula 

2I 
B = , (4.8) 

cr⊥ 

where r⊥ is the distance from the wire to the point where the field is desired. To get the 
SI formula, we replace B by (4p/µ0)1/2 B and I by (4pE0)−1/2 I. This yields  

1 µ0 2I 
B = 

4p E0 cr⊥ 

µ0 I = , (4.9)
2pr⊥ 

where we have used eq. (4.7) to eliminate c . 
As another example, let us take the formula for the power radiated by an electric dipole 

oscillator. In the SI system, this is 

c2 Z0k4 µ0
P = |d|2; Z0 = . (4.10)

12p E0 
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Here k is the wave number of the radiation, and d is the dipole moment. Since the dipole 
moment for a charge distribution is the volume integral of rq(r), its conversion is the 
same as that for charge. The quantities P and k are evidently unchanged, so the Gaussian 
formula is 

µ0 k4 ck4 
2 2 2P = c 4pE0 |d| = |d| . (4.11)

E0 12p 3 

One check that this is correct is that it is free of E0 and µ0. 
As the third example, let us change the Ampere-Maxwell law from its SI to the Gaussian 

form. In the SI system, the law reads 

∂E ∇ × B = µ0j +µ0E0 . (4.12)
∂t 

Using eqs. (4.2)–(4.4), we see that the Gaussian system form is 

µ0 µ0E0 ∂E ∇ × B = µ0 4pE0j + √ , (4.13)
4p 4pE0 ∂t 

√ 
or, dividing by µ0/4p and using eq. (4.7), 

4p 1 ∂E ∇ × B = j + , (4.14) 
c c ∂t 

as given in the table on page 3. The reader should carry out the same exercise for the 
remaining Maxwell equations. 

The rules for converting capacitance, inductance, and conductance, and related quan
tities such as resistance and impedance will be found later when these quantities are 
defined. 

Finally, let us see how to carry out ordinary or “engineering” dimensional analysis. We 
will denote the dimensions of a quantity by putting square brackets around it: [E] will  
denote the dimensions of E, and so on. 

In the Gaussian system, all quantities have dimensions that can be expressed in terms 
of M, L , and  T , the dimensions of mass, length, and time. However, these quantities 
often have to be raised to fractional exponents. Let us see how this happens, starting 
with charge. From the Coulomb force formula, we have [q ] = [F L 2]1/2, and since [F ] = 

ML T−2, we have  

= M1/2L3/2T−1[q ] . (4.15) 

The dimensions of E now follow from a formula such as E = q/r 2 for the electric field 
magnitude due to a point charge. We get 

= M1/2L−1/2T−1[E] . (4.16) 

As a check, we examine the dimensions of the product qE : 

[qE ] = ML T−2 , (4.17) 
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which are the same as those of force, as they should be. Similarly, E 2 has dimensions 
of ML−1T−2, which are the same as those of energy density [Energy (ML2T−2)/Volume 
(L3)]. 

In the Gaussian system, the dimensions of B and E are the same. This can be seen 
either from the expression for the energy density, or the Lorentz force law. Thus, 

= M1/2 L−1/2T−1[B] . (4.18) 

Exercise 4.1 Obtain the dimensions of I, q, and  d in the Gaussian system, and verify the 
dimensional correctness of all formulas given in this chapter in the Gaussian system. 

In the SI system, fractional exponents are avoided by including current (I) as a fourth 
basic unit. The dimensions of all electromagnetic quantities, including the constants E0 

and µ0, are given in terms of M, L , T , and  I. 
As the starting point, we again consider the dimensions of charge. This is now very 

simple. By the definition of current, we have 

[q ] = T I. (4.19) 

The Lorentz force formula now gives us [E] and [B]: 

[E] = ML T−3 I−1 , (4.20) 

[B] = MT−2 I−1 . (4.21) 

Note that E and B do not have the same dimensions in SI; rather E has dimensions of 
velocity times B, as already stated. 

The dimensions of E0 and µ0 can now be obtained from the formula for energy density: 

M−1 L−3T 4 I2[E0] = , (4.22) 

[µ0] = ML T−2 I−2 . (4.23) 

Exercise 4.2 Verify the dimensional correctness of all formulas given in this chapter in the 
SI system. 

Exercise 4.3 A famous text in quantum mechanics states that “in atomic units,” the 
probability per unit time of ionization of a hydrogen atom in its ground state in an external 
electric field E (also in atomic units) is given by 

4 −(2/3E)w = e . (4.24)E 
Atomic units are such that n, m (electron mass), and a0 (Bohr radius) all have the value 1. 
Rewrite the above formula in the Gaussian and SI systems, and find the value of the 
ionization rate for a field of 1010 V/m. 

Answer: 104 sec−1 . 
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We conclude with a brief history of the two systems of units. Knowing this helps in 
keeping an open mind about the benefits of one versus the other. In the early 1800s, 
with the cgs system for mechanical quantities (force, energy, mass, etc.), Coulomb’s law 
provided the natural unit of charge. Likewise, the law for the force between two magnetic 
poles gave the unit of magnetic pole strength.14 With Oersted’s discovery that currents 
also produce magnetic fields, and the precise formulation of this discovery via the Biot-
Savart law, current could be defined in terms of the magnetic pole strength. All other 
quantities, such as capacitance, resistance, magnetic flux, etc., could also be connected to 
the pole strength. This led to the so-called electromagnetic or cgs-emu units. However, 
current is also the rate of charge flow, so the magnetic field and all other electromagnetic 
quantities could be related to the unit of charge. This led to the electrostatic or cgs-esu 
units. It was then noticed by many workers that the ratio of the numerical value of 
any quantity in cgs-emu units to that in cgs-esu units was very close to 3 × 1010, or its  
reciprocal, or the square of one of these numbers,15 and that this number coincided with 
the speed of light in cgs units. Gauss saw that by putting a quantity with dimensions of 
velocity in the denominator of the Biot-Savart law, the cgs-emu and cgs-esu systems could 
be replaced by a single system; this is how the Gaussian system came to be. Further, 
this appearance of the speed of light was a key factor behind Maxwell’s proposal of the 
displacement current in 1865, and the idea that light was an electromagnetic wave. All this 
while, many workers had adopted a “practical” system of units based on the same idea as 
the cgs-emu, but with units of length and mass equal to 109 cm and 10−11 g, respectively. 
In 1901, Giorgi adjusted the constants µ0 and E0 to make the practical units compatible 
with the mks system; this is essentially the SI system in use today. It may surprise some 
readers that the joule and the newton were not created until the 1930s! 

14 Since magnetic monopoles do not exist, this sentence requires some explanation. The only sources of 
magnetism known in the eighteenth century were permanent magnets. It was well known that the poles of 
a magnet could not be separated and that breaking a bar magnet produced new poles at the broken ends. By 
careful torsion balance experiments with long magnetic needles, however, Coulomb was able to establish in 
1785 that they behaved as if there were a force between the poles at the ends of the needles that varied as the 
inverse square of the separation and the product of the pole strengths. 

15 For example, the ratio for charge was measured by Weber and Kohlrausch to be 3.107 × 1010 in 1856; that 
for resistance was found to be (2.842 × 1010)2 by Maxwell in 1868, and (2.808 × 1010)2 by W. Thomson in 1869. 


