
Chapter 2
Plant Responses to Heavy Metal Toxicity

Anna Manara

Abstract Plants, like all other organisms, have evolved different mechanisms to
maintain physiological concentrations of essential metal ions and to minimize
exposure to non-essential heavy metals. Some mechanisms are ubiquitous because
they are also required for general metal homeostasis, and they minimize the
damage caused by high concentrations of heavy metals in plants by detoxification,
thereby conferring tolerance to heavy metal stress. Other mechanisms target
individual metal ions (indeed some plants have more than one mechanism to
prevent the accumulation of specific metals) and these processes may involve the
exclusion of particular metals from the intracellular environment or the seques-
tration of toxic ions within compartments to isolate them from sensitive cellular
components. As a first line of defense, many plants exposed to toxic concentrations
of metal ions attempt to prevent or reduce uptake into root cells by restricting
metal ions to the apoplast, binding them to the cell wall or to cellular exudates, or
by inhibiting long distance transport. If this fails, metals already in the cell are
addressed using a range of storage and detoxification strategies, including metal
transport, chelation, trafficking, and sequestration into the vacuole. When these
options are exhausted, plants activate oxidative stress defense mechanisms and the
synthesis of stress-related proteins and signaling molecules, such as heat shock
proteins, hormones, and reactive oxygen species.
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2.1 Signal Transduction in Response to Heavy Metals

The response to heavy metal stress involves a complicated signal transduction
network that is activated by sensing the heavy metal, and is characterized by the
synthesis of stress-related proteins and signaling molecules, and finally the tran-
scriptional activation of specific metal-responsive genes to counteract the stress
(Maksymiec 2007). The relevant signal transduction pathways include the Ca-
calmodulin system, hormones, ROS signaling, and the mitogen-activated protein
kinase (MAPK) phosphorylation cascade, which converge by activating the above-
mentioned stress-related genes. Different signaling pathways may be used to
respond to different heavy metals (DalCorso et al. 2010).

2.1.1 The Ca-Calmodulin System

Ca2+ signaling features in responses to a number of abiotic stress factors, including
temperature extremes, osmotic stress, oxidative stress, anoxia, and mechanical
perturbation (Knight 1999). Excess heavy metals modify the stability of Ca
channels, thus increasing calcium flux into the cell. Intracellular Ca is a secondary
messenger, which interacts with calmodulin to propagate the signal and ultimately
to regulate downstream genes involved in heavy metal transport, metabolism, and
tolerance (Yang and Poovaiah 2003). Higher intracellular Ca levels are observed
in plants exposed to Cd, inducing adaptive mechanisms that alleviate the toxic
effects of the heavy metal (Skórzyńska-Polit et al. 1998). The Ca-calmodulin
system is also involved in the response to other heavy metal toxicity, such as Ni
and Pb. Transgenic tobacco plants expressing NtCBP4 (Nicotiana tabacum cal-
modulin-binding protein) tolerate higher levels of Ni2+ but are hypersensitive to
Pb2+, reflecting the exclusion of Ni2+ but the accumulation of more Pb2+ than wild-
type plants (Arazi et al. 1999).

2.1.2 Hormones in the Heavy Metal Response

Plant hormones are involved in many physiological and developmental processes,
and play a crucial role in the adaptation to abiotic stress as shown by the regulation
of hormone synthesis in the presence of heavy metals (Peleg and Blumwald 2011).
For example, plants exposed to toxic levels of Cd, Cu, Fe, and Zn produce higher
levels of ethylene, but Co does not have the same effect (Maksymiec 2007; Wise
and Naylor 1988). Cd and Cu stimulate ethylene synthesis by upregulating ACC
synthase expression and activity (Pell et al. 1997). Cu and Cd also induce the rapid
accumulation of jasmonic acid (JA) in Phaseolus coccineus (Maksymiec et al.
2005), and Cu has also been shown to have this effect in rice (Rakwall et al. 1996)
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and Arabidopsis thaliana (Maksymiec et al. 2005). Salicylic acid (SA) is involved
in heavy metal stress responses, as shown by the increase in SA levels in barley
roots in the presence of Cd and the ability of exogenous SA to protect roots from
lipid peroxidation caused by Cd toxicity (Metwally et al. 2003).

2.1.3 The Role of Reactive Oxygen Species

As stated above, one of the major consequences of heavy metal accumulation is
the production of ROS, which as well as causing widespread damage may also
function as signaling molecules. Heavy metals such as Cd can produce ROS
directly via the Fenton and Haber–Weiss reactions, and indirectly by inhibiting
antioxidant enzymes (Romero-Puertas et al. 2007). In particular, H2O2 acts as a
signaling molecule in response to heavy metals and other stresses (Dat et al. 2000).
H2O2 levels increase in response to Cu and Cd treatment in A. thaliana (Maksy-
miec and Krupa 2006), upon Hg exposure in tomato (Cho and Park 2000) and in
response to Mn toxicity in barley (Cho and Park 2000). This increase in H2O2

accumulation changes the redox status of the cell and induces the production of
antioxidants and the activation of antioxidant mechanisms (Fig. 2.1).

Fig. 2.1 The response to heavy metal toxicity in higher plants. As discussed in the text, plant
responses to heavy metals include: a metal ion binding to the cell wall and root exudates;
b reduction of metal influx across the plasma membrane; c membrane efflux pumping into the
apoplast; d metal chelation in the cytosol by ligands such as phytochelatins, metallothioneins,
organic acids, and amino acids; e transport of metal–ligand complexes through the tonoplast and
accumulation in the vacuole; f sequestration in the vacuole by tonoplast transporters; g induction
of ROS and oxidative stress defense mechanisms as described in Fig. 1.2. Metal ions are shown
as black dots
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2.1.4 The MAPK Cascade

The MAPK cascade in plants is a response to both biotic and abiotic stresses,
including pathogens, temperature extremes, heavy metal stress, drought, and
wounding (Jonak et al. 1996; He et al. 1999). The pathway is also used in hormone
signal transduction and in response to developmental stimuli (Jonak et al. 2002).
The MAPK cascade involved three kinases sequentially activated by phosphory-
lation: the MAPK kinase kinase (MAPKKK), the MAPK kinase (MAPKK), and
the MAPK. At the end of this cascade of phosphorylation, MAPKs phosphorylate
different substrates in different cellular compartments, including transcription
factors in the nucleus. In this way, the MAPK cascade allows the transduction of
the information to downstream targets. Four isoforms of MAPK were shown to be
activated in alfalfa (Medicago sativa) seedlings exposed to Cu or Cd (Jonak et al.
2004) and a MAPK gene is also activated by Cd treatment in rice (Yeh et al. 2004).
All these signaling pathways finally converge in the regulation of transcription
factors that activate genes required for stress adaptation, particularly in the context
of heavy metals this means genes for the activation of metal transporters and the
biosynthesis of chelating compounds.

2.2 Metal Ion Uptake from Soil

Metal availability and motility in the rhizosphere is influenced by root exudates
and microorganisms (Wenzel et al. 2003). Higher plants possess highly effective
systems for the acquisition of metal ions and other inorganic nutrients from the
soil. These are based on a small number of transport mechanisms, suggesting that
different heavy metal cations are co-transported across the plasma membrane in
the roots. Because toxic heavy metals such as Cd and Pb have no known biological
function, it is likely that specific transporters do not exist. Instead, these toxic
metals enter into the cells through cation transporters with a wide range of sub-
strate specificity.

2.2.1 Metal Ion Binding to Extracellular Exudates and to the Cell
Wall

As a first line of defense against heavy metals, plant roots secrete exudates into the
soil matrix. One of the major roles of root exudates is to chelate metals and to
prevent their uptake inside the cells (Marschner 1995). For example, Ni-chelating
histidine and citrate are present in root exudates and these reduce the uptake of Ni
from soil (Salt et al. 2000). The binding of metal ions such as Cu and Zn in the
apoplast also helps to control the metal content of root cells (Dietz 1996). Cation
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binding sites are also present on the root cell wall, and this allows metal exchange
thus influencing the availability of ions for uptake and diffusion into the apoplast
(Allan and Jarrel 1989). The cell wall can play a key role in the immobilization of
toxic heavy metal ions by providing pectic sites and hystidyl groups, and extra-
cellular carbohydrates such as callose and mucilage, and thus prevents heavy
metals uptake into the cytosol (Fig. 2.1). Thus, different tobacco genotypes with
chemically distinct root cell wall surfaces have different sensitivities to Mn tox-
icity (Wang et al. 1992). These data suggest that the chemical properties of the cell
wall might modulate plant metal uptake and consequently metal tolerance.
However, the role of the cell wall in metal tolerance is not completely understood.
The cell wall is in direct contact with metal ions in the soil but only a limited
number of absorption sites are available, suggesting the cell wall has only a minor
impact on metal tolerance (Ernst et al. 1992). However, Silene vulgaris ssp.
humilis is a heavy metal-tolerant plant that accumulates different heavy metals by
binding them to proteins or silicates in the epidermal cell walls (Bringezu et al.
1999).

2.2.2 Metal Ion Transport through the Plasma Membrane in Root

Plants possess various families of plasma membrane transporters involved in metal
uptake and homeostasis. At the cellular level, metal transporters on the plasma
membrane and tonoplast are required to maintain physiological concentrations of
heavy metals, but they may also contribute to heavy metal stress responses
(Fig. 2.1). These transporters belong to the heavy metal P1B-ATPase, the NRAMP,
the CDF (Williams et al. 2000), and the ZIP families (Guerinot 2000). The bio-
logical function, cellular location, and metal specificity of most of these trans-
porters in plants are still unknown. In plants most of these metal ions transporters
were identified by complementation in Saccharomyces cerevisiae mutants defec-
tive in metal uptake.

2.2.2.1 The ZIP Family

One of the principal metal transporter family involved in metal uptake is the ZIP
family. ZIP family of transporters have been identified in many plant species
(as well as bacteria, fungi and animals) and are involved in the translocation of
divalent cations across membranes. Certain ZIP proteins are induced in A. thaliana
roots and shoots in response to Fe or Zn loading, and thus appear to be part of a
stress response. Most ZIP proteins are predicted to comprise eight transmembrane
domains and have a similar topology, with the N- and C-termini exposed to the
apoplast, and a variable cytoplasmic loop between transmembrane domains III and
IV that contains a histidine-rich domain putatively involved in metal binding
(Guerinot 2000) and specificity (Nishida et al. 2008).
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The first ZIP transporter to be characterized was the A. thaliana IRT1. This was
identified by functional complementation of the S. cerevisiae fet3fet4 double
mutant, which is impaired in iron transport (Eide et al. 1996). In A. thaliana, IRT1
is expressed in root cells and accumulates in response to iron deficiency, sug-
gesting a role in Fe2+ uptake from the soil (Vert et al. 2002). Many metal trans-
porters present low ion selectivity, and additional studies in yeast showed that
AtIRT1 can also transport Mn2+, Zn2+, and Cd2+ (Korshunova et al. 1999). IRT1,
in plant, is also involved in the uptake of heavy metal divalent cations such as Cd2+

and Zn2+ (Cohen et al. 1998). Furthermore, when expressed in yeast, AtIRT1
enhanced the Ni2+-uptake activity (Nishida et al. 2011). In A. thaliana, AtIRT1 is
induced in response to excess Ni and is involved in Ni2+ transport and accumu-
lation. In S. cerevisiae the ZRT1 and ZRT2 transporters were identified on the
basis of sequence similarity to IRT1 and they are respectively high- and low-
affinity Zn2+ transporters (Zhao and Eide 1996a, b). The zrt1zrt2 double mutant
yeast was then used to clone the A. thaliana Zn2+ transporters, AtZIP1, AtZIP2,
and AtZIP3 by functional complementation (Grotz et al. 1998). ZIP1 and ZIP3 are
expressed principally in the roots and are induced under Zn limiting conditions. In
A. thaliana, the analysis of the genomic sequence revealed the presence of a fourth
member of the family, AtZIP4, which is expressed in roots and shoots, and it is
also induced by Zn restriction, supporting their proposed role in Zn nutrition. ZIP
transporters in plants are also involved in Cd uptake from soil into the root cells
and transport Cd from root to shoot (Krämer et al. 2007). In hyperaccumulator
species, ZIP transporters are necessary (but not sufficient) for the enhanced
accumulation of metal ions and metal accumulating capacity correlates with ZIP
expression (Krämer et al. 2007). In S. cerevisiae, ZRT3 is a further transporter
identified by functional complementation but this appears to be involved in the
mobilization of Zn from vacuole and not only in the uptake from the environment
(MacDiarmid et al. 2000). There is some evidence that Ni is taken up by Zn
transporters (Assunção et al. 2001) although candidate Ni-specific transporters
have also been identified (Peer et al. 2003).

2.2.2.2 The NRAMP Family

NRAMP metal transporters have been shown to transport a wide range of metals,
such as Mn2+, Zn2+, Cu2+, Fe2+, Cd2+, Ni2+, and Co2+, across membranes, and have
been identified in bacteria, fungi, plants, and animals (Nevo and Nelson 2006). In
plants, NRAMP transporters are expressed in roots and shoots and are involved in
transport of metal ions through the plasma membrane and the tonoplast (Krämer
et al. 2007). NRAMPs in A. thaliana are thought to transport Fe and Cd, with
NRAMP1 playing a specific role in Fe transport and homeostasis (Thomine et al.
2000). The AtNramp1 gene complements the yeast fet3fet4 double mutant, and is
induced under limiting Fe conditions. (Curie et al. 2000). The overexpression of
AtNramp1 in transgenic A. thaliana plants leads to an increase in plant resistance
to toxic iron concentration (Curie et al. 2000).
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2.2.2.3 The Copper Transporters Family

The Copper Transporters (CTR) family of transporter has firstly been identified in
yeast and mammalian and subsequently also in plants. CTR proteins comprise a
putative metal-binding motif in the extracellular domain, three predicted trans-
membrane domains, and a conserved and essential MXXXM motif within the
putative second transmembrane domain (Puig and Thiele 2002). The A. thaliana
copper transporter COPT1 was identified by functional complementation of the
S. cerevisiae mutant ctr1-3, which is defective in copper uptake (Kampfenkel et al.
1995a). In A. thaliana, COPT1 has been shown to transport copper, and it also has
a role in growth and pollen development (Sancenón et al. 2004).

2.2.3 Reduced Metal Uptake and Efflux Pumping at the Plasma
Membrane

The plasma membrane plays an important role in plant response to heavy metals
by preventing or reducing the uptake of metals into the cell or by active efflux
pumping outside the cell. There are few examples of ion exclusion or reduced
uptake as a sole protective mechanism in plants. Although an arsenate-tolerant
genotype of Holcus lanatus absorbs less arsenate than an equivalent non-tolerant
genotype (Meharg and Macnair 1992) due to the suppression of the high-affinity
arsenate transport system combined with the constitutive synthesis of PCs
(Hartley-Whitaker et al. 2001). Active efflux systems are more common and are
used to control heavy metals accumulation inside the cell. This mechanism is well
documented in bacteria (Silver 1996) and in animal cells (Palmiter and Findley
1995). Differently, there are only few evident indications of plasma membrane
efflux transporters involved in heavy metal response in plants. Comparing data
obtained for bacteria and mammals, the most likely candidate heavy metal efflux
pumps in plants (based on sequence similarity to microbial and animal proteins)
are the P1B-ATPases and the CDF families of transporters. P1B-type ATPases
belong to P-type ATPase superfamily and use energy from ATP hydrolysis to
translocate diverse metal cations across biological membranes (Axelsen and
Palmgren 2001). P1B-type ATPases share common structural characteristics, such
as eight predicted transmembrane domains, a CPx (Cys-Pro-Cys/His/Ser) intra-
membrane motif that is hypothetically involved in metal translocation (Ashrafi
et al. 2011), and a putative N- or C-terminal metal binding domain (Colangelo and
Guerinot 2006). P1B-ATPases pump metal ions out of the cytoplasm against their
electrochemical gradient, into either the apoplast or into the vacuole. The eight
P1B-type ATPases in A. thaliana and rice were renamed heavy metal ATPases
(HMAs) (Baxter et al. 2003). HMAs are divided into two classes, one involved in
transport of monovalent cations (Cu/Ag) and the second in the transport of divalent
cations (Zn/Co/Cd/Pb) (Baxter et al. 2003). HMAs are more selective than the
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transporters involved in metal uptake, e.g., HMA2, HMA3, and HMA4 export Zn
and Cd exclusively (Krämer et al. 2007). Therefore, hma2 hma4 double mutants
and, to a lesser extent, the hma4 single mutant contain low levels of Zn in the
shoots, display Zn deficiency symptoms, but other micronutrients are unaffected
(Hussain et al. 2004). In addition, they show increased Cd sensitivity and decrease
in Cd root-to-shoot translocation (Hussain et al. 2004; Wong and Cobbett 2009).
Both AtHMA2 (Hussain et al. 2004) and AtHMA4 (Verret et al. 2005) are located
on the plasma membrane and heterologous expression of AtHMA4 in yeast
induces tolerance to Zn and Cd toxicity, thus suggesting that this transporter can
act as efflux pump (Mills et al. 2005).

ABC transporters are also involved in metal ion efflux from the plasma
membrane. For example, AtPDR8 is localized in the plasma membrane of
A. thaliana root hairs and epidermal cells, conferring both metal tolerance (Kim
et al. 2007) and pathogen resistance (Kobae et al. 2006). AtPDR8 is induced in the
presence of Cd and Pb, transgenic plants overexpressing the protein do not
accumulate Cd in the roots or shoots and are tolerant to normally toxic levels of Cd
and Pb. In contrast, mutants accumulate higher levels of Cd and are sensitive to
both metals. Probably, AtPDR8 acts as an efflux pump of these metals at the
plasma membrane (Kim et al. 2007).

2.3 Root-to-Shoot Metal Translocation

Once taken up by the roots, metal ions are loaded into the xylem and transported
to the shoots as complexes with various chelators. Organic acids, especially cit-
rate, are the major chelators for Fe and Ni in the xylem (Tiffin 1970; Leea et al.
1977). In addition, amino acids are potential metal ligands, for instance Ni may
also be chelated by histidine and translocated (Kramer et al. 1996), and the
methionine derivative NA is involved in the transport of Cu (Pich and Scholz
1996). Several types of transporter proteins are involved in the root-to-shoot
transport of metals. Metal ions are also translocated from source to sink tissue via
phloem. Therefore, phloem sap contains metals arising from source tissue, like Fe,
Cu, Zn, and Mn (Stephan et al. 1994). Into the phloem, only NA was identified as
potential metal chelator of Fe, Cu, Zn, and Mn (Stephan and Scholz 1993). NA is
involved in the long distance transport of metals inside the xylem and phloem, but
other chelators are required for loading. High molecular weight compounds that
chelate Ni, Co, and Fe are found in the phloem of Ricinus communis plants
(Wiersma and Van Goor 1979; Maas et al. 1988) and Zn-chelating peptides are
found in Citrus spp. (Taylor et al. 1988) but they have yet to be characterized in
detail.
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2.3.1 The HMA Family of Transporters

The P-type ATPases reclassified as HMAs (see above) function not only as efflux
pumps to remove metal ions from the cell, but also as internal transporters to load
Cd and Zn metals into the xylem from the surrounding tissues. HMA4 is the first
gene encoding for P-type ATPase cloned and characterized in A. thaliana (Mills
et al. 2003). AtHMA4 is a plasma membrane transporter of divalent ions required
for Zn homeostasis and Cd detoxification as it participates in the cytosolic efflux
and in the root-to-shoot translocation of these metals (Mills et al. 2003; Verret
et al. 2004). Overexpression of the AtHMA4 protein not only increases Zn and Cd
tolerance, but also enhances the root-to-shoot translocation of both metals sug-
gesting a role also in metal root-to-shoot transport (Verret et al. 2004). AtHMA5 is
expressed constitutively in roots and induced by Cu in other plant organs, but
hma5 mutants are hypersensitive to Cu and accumulate this metal in roots to a
greater extent than wild-type plants, suggesting a role in root-to-shoot transloca-
tion and Cu detoxification (Andrés-Colás et al. 2006).

2.3.2 The MATE Family of Efflux Proteins

MATE is a family of membrane-localized efflux proteins involved in extrusion of
multidrug and toxic compound from the cell. FRD3 is a MATE protein that
participates in iron-citrate efflux, i.e., the loading of Fe2+ and citrate into the
vascular tissue in the roots. Xylem exudates from frd3 mutant plants contain less
citrate and Fe than wild-type plants, whereas those from transgenic plants over-
expressing FRD3 produce more citrate in root exudates. Ferric-citrate complexes
are required for the translocation of Fe to the leaves because Fe moves through the
xylem in its chelated form (Durrett et al. 2007).

2.3.3 The Oligopeptide Transporters Family

Oligopeptide Transporters (OPT) is a superfamily of oligopeptide transporters
including the YSL subfamily. The YSL family, specific for plants, takes its name
from the maize Yellow stripe 1 protein (ZmYS1) that mediates Fe uptake by
transporting Fe(III)-phytosiderophore complexes (Curie et al. 2001). The ZmYS1
transporter is able to translocate Fe, Zn, Cu, Ni, and, to a lesser extent, Mn and Cd
(Schaaf et al. 2004). These ions can be chelated by either phytosiderophores or NA
(Roberts et al. 2004). Eight putative YSL transporters have been identified in A.
thaliana based on similarity to the maize gene (Colangelo and Guerinot 2006).
AtYSL1 is expressed in the leaf xylem parenchyma, in pollen, and young siliques;
mutants have a low Fe-NA complex content and cannot germinate normally,
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indicating a role of this protein in the transport of chelated Fe (Le Jean et al. 2005).
AtYSL2 is expressed in shoot and root vascular tissues and is localized mainly in
the lateral plasma membrane, consistent with a role in the lateral movement of
metals into the veins (DiDonato et al. 2004; Schaaf et al. 2005). AtYSL2 is
modulated by Fe, Cu (DiDonato et al. 2004), and Zn (Schaaf et al. 2005) and can
transport both Fe and Cu as NA complexes (DiDonato et al. 2004).

2.4 Heavy Metal Chelation in the Cytosol

Inside the cell, heavy metal ions that are not immediately required metabolically
may reach toxic concentrations, and plant cells have evolved various mechanisms
to store excess metals to prevent their participation in unwanted toxic reactions. If
the toxic metal concentration exceeds a certain threshold inside the cells, an active
metabolic process contributes to the production of chelating compounds. Specific
peptides such as PCs and MTs are used to chelate metals in the cytosol and to
sequester them in specific subcellular compartments. A large number of small
molecules are also involved in metal chelation inside the cells, including organic
acids, amino acids, and phosphate derivatives (Rauser 1999) (Fig. 2.1).

2.4.1 Phytochelatins

PCs are the best-characterized heavy metal chelators in plants, especially in the
context of Cd tolerance (Cobbett 2000). PCs are a family of metal-binding pep-
tides with the general structure (c-Glu-Cys)nGly (n = 2–11) (Cobbett and Gold-
sbrough 2002). They are present in plants and fungi. The cysteine thiol groups
allow PCs to chelate metals and form complexes with a molecular weight of
2.5–3.6 kDa (Cobbett 2000). PCs are synthesized in the cytosol and then trans-
ported as complexes to the vacuole. Their synthesis is rapidly activated in the
presence of heavy metals such as Cd, Cu, Zn, Ag, Au, Hg, and Pb (Rauser 1995;
Cobbett 2000). Synthesis involves the chain extension of GS by PCS a constitu-
tively expressed cytosolic enzyme whose activity is controlled post-translationally
because the metal ions chelated by PCs are required for enzyme activity (Grill
et al. 1989; Cobbett 2000). Due to their metal affinity, PCs are thought to be
involved in the homeostasis and trafficking of essential metals such as Cu and Zn
(Thumann et al. 1991) and in the detoxification of heavy metals, but they do not
seem to be involved in hyperaccumulation (Ebbs et al. 2002). Contrasting evidence
has been reported for the role of PCs in heavy metal tolerance. They have a clear
role in the response of plants and yeast to Cd, e.g., they are induced rapidly in
Brassica juncea following the intracellular accumulation of Cd, thus protecting the
photosynthetic apparatus despite a decline in transpiration and leaf expansion
(Haag-Kerwer et al. 1999). Furthermore, the Cd sensitivity of various A. thaliana
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mutants correlated with their ability to accumulate PCs (Howden et al. 1995). Cd
and Cu treatment also induces the transcription of genes involved in the synthesis
of GS, the precursor of PCs (Xiang and Oliver 1998). Transgenic A. thaliana
plants with low GS levels are more sensitive to Cd, whereas those with elevated
GS levels have similar Cd tolerance to wild-type plants (Xiang et al. 2001).
Similarly, overexpression of the Escherichia coli c-glutamylcysteine synthetase
gene in B. juncea increased the synthesis of GS and PCs, resulting in greater Cd
tolerance (Zhu et al. 1999).

The A. thaliana gene for PC synthase (CAD1) was identified by using the
Cd-sensitive, PC-deficient cad1 mutant (Ha et al. 1999). cad1 mutant produces
normal levels of GSH but is deficient in PCs and hypersensitive to Cd (Howden
et al. 1995). A Schizosaccharomyces pombe mutant with the same characteristics
has also been identified (Ha et al. 1999). The expression of AtPCS1 from
A. thaliana and TaPCS1 from wheat in S. cerevisiae increases PC synthesis and
induces Cd tolerance (Vatamaniuk et al. 1999; Clemens et al. 1999). Furthermore,
purified recombinant A. thaliana and S. pombe PC synthases catalyze the pro-
duction of PCs from GSH in vitro (Vatamaniuk et al. 1999; Clemens et al. 1999).

To evaluate the role of PCs in the heavy metal stress response, the sensitivity of
cad1 mutants to different metals was analyzed. The A. thaliana cad1–3 mutant is
more sensitive to arsenate and Cd than wild-type plants, while there is no differ-
ence considering Zn, selenite, and Ni ions (Ha et al. 1999). In contrast to the S.
pombe pcs mutant, cad1–3 was also slightly sensitive to Cu and Hg and showed
intermediate sensitivity to Ag (Ha et al. 1999). The role of PCs in Cu tolerance
remains to be determined. Studies of the copper-tolerant plant Mimulus guttatus
confirmed a role for PCs in Cu tolerance (Salt et al. 1989). In contrast, Cu-sensitive
and Cu-tolerant ecotypes of S. vulgaris produced similar amounts of PC when the
root tips were exposed to Cu, suggesting differential tolerance arises from other
mechanism (Schat and Kalff 1992; De Knecht et al. 1994). Therefore, although
many evidences for the role of PCs in plant response and detoxification are
reported, not all studies have supported an effective role of PCs in metal tolerance.

It is also notable that excessive PC levels in transgenic plants increase the
accumulation of heavy metals without enhancing tolerance (Pomponi et al. 2006)
and can even confer hypersensitivity to heavy metals. Indeed, an excessive
expression of AtPCS genes confers a hypersensitivity to Cd stress (Lee et al. 2003).
This probably reflects additional important roles for PCs in the cell, such as
essential metal homeostasis, antioxidant mechanisms, and sulfur metabolism
(Rauser 1995; Dietz et al. 1999; Cobbett 2000). Their role in heavy metal stress
response probably may be a side effect of these functions (Steffens 1990).

The final stage of PC activity, particularly in the Cd response, involves their
accumulation as complexes in the vacuole (Salt et al. 1998), where they eventually
form HMW complexes after incorporation of S2-. PC-Cd complexes are
transported into the vacuole by Cd/H+ antiporters and ATP-dependent ABC
transporters in the tonoplast (Salt and Wagner 1993; Salt and Rauser 1995).
In S. pombe, a Cd-sensitive mutant has been isolated; this strain can synthesize
PCs but not accumulate the Cd-PC-sulfide complexes (Ortiz et al. 1992).
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The mutant results to have a mutation in the gene hmt1 that encodes for an ABC-type
transporter, suggesting that this gene mediated transport and compartmentalization
of heavy metals. Similar ABC-type transporters may also be involved in the
compartmentalization of Cd in higher plants (Salt and Rauser 1995).

PCs also mediate the root-to-shoot transport of Cd. Transgenic A. thaliana
plants expressing wheat TaPCS1 accumulate small amounts of Cd in the roots but
have an increased Cd transport to the shoot, reflecting the increased transport
efficiency (Gong et al. 2003).

2.4.2 Metallothioneins and Ferritins

Like PCs, MTs are a major family of LMW cysteine-rich metal-binding peptides.
MTs have been found in many organisms, although the MTs in plants differ
considerably from those found in mammals and fungi. As they contain mercaptide
groups they are able to bind metal ions. Class 1 MTs contain cysteine motifs that
align with mammalian MTs, whereas Class 2 MTs contain similar cysteine clus-
ters but they do not align with Class1 MTs (Robinson et al. 1993). Class 1 MTs are
characterized by the exclusive presence of Cys–X–Cys motifs, whereas in Class 2
MTs both Cys–Cys and Cys–XX–Cys pairs are located in the N-terminal domain
(Robinson et al. 1993). In vertebrates, MTs contain a stretch of 20 highly con-
served cysteine residues, whereas plant and fungal MTs do not contain this motif
(Cherian and Chan 1993).

In S. cerevisiae the MT-encoding gene CUP1 is synthesized and activated by
metal ions, such as Cu (Fürst et al. 1988). In plants, MTs are induced by various
abiotic stresses but are also expressed during development (Rauser 1999). In wheat
and in rice, MTs are induced by metal ions, such as Cu and Cd, and by abiotic
stresses such as temperature extremes and nutrient deficiency (Cobbett and
Goldsbrough 2002). Plant MTs sequester excess of metals by coordinating metal
ions with the multiple cysteine thiol groups (Robinson et al. 1993), and have
particular affinity for Zn2+, Cu+, and Cu2+ as shown by the expression of the pea
gene PsMTa in E. coli (Tommey et al. 1991). A. thaliana MT gene expression is
activated in response to Cu and Cd treatment, but not by Zn, e.g., MT2 is
expressed in response to Cu, but only marginally in the presence of Cd and Zn
(Zhou and Goldsbrough 1994). In A. thaliana, MT1a and MT2a are expressed
in the trichomes and the phloem, indicating they take part in both heavy
metal sequestration and in metal ion transport (García-Hernández et al. 1998).
A. thaliana mt1a mutants are hypersensitive to Cd and accumulate much lower
levels of As, Cd, and Zn than wild-type plants, showing that MTs play a role in
both metal tolerance and metal accumulation (Zimeri et al. 2005). This is
supported by overexpression experiments, e.g., Vicia faba guard cells over-
expressing A. thaliana AtMT2a and AtMT3 can tolerate higher levels of Cd than
untransformed cells (Lee et al. 2004). Similarly, the overexpression of CcMT2
from legume Cajanus cajan in A. thaliana induces both Cd and Cu tolerance and
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allows both metals to accumulate without affecting the expression of endogenous
transporters (Sekhar et al. 2011).

Although animal and fungal MTs have a clear role in heavy metal detoxification
(Hamer 1986) the precise relationship between plant MTs and heavy metals is
unknown (Zhou and Goldsbrough 1994; Zenk 1996; Giritch et al. 1998). MTs are
known to participate in Cu homeostasis (Cobbett and Goldsbrough 2002) and A.
thaliana MT1 and MT2 complement the S. cerevisiae MT-defective cup1 mutant
and confer Cd tolerance (Zhou and Goldsbrough 1994). A. thaliana MT2 can also
partially rescue the Zn hypersensitivity of a Synechococcus amtA mutant, which is
deficient for an endogenous Zn2+-MT gene (Robinson et al. 1996). The expression
pea MT type I as a GSH transferase fusion in E. coli increases Cu accumulation
(Evans et al. 1992), and the expression of B. juncea MT2 in A. thaliana enhances
Cd and Cu tolerance (Zhigang et al. 2006). In contrast, MT2 expression is delayed
in B. juncea plants exposed to Cd although there is a rapid induction of PC
biosynthesis (Haag-Kerwer et al. 1999). These results indicate that there is no
correlation between MT2 expression and Cd accumulation in leaves and the
precise role of MTs in plants under heavy metal stress remains to be established.
MTs probably have different functions in response to different heavy metals and
could also participate in additional antioxidant protection mechanism and plasma
membrane repair (Hamer 1986).

Ferritins are ubiquitous multimeric proteins that can store up to 4500 iron atoms
in a central cavity (Harrison and Arosio 1996). Animal ferritins can also store
other metals, including Cu, Zn, Cd, Be, and Al (Price and Joshi 1982; Dedman
et al. 1992) whereas plant ferritins have only been shown to store Fe. Plant ferritins
are synthesized in responses to various environmental stresses, including pho-
toinhibition and iron overloading (Murgia et al. 2001, 2002). Ferritin gene
expression in plants is dually regulated by ABA and by antioxidants and serine/
threonine phosphatase inhibitors (Savino et al. 1997). Ferritins are therefore a
front-line defense mechanism against free iron-induced oxidative stress (Ravet
et al. 2009). The major function of plant ferritins is not to store and release iron, as
previously reported, but to scavage free reactive iron and prevent oxidative
damage (Ravet et al. 2009).

2.4.3 Organic Acids, Amino Acids, and Phosphate Derivatives

Organic acids and amino acids can bind heavy metals and may therefore be
deployed in response to metal toxicity (Rauser 1999). However, a clear correlation
between heavy metal accumulation and the production of these compounds has not
been established. Organic acids such as malate, citrate, and oxalate confer metal
tolerance by transporting metals through the xylem and sequestrating ions in the
vacuole, but they have multiple additional roles in the cell (Rauser 1999).

Citrate, which is synthesized in plants by the enzyme citrate synthase, has a
higher capacity for metal ions than malate and oxalate, and although its principal
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role is to chelate Fe2+ it also has a strong affinity also for Ni2+ and Cd2+ (Cataldo
et al. 1988). Malate is a cytosolic Zn-chelator in zinc-tolerant plants (Mathys
1977).

Also amino acids and derivatives are able to chelate metals conferring to plants
resistance to toxic levels of metal ions. Histidine is considered the most important
free amino acid in heavy metal metabolism. Thanks to the presence of carboxyl,
amino, and imidazole groups, it is a versatile metal chelator, which can confer Ni
tolerance and enhance Ni transport in plants when supplied in the growth medium,
perhaps reflecting its normal role as a chelator in root exudates (Callahan et al.
2006). Histidine levels also increase in the xylem of Alyssum lesbiacum, a Ni
hyperaccumulator, when the plant is exposed to Ni (Kramer et al. 1996).

The amino acid derivative NA is an aminocarboxylate synthesized by the
condensation of three S-adenosyl-L-methionine molecules in a reaction catalyzed
by NA synthase (Shojima et al. 1990). NA chelates Fe, Cu, and Zn in complexes
(Stephan et al. 1996) and then accumulates within vacuoles (Pich et al. 1997); it is
not secreted from the roots (Stephan and Scholz 1993). NA is also involved in the
movement of micronutrients in plants (Stephan and Scholz 1993). The physio-
logical role of NA has been studied extensively in the tomato mutant chloronerva,
which lacks a functional NA synthase gene and is characterized by the abnormal
distribution and accumulation of Fe (Scholz et al. 1985) and Cu (Herbik et al.
1996). NA is also the precursor of the phytosiderophore mugineic acid, which
binds Zn2+, Cu2+, and Fe3+ (Treeby et al. 1989). This derivative is synthesized in
grasses by the deamination, reduction, and hydroxylation of NA (Shojima et al.
1990).

Phytate (myo-inositol hexakisphosphate) is the principal form of reserve
phosphorous in plants (Hocking and Pate 1977) and is often localized in the roots
and seeds (van Steveninck et al. 1993; Hubel and Beck 1996). The molecule
comprises six phosphate groups which allow the chelation of multiple cations,
including Ca2+, Mg2+, and K+, but also Fe2+, Zn2+ and Mn2+ (Mikus et al. 1992).
The distribution of phytate and its ability to chelate multiple metal species suggest
it could be mobilized as a detoxification strategy. In support of this, the addition of
Zn to the culture medium leads to the production of Zn2+-containing phytate
globoids in the root endoderm and pericycle cells of certain crops (van Steveninck
et al. 1993). Therefore, a controlled synthesis or mobilization of phytate in these
cell layers plays a key role in metal ion loading to the aerial parts of plants.

2.5 Metal Sequestration in the Vacuole by Tonoplast
Transporters

When metal ions are accumulated in excess inside the cytosol, plants have to
remove them in order to minimize their toxic effects. Plants respond to high
intracellular concentrations of metal ions by using efflux pumps either to export the
ions to the apoplast (as discussed above) or to compartmentalize them within the
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cell. The main storage compartment for metal ions is the vacuole, which in plants
accounts for up to 90% of the cell volume (Vögeli-Lange and Wagner 1990).
Several families of intracellular transporters involved in this process have been
identified in plants and yeast and they appear to be highly selective.

2.5.1 The ABC Transporters

ABC transporters can transport xenobiotics and heavy metals into the vacuole, and
two subfamilies (MRP and PDR) are particularly active in the sequestration of
chelated heavy metals. Plant cell vacuoles are, in fact, the major site for accu-
mulation and storage of PC-Cd complexes. PC-Cd complexes are generated in the
cytosol and are then translocated by ABC transporters (Vögeli-Lange and Wagner
1990). In the vacuoles more Cd and sulfide are incorporated to form HMW
complexes, the main Cd storage form. The first vacuolar ABC transporter HMT1
was identified by its ability to complement a S. pombe mutant that cannot produce
HMW complexes (Ortiz et al. 1992). HMT1 is localized in the tonoplast and
transports PC-Cd complexes into the vacuole in a Mg-ATP-dependent manner
(Ortiz et al. 1995). A similar protein has been identified in oat roots, but HMT1
homologs are yet to be found in other plants (Salt and Rauser 1995). In S. cere-
viasiae, the tonoplast ABC pump YCF1 transports Cd into the vacuole as a
bis(glutathionato)Cd complex, and confers Cd tolerance (Li et al. 1997). MRP-
related sequences like YCF1 have been found in A. thaliana (Lu et al. 1997, 1998)
and are the most likely candidates for PC-Cd transport across the tonoplast because
HMT1 homologs are scarce in plants. In A. thaliana, two transporters belonging to
the ABC family, AtMRP1 and AtMRP2 have been shown to transport PC-Cd
complexes into the vacuole but the role of AtMRP3 in Cd transport remains
unclear (Lu et al. 1997, 1998). AtMRP3 partially complements yeast Dycf1
mutants but there is no evidence of PC-Cd transport into the vacuole (Tommasini
et al. 1998). Moreover, many plants produce Mg-ATP-dependent transporters of
GS-S-conjugates (Martinoia et al. 1993).

2.5.2 The CDF Transporters

Members of the CDF transporter family (also called MTPs in plants) are involved
in the transport of metal ions from the cytoplasm to the vacuole (Krämer et al.
2007), and to the apoplast and endoplasmic reticulum (Peiter et al. 2007). CDF
transporters have been characterized primarily in prokaryotes (Nies 1992) but are
also found in many eukaryotes, where they transport divalent metal cations such as
Zn, Cd, Co, Fe, Ni, and Mn (Montanini et al. 2007). Eukaryotic CDF transporters
are characterized by six transmembrane domains, a C-terminal cation efflux
domain, and a histidine-rich region between transmembrane domains IV and V
(Mäser et al. 2001) that may act as a sensor of metal concentration (Kawachi et al.
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2008). The CDF family can be divided into four phylogenetic groups (Mäser et al.
2001), but groups I and III are the most interesting in plants since these are the
ones involved in metal tolerance and accumulation (Krämer et al. 2007). The A.
thaliana ZAT1 transporter (later renamed AtMTP1) is closely related to the animal
ZnT Zn transporter and its function is the vacuolar sequestration of Zn (van der
Zaal et al. 1999). The gene is constitutively expressed and is not induced by Zn,
but its overexpression in transgenic plants exposed to high levels of Zn confers
resistance to Zn toxicity and leads to Zn accumulation in the roots without altering
Cd sensitivity (van der Zaal et al. 1999). These data suggest that AtMTP1 trans-
ports Zn into the vacuole and may represent a Zn tolerance mechanism. Another
tonoplast transporter, AtMTP3, is also involved in the transport of Zn into the
vacuole (Kramer et al. 2007).

2.5.3 The HMA Transporters

As stated above, P1B-ATPases (HMAs) are involved in the efflux of metal ions
from the cytoplasm, and those on the tonoplast (such as AtHMA3) are thought to
contribute to Cd and Zn homeostasis by sequestration into the vacuole (Krämer
et al. 2007). However, AtHMA3 may play a role in the detoxification of a wider
range of heavy metals through storage in the vacuoles, because overexpression
induces tolerance to Cd, Pb, Co, and Zn (Morel et al. 2009).

2.5.4 CaCA Transporters

The CaCA superfamily is ubiquitous in both prokaryotes and eukaryotes and is an
integral component of Ca2+ cycling systems that involve the efflux of Ca2+ across
membranes against a concentration gradient. This is achieved by using a counter-
electrochemical gradient of other ions, such as H+, Na+, or K+ (Emery et al. 2012).
Examples of members of the CaCA families that may be involved in metal
homeostasis are MHX and CAX. MHX is a vacuolar Mg2+ and Zn2+/H+ antiport
expressed predominantly in xylem-associated cells; overexpression in tobacco
increases sensitivity to Mg and Zn although the concentration of these metals in
shoots is unchanged (Shaul et al. 1999). The CAX family are Ca2+/H+ antiports
that also recognize Cd2+, suggesting this is an important route for Cd sequestration
in the vacuole (Salt and Wagner 1993). In A. thaliana, only CAX proteins such as
AtCAX2 and AtCAX4 seem to be involved in the vacuolar accumulation of Cd.
The overexpression of AtCAX2 and AtCAX4 results in the accumulation of more
Cd in the vacuoles (Korenkov et al. 2007). AtCAX4 is expressed mainly in root
tips and primordia and is induced by Ni and Mn. Root growth in response to Cd
and Mn is altered in cax mutants whereas overexpression induces symptoms that
are compatible with Cd accumulation (Mei et al. 2009).
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2.5.5 NRAMP Transporters

NRAMP transporters such as AtNRAMP3 and AtNRAMP4 are localized in the
tonoplast and are probably functionally redundant. The nramp3 nramp4 double
mutant has a Fe-deficient phenotype in seedlings that can be rescued by providing
excess Fe, although the Fe content is the same as in wild-type plants suggesting
that AtNRAMP3 and AtNRAMP4 are required to mobilize Fe from the vacuole
(Thomine et al. 2003; Lanquar et al. 2005). The overexpression of AtNRAMP3
increases Cd sensitivity (Thomine et al. 2000) and reduces the accumulation of Mn
(Thomine et al. 2003), indicating a possible role in the homeostasis of metals other
than Fe.

2.6 Oxidative Stress Defence Mechanisms and the Repair
of Stress-Damaged Proteins

If the intracellular concentration of metal ions saturates the defense mechanisms
discussed above then the plant will begin to suffer oxidative stress caused by the
production of ROS and the inhibition of metal-dependent antioxidant enzymes
(Schützendübel and Polle 2002). Under these circumstances, plants activate their
antioxidant responses, including the induction of enzymes such as CAT and SOD and
the production of non-enzymatic free radical scavengers. There are many examples
of this process, such as the induction of APX and CAT in Nicotiana plumbaginifolia
leaves exposed to excess Fe (Kampfenkel et al. 1995b), and the induction of CAT3 in
B. juncea plants exposed to Cd (Minglin et al. 2005). In pea plants, Cd causes the
oxidation of CAT thus reducing its activity, so the plant responds by upregulating the
transcription of the corresponding gene (Romero-Puertas et al. 2007). The tomato
chloronerva mutant is NA-deficient and contains abnormally high levels of Fe and
Cu in leaves, resulting in the activation of antioxidant enzymes such as cytosolic
APX and Cu/Zn SOD (Pich and Scholz 1993; Herbick et al. 1996). SOD activity is
also induced in tomato seedlings after prolonged Cd treatment (Dong et al. 2006).
SOD activity also increases significantly in wheat leaves, but only following
exposure to high levels of Cd, probably reflecting the accumulation of superoxide
(Lin et al. 2007). Nevertheless, previous studies have shown that SOD activity is
reduced in pea plants exposed to Cd toxicity (Romero-Puertas et al. 2007). An
increase in APX mRNA is also observed in Brassica napus cotyledons subjected to
toxic levels of Fe (Vansuyt et al. 1997). Several metals are able to induce Fe and
Mn-SOD in plants (del Río et al. 1991).

The production of ROS is also countered by the activation of the ascorbic acid-
GS scavenging system. In Phaseolus vulgaris and Pisum sativum, Cd treatment
induces APX (Romero-Puertas et al. 2007). In addition, GR activity, another
enzyme taking part in the cycle, is upregulated in roots and acts as a defence
mechanism against Cd-generated oxidative stress (Yannarelli et al. 2007).
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GS plays a key role in metal tolerance, because it can act as a ROS scavenger,
metal chelator and as a substrate for PC biosynthesis (Krämer 2010). Indeed, the
expression of the E. coli GSS gene gshII in B. juncea increased Cd tolerance in the
seedlings and increased the capacity for Cd accumulation in adult plants (Zhu et al.
1999).

Heavy metals, in particular Cd, reduce the GSH/GSSG ratio and activate
antioxidant enzymes such as SOD and GR (Romero-Puertas et al. 2007). GSH
(Glu-Cys-Gly) is the major intracellular antioxidant inside the cell and is the
precursor of PCs (Cobbett 2000). It can also form complexes with metal ions,
particularly Cd (Wójcik and Tukiendorf 2011). GS synthesis is activated in
response to heavy metal stress.

In common with other forms of abiotic stress, heavy metals induce the synthesis
of stress-related proteins and signaling molecules, such as HSPs, SAPs, salicylic
and abscisic acids, and ethylene. HSPs are found in all cells and are expressed not
only in response to elevated temperatures but also to other stresses, including
heavy metals, where they protect and repair proteins, and act as molecular chap-
erones to ensure correct folding and assembly (Vierling 1991). For example, heavy
metals induce the expression of low molecular weight HSPs in rice (Tseng et al.
1993), and in cell culture of S. vulgaris and Lycopersicon peruvianum (Wollgiehn
and Neumann 1999), the latter also producing the larger protein HSP70 (Neumann
et al. 1994). HSP70 is localized in the nucleus and the cytoplasm, and is also found
at the plasma membrane suggesting a protective role for membranes. These
observations suggest that HSPs could have an important role in heavy metal
response mechanism involving plasma membrane protection and in the repair of
stress-damaged proteins.

The SAPs contain A20 or AN1 zinc finger domains (sometimes both) and, like
HSPs, also respond to multiple abiotic stresses in plants, including cold, drought,
salt, heavy metals, hypoxia, and wounding; they may function as transcriptional
regulators or by direct protein–protein interactions (Dixit and Dhankher 2011).
AtSAP10 is expressed in A. thaliana roots and is induced within 30 min by
exposure to As, Cd, and Zn (Dixit and Dhankher 2011). Plants overexpressing
AtSAP10 are metal tolerant, they accumulate Ni and Mn in the shoots and roots
but there is no change in Zn content (Dixit and Dhankher 2011).
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