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Chapter 2
Plane Strain Solutions for Highly
Undermatched Tensile Specimens

The specimens considered in this chapter are welded plates with the weld orien-
tation orthogonal to the line of action of tensile forces applied. A crack is entirely
located in the weld. Edge cracks are excluded from consideration. The width of the
plate is denoted by 2W, its thickness by 2B, the thickness of the weld by 2H, and
the length of the crack by 2a (except the last solution of this chapter which deals
with cracks of arbitrary shape in the plane of flow). Since plane strain solutions are
of concern in the present chapter, integration in the thickness direction in volume
and surfaces integrals involved in Eq. (1.4) is replaced with the multiplier
2B without any further explanation. For the same reason, the term ‘‘velocity
discontinuity surface’’ is replaced with the term ‘‘velocity discontinuity curve
(or line)’’. The latter refers to curves (lines) in the plane of flow. Base material is
supposed to be rigid.

2.1 Center Cracked Specimen

The geometry of the specimen and the directions of the axes of Cartesian co-
ordinates (x, y) are illustrated in Fig. 2.1. The specimen is loaded by two equal
forces F whose magnitude at plastic collapse should be evaluated. A numerical
slip-line solution for such specimens has been proposed in Hao et al. (1997). It is
evident that Eq. (1.13) is valid for the specimen under consideration. It is possible
to assume that L � H. It is first necessary to determine the limit load for
the specimen with no crack, a ¼ 0: It is convenient to choose the origin of the
Cartesian coordinate system at the intersection of the axes of symmetry of
the specimen. Then, it is sufficient to find the solution in the domain x� 0 and
y� 0: Let ux be the velocity component in the x-direction and uy in the y-direction.
The blocks of rigid base material move with a velocity U along the y-axis in the
opposite directions. The velocity boundary conditions are
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uy ¼ 0 ð2:1Þ

for y ¼ 0;

ux ¼ 0 ð2:2Þ

for x ¼ 0;

uy ¼ U ð2:3Þ

for y ¼ H; and

ux ¼ 0 ð2:4Þ

for y ¼ H:
The boundary conditions (2.1) to (2.4) show that the present problem is

equivalent to the problem of plane strain compression of a plastic layer between
two parallel, rigid plates if the maximum friction law is assumed at the surface of
plates (the difference in the sense of uy at y ¼ H is immaterial for pressure-
independent materials). An approximate stress solution for the latter has been
obtained by Prandtl (1923) and an approximate velocity solution by Hill (1950).
Hill (1950) has also found an accurate slip-line solution. Using this solution the
force can be approximated by

Fð0Þu

4r0BW
¼ 1

2
ffiffiffi

3
p 3þW

H

� �

: ð2:5Þ

Fig. 2.1 Geometry of the
specimen under
consideration–notation
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This approximation is valid for W=H� 1: A schematic diagram showing the
configuration of plastic and rigid zones which follows from the slip-line solution is
presented in Fig. 2.2 for one quarter of the weld. There are two velocity discon-
tinuity curves, 0b and bc, and the solution satisfies Eq.(1.9) in the vicinity of line
bc. It follows from Eqs. (1.10) and (2.5) that

X wð Þ ¼ 3þ wð Þ
2
ffiffiffi

3
p : ð2:6Þ

Therefore, substituting Eq. (2.6) into Eq. (1.13) gives the limit load for the
cracked specimen in the form

fu ¼
Fu

4r0BW
¼ 1

2
ffiffiffi

3
p 1� a

W

� �

3þW � a

H

� �

: ð2:7Þ

The restriction W=H� 1 transforms to W � að Þ=H� 1: Thus the solution is not
valid for large cracks. The solution for this special case is trivial and is available in
the literature (see, for example, Kim and Schwalbe 2001a).

The derivation that has led to the solution (2.7) is an illustration of using
Eq. (1.13) in conjunction with numerical solutions. The problem under consider-
ation is also very suitable for illustrating the use of Eq. (1.9) in upper bound
solutions. Therefore, even though it is not realistic to obtain a better result than that
given by Eq. (2.7), such a solution is provided below.

A general approach to construct singular kinematically admissible velocity
fields for plastic layers subject to tensile loading has been proposed in Alexandrov
and Richmond (2000). The starting point of this approach is the representation of
velocity components tangent to the bi-material interface in such a form that
Eq. (1.9) is automatically satisfied. Then, the solution to the equation of incom-
pressibility (1.6) gives the axial velocity in rather a complicated form. Moreover,
the kinematically admissible velocity field proposed in Alexandrov and Richmond
(2000) contains no rigid zone near the axis of symmetry (such as rigid zone 1 in
Fig. 2.2). Therefore, a slightly different approach is developed here. It is conve-
nient to introduce the following dimensionless quantities.

y

H
¼ g;

x

W
¼ 1;

H

W
¼ h: ð2:8Þ

Fig. 2.2 Configuration of
plastic and rigid zones from
the slip-line solution
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The starting point of the present approach is a linear through-thickness distri-
bution of the axial velocity, which is quite reasonable because the thickness of the
layer is small as compared to its width. Then, the boundary conditions (2.1) and
(2.3) along with Eq. (2.8) require that

uy

U
¼ g: ð2:9Þ

The equation of incompressibility (1.6) in the case under consideration reduces to

h
oux

o1
þ ouy

og
¼ 0: ð2:10Þ

Substituting Eq. (2.9) into Eq. (2.10) and integrating give

ux

U
¼ � 1

h
þ g gð Þ ð2:11Þ

where g gð Þ is an arbitrary function of its argument. The assumption of no rigid zone
and the boundary condition (2.2) require g ¼ 0:However, a much better solution can
be obtained without this assumption. Instead, it is assumed that there is a rigid zone
near the axis x ¼ 0: The general structure of the kinematically admissible velocity
field in the region 0� x�W and 0� y�H is shown in Fig. 2.3. It is similar to that
obtained from the slip-line solution (Fig. 2.2). In general, it is possible to include
rigid zone 2 in consideration as well. However, a possible improvement in limit load
prediction is negligible. The rigid zone (Fig. 2.3) moves in the direction of the y-axis
along with the block of rigid base material. Therefore, the boundary condition (2.2) is
satisfied. Also is satisfied the boundary condition (2.4) in the range 0� x� xb:
The value of xb will be determined later. The shape of the rigid plastic boundary 0b,
which is also a velocity discontinuity curve, should be found from the solution.
Let x ¼ X yð Þ be the equation for this curve. The velocity field is kinematically
admissible if and only if this curve contains the origin of the coordinate system. Then,
the following condition holds

X ¼ 0 ð2:12Þ

for y ¼ 0:

Fig. 2.3 General structure of
the kinematically admissible
velocity field
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Let u be the orientation of the tangent to the velocity discontinuity curve
relative to the x-axis. Then, the unit normal vector to this curve can be represented
as (Fig. 2.3)

n ¼ � sin uiþ cos uj ð2:13Þ

where i and j are the base vectors of the Cartesian coordinate system. The velocity
vector in the rigid zone is

U ¼ Uj: ð2:14Þ

Using Eqs. (2.9) and (2.11) the velocity field in the plastic zone can be written
in the form

u ¼ uxiþ uyj ¼ U �1=hþ g gð Þ½ �iþ Ugj: ð2:15Þ

Assume that U � u1 and u � u2 in Eq. (1.7). Then, it follows from Eqs. (2.13),
(2.14) and (2.15) that �1=hþ g gð Þ½ � sin uþ 1� gð Þ cos u ¼ 0: Since tan u ¼
dy=dx (Fig. 2.3), this equation can be transformed, with the use of Eq. (2.8), to

d1
dg
¼ 1� hg gð Þ

1� g
: ð2:16Þ

This is a linear ordinary differential equation of first order. Therefore, its
general solution can be found with no difficulty. The condition (2.12) is equivalent
to the condition 1 ¼ 0 at g ¼ 0 for Eq. (2.16). The solution to Eq. (2.16) satisfying
this condition is

1 ¼ 10b gð Þ ¼ � h

1� gð Þ

Z

g

0

g tð Þdt ð2:17Þ

where t is a dummy variable. It is worth noting here that the denominator in
Eq. (2.17) vanishes at g ¼ 1. Therefore, the velocity discontinuity curve can have
a common point with the line g ¼ 1 (or y ¼ H) if and only if the integral vanishes
at g ¼ 1. Moreover, the right hand side of Eq. (2.17) must tend to a finite limit as
g! 1: An additional condition for the validity of the subsequent solution is that
the x-coordinate of point b (Fig. 2.3) should lie in the range 0\xb�W : Finally, in
order to obtain the structure of the kinematically admissible velocity field shown in
Fig. 2.3, it is necessary to impose the following restriction on the function g gð Þ

1b ¼ �h lim
g!1

1
1� gð Þ

Z

g

0

g tð Þdt

2

4

3

5 ¼ hg 1ð Þ; 0\1b� 1: ð2:18Þ

Here l’Hospital’s rule has been applied and 1b ¼ xb=W :
The strain rate components and the equivalent strain rate are determined from

Eqs. (1.3), (2.8), (2.9), and (2.11) as
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fxx ¼
oux

ox
¼ �U

H
; fyy ¼

ouy

oy
¼ U

H
; fxy ¼

1
2

oux

oy
þ ouy

ox

� �

¼ Ug0 gð Þ
2H

;

feq ¼
1
ffiffiffi

3
p U

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ g0 gð Þ½ �2
q ð2:19Þ

where g0 gð Þ � dg gð Þ=dg. The rate of work dissipation in the plastic zone is found
with the use of Eq. (2.19) in the form

EV ¼ r0

ZZZ

V

feqdV ¼ 2UBWr0
ffiffiffi

3
p

Z

1

0

Z

1

10b gð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ g0 gð Þ½ �2
q

d1dg

or, after integration with respect to 1,

EV

4UBWr0
¼ 1

2
ffiffiffi

3
p
Z

1

0

1� 10b gð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ g0 gð Þ½ �2
q

dg: ð2:20Þ

There are two velocity discontinuity curves, 0b and bc (Fig. 2.3). In the case of
line bc, it is assumed that a material layer of infinitesimal thickness sticks at the
block of rigid base material according to the boundary condition (2.4). Then, a
necessity of the discontinuity follows from Eq. (2.11). Substituting Eqs. (2.14) and
(2.15) into Eq. (1.8) gives the amount of velocity jump across the velocity dis-
continuity curve 0b in the form

us½ �j j0b¼ U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� gð Þ2þ g gð Þ � 1=h½ �2
q

: ð2:21Þ

Taking into account the boundary condition (2.4) the amount of velocity jump
across the velocity discontinuity line bc can be represented as uxj j at g ¼ 1 in the
range xb� x�W (or 1b� 1� 1). Therefore, it follows from Eqs. (2.11) and (2.18)
that

us½ �j jbc¼
U

h
1� 1bð Þ: ð2:22Þ

The rate of work dissipation at the velocity discontinuity curve 0b is determined as

E0b ¼
r0
ffiffiffi

3
p
ZZ

Sd

us½ �j j0bdS ¼ 2Br0
ffiffiffi

3
p

Z

H

0

us½ �j j0b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ dx

dy

� �2
s

dy

or, with the use of Eq. (2.8),

E0b ¼
r0
ffiffiffi

3
p
ZZ

Sd

us½ �j j0bdS ¼ 2BHr0
ffiffiffi

3
p

Z

1

0

us½ �j j0b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
h2

d1
dg

� �2
s

dg: ð2:23Þ
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Here the derivative d1=dg should be found at points of the velocity disconti-
nuity curve 0b and is therefore given by Eq. (2.16) where 1 should be replaced
with 10b gð Þ: Substituting Eqs. (2.16) and (2.21) into Eq. (2.23) leads to

E0b

4UBWr0
¼ h

2
ffiffiffi

3
p
Z

1

0

1� gð Þ2þ g gð Þ � 10b gð Þ=h½ �2

1� g
dg: ð2:24Þ

Using Eq. (2.8) the rate of work dissipation at the velocity discontinuity line bc
is represented in the form

Ebc ¼
r0
ffiffiffi

3
p
ZZ

Sd

us½ �j jbcdS ¼ 2Br0
ffiffiffi

3
p

Z

W

xb

us½ �j jbcdx ¼ 2BWr0
ffiffiffi

3
p

Z

1

1b

us½ �j jbcd1: ð2:25Þ

Substituting Eq. (2.22) into Eq. (2.25) and integrating lead to

Ebc

4UBWr0
¼ 1� 1bð Þ2

4
ffiffiffi

3
p

h
: ð2:26Þ

The rate at which forces F do work is
ZZ

Sv

tivið ÞdS ¼ 1
2

FU: ð2:27Þ

The multiplier 1/2 has appeared here because two equal forces act but one
quarter of the specimen is considered. Using Eq. (2.27) the inequality (1.4) for the
problem under consideration can be transformed to FuU ¼ 2 EV þ E0b þ Ebcð Þ:
Substituting Eqs. (2.20), (2.24) and (2.26) into this equation gives

fu ¼
Fu

4BWr0
¼ 1

ffiffiffi

3
p I1 þ hI2 þ

1� 1bð Þ2

2h

" #

;

I1 ¼
R

1

0
1� 10b gð Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ g0 gð Þ½ �2
q

dg;

I2 ¼
R

1

0

1� gð Þ2þ g gð Þ � 10b gð Þ=h½ �2

1� g
dg

ð2:28Þ

It is now necessary to specify the function g gð Þ: It is advantageous to choose
this function such that Eq. (1.9) is satisfied in the vicinity of the velocity dis-
continuity line bc. It is obvious from Eq. (2.19) that the normal strain rates in the
Cartesian coordinate system are bounded everywhere. Therefore, it follows from
Eq. (1.9) that fxy

�

�

�

�!1 or oux=ogj j ! 1 as g! 1 in the range 1b� 1� 1.
Moreover, symmetry demands that g gð Þ is an even function of its argument. One
of the simplest functions satisfying this symmetry requirement and the inverse
square root rule in Eq. (1.9) is

2.1 Center Cracked Specimen 17



g gð Þ ¼ b0 þ b1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

ð2:29Þ

where b0 and b1 are free parameters. Substituting Eq. (2.29) into Eq. (2.18) shows
that the limit is finite if and only if b0 ¼ �pb1=4: Moreover, 1b ¼ �hpb1=4: Then,
replacing b0 and b1 in Eq. (2.29) with 1b and differentiating give

g gð Þ ¼ 1b

h
1� 4

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

� �

; g0 gð Þ ¼ 41b

ph

g
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p : ð2:30Þ

Substituting Eq. (2.30) into Eq. (2.17) results in

10b gð Þ ¼ 1b

p 1� gð Þ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

þ 2 arcsin g� pg
� �

: ð2:31Þ

In general, excluding g gð Þ; g0 gð Þ and 10b gð Þ on the right hand side of Eq. (2.28) the
value of fu can be evaluated using Eqs. (2.30) and (2.31). However, the integral I1

involved in Eq. (2.28) is improper since g0 gð Þ ! 1 as g! 1: Therefore, it is
convenient to introduce the new variable # by

g ¼ sin#; dg ¼ cos#d#: ð2:32Þ

Then, using Eqs. (2.30) and (2.31) the integral I1 can be transformed to

I1 ¼ 2
Z

p=2

0

1� 1b sin 2#þ 2#� p sin#ð Þ
p 1� sin#ð Þ

� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 #þ 4
1b

ph

� �2
sin2 #

r

d#: ð2:33Þ

A difficulty with numerical evaluating this integral is that the integrand reduces to
the expression 0=0 at # ¼ p=2: In order to facilitate numerical integration, the
integrand should be expanded in a series in the vicinity of this point. In particular,

1� 1b sin 2#þ 2#� p sin#ð Þ
p 1� sin#ð Þ

� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 #þ 4
1b

ph

� �2
sin2 #

r

d#

¼ 1� 1bð Þ1b

ph
þ 812

b

3p2h

p
2
� #

� �

þ o
p
2
� #

� �

; #! p
2
:

ð2:34Þ

Substituting Eq. (2.34) into Eq. (2.33) and integrating analytically over the range
p=2� d�#� p=2 lead to

I1 ¼
2 1� 1bð Þ1b

ph
dþ 812

b

3p2h
d2

þ 2
R

p=2�d

0
1� 1b sin 2#þ 2#� p sin#ð Þ

p 1� sin#ð Þ

� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 #þ 4 1b
ph


 �2
sin2 #

q

d#

ð2:35Þ

where d is a small number.
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Analogously, it is possible to verify by inspection that the integrand of the
integral I2 involved in Eq. (2.28) reduces to the expression 0=0 at g ¼ 1. Using
Eqs. (2.30) and (2.31) to exclude g gð Þ and 10b gð Þ this integral can be rewritten as

I2 ¼
Z

1

0

p2h2 1� gð Þ4þ12
b

p� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

� �

1� gð Þ�
2g

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

� 2 arcsin gþ pg

" #2

p2h2 1� gð Þ3
dg: ð2:36Þ

Expanding the integrand in a series in the vicinity of g ¼ 1 gives

p2h2 1� gð Þ4þ12
b p� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

� �

1� gð Þ � 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

� 2 arcsin gþ pg
h i2

p2h2 1� gð Þ3

¼ 3212
b

9p2h2
þ 1612

b

5p2h2
� 1

� �

g� 1ð Þ þ o g� 1ð Þ; g! 1: ð2:37Þ

Substituting Eq. (2.37) into Eq. (2.36) and integrating lead to

I2 ¼
1
2
þ 3212

b

9p2h2
d� 812

b

5p2h2
d2

þ 12
b

p2h2

Z

1�d

0

p� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

� �

1� gð Þ � 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

� 2 arcsin gþ pg
h i2

1� gð Þ3
dg:

ð2:38Þ

Integration in Eqs. (2.35) and (2.38) can be performed numerically for any
value of 1b with no difficulty. Then, the right hand side of Eq. (2.28) becomes a
function of this parameter. This function should be minimized with respect to 1b to
find the best upper bound based on the kinematically admissible velocity field
chosen. This minimization has been carried out numerically assuming that
d ¼ 10�4. Note that the value of 1b found from this calculation along with fu is also
important because of the restriction 0\1b� 1: It has been found that the latter is
not satisfied for h [ 0:54. The variation of fu with h determined from Eq. (2.28)
after minimization is shown in Fig. 2.4 by the broken line. The solid line

Fig. 2.4 Comparison of two
solutions for the
dimensionless upper bound
limit load
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corresponds to the solution given by Eq. (2.5). It is seen from this figure that the
limit load found from Eq. (2.28) is just slightly higher than that from the accurate
numerical solution. An advantage of the solution (2.28) is that a kinematically
admissible velocity field similar to that used to arrive at this solution can be
constructed for many other structures with no difficulty whereas numerical solu-
tions are usually time-consuming. Moreover, the slip-line technique used to obtain
the solution (2.5) is not applicable to non-planar flow of the material obeying the
Mises yield criterion. Nevertheless, since the solution (2.5) is available for the
problem under consideration, it will be used in subsequent sections. The solution
based on the kinematically admissible velocity field (2.9) and (2.11) has been
given to show the main difficulties with using singular kinematically admissible
velocity fields for finding the limit load and to demonstrate its accuracy by making
comparison with the numerical solution.

2.2 Crack at Some Distance From the Mid-Plane of the Weld

The geometry of the specimen and the direction of the axes of Cartesian coordinates
(x, y) are illustrated in Fig. 2.5. The only difference from the previous boundary
value problem is that a crack is located at some distance e from the mid-plane of the
weld. Its orientation is orthogonal to the line of action of tensile forces F. It is
obvious that the sense of e is immaterial. Therefore, it is possible to assume that
0� e�H. The origin of the coordinate system is located at the intersection of the
axes of symmetry of the specimen with no crack. The specimen is symmetric

Fig. 2.5 Geometry of the
specimen under
consideration–notation
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relative to the y-axis. Therefore, it is sufficient to find the solution in the domain
x� 0: The center cracked specimen considered in the previous section is obtained at
e ¼ 0: In the case of the interface crack e ¼ H: A numerical solution for the latter
case has been given in Kim and Schwalbe (2001b) where a possible effect of the
location of the crack on the limit load is briefly discussed as well.

The general structure of the kinematically admissible velocity field chosen is
illustrated in Fig. 2.6 (one half of the weld is shown). The plastic zone is symmetric
relative to the x-axis. Therefore, it is sufficient to consider its upper part ebcd. The
rigid zones move along with the blocks of rigid base material along the y-axis in the
opposite directions. The magnitude of velocity of each zone is U. The velocity
discontinuity line ef separates the two rigid zones. In the plastic zone ebcd, the
kinematically admissible velocity field can be assumed in the same form as in the
zone 0bdc shown in Fig. 2.2 (the presence of rigid zone 2 is not essential since any
rigid zone can be considered as a special case of plastic zones in which feq ¼ 0:)
Then, according to Eq. (2.7) the rate of work dissipation in the plastic zone ebcd
(Fig. 2.3), including the rate of work dissipation at the velocity discontinuity curves
eb and bc as well as any velocity discontinuity curves inside this zone, is given by

Eebcd ¼
UBWr0

ffiffiffi

3
p 1� a

W

� �

3þW � a

H

� �

: ð2:39Þ

The amount of velocity jump across the velocity discontinuity line ef is equal to
us½ �j jef¼ 2U: The area of the corresponding velocity discontinuity surface is 2Be:

Therefore, the rate of work dissipation at the velocity discontinuity line ef can be
found as

Eef ¼
r0
ffiffiffi

3
p
ZZ

Sd

us½ �j jef dS ¼ 2Ur0
ffiffiffi

3
p

ZZ

Sd

dS ¼ 4UBer0
ffiffiffi

3
p : ð2:40Þ

The rate at which external forces F do work is (two equal forces act and one
half of the specimen is considered)

ZZ

Sv

tivið ÞdS ¼ FU: ð2:41Þ

Fig. 2.6 General structure of
the kinematically admissible
velocity field
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The rate of work dissipation in one half of the specimen is given by 2Eebcd þ Eef :

Therefore, it follows from Eqs. (1.4), (2.39), (2.40), and (2.41) that the upper bound
limit load is

fu ¼
Fu

4BWr0
¼ 1

2
ffiffiffi

3
p 1� a

W

� �

3þW � a

H

� �

þ e

W
ffiffiffi

3
p : ð2:42Þ

The validity of this solution is restricted by the inequality given after Eq. (2.7).
When this inequality is not satisfied (i.e. in the case of large cracks), the solution is
trivial and is available in the literature (see, for example, Kotousov and Jaffar
2006). The contribution of the last term in Eq. (2.42) can be too large for small
cracks. The kinematically velocity field which has led to the solution (2.5) is also
kinematically admissible for the specimen under consideration. Equating F 0ð Þ

u from
Eq. (2.5) and Fu from Eq. (2.42) gives the following equation for the critical value
of a ¼ ac

3þW

H

� �

¼ 1� ac

W

� �

3þW � ac

H

� �

þ 2e
W
: ð2:43Þ

The solution to this quadratic equation is trivial and it is illustrated in Fig. 2.7.
In this figure, curve 1 corresponds to e=H ¼ 0:2; curve 2 to e=H ¼ 0:4; curve 3 to
e=H ¼ 0:6; curve 4 to e=H ¼ 0:8; and curve 5 to e=H ¼ 1 (interface crack).
In order to determine the best limit load based on the kinematically admissible
velocity field chosen, Eq. (2.42) should be used for a� ac and Eq. (2.5) for a� ac:

2.3 Arbitrary Crack in the Weld

The geometry of the specimen and Cartesian coordinates (x, y) are shown in
Fig. 2.8. The origin of the coordinate system is located at the intersection of the
axes of symmetry of the specimen with no crack. In contrast to the specimens
considered in the previous sections, the crack may have an arbitrary shape, though
some minimal restrictions apply. In particular, it is assumed that the crack is
entirely located within the weld and the shape of the crack does not prevent the
motion of rigid blocks of material below and above the crack in the opposite

Fig. 2.7 Variation of the
critical crack length with
H/W at different values of e
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directions along the y-axis. An upper bound solution for the specimen under
consideration has been proposed in Alexandrov (2010).

The crack is specified by the coordinates of its tips. In particular, x ¼ xc and
y ¼ yc for tip c, and x ¼ xd and y ¼ yd for tip d (Fig. 2.8). By assumption, xd � 0
and xc� 0: The general structure of the kinematically admissible velocity field
chosen is shown in Fig. 2.9. It consists of two plastic zones and two rigid zones.
Rigid zone 1 whose boundary is mecdgk moves along with the block of rigid base
material located above the weld along the positive direction of the y-axis with a
velocity U. Rigid zone 2 whose boundary is m1ecdgk1 moves along with the block
of rigid base material located under the weld along the negative direction of the
y-axis with the same velocity. The plastic zones are separated from the rigid zones
by the velocity discontinuity curves me, m1e, kg, and k1g. Also, there are four
velocity discontinuity lines at the bi-material interfaces. Those are qm, q1m1, kp,
and k1p1. Moreover, there are two velocity discontinuity lines separating the rigid

Fig. 2.8 Geometry of the
specimen under
consideration–notation

Fig. 2.9 Structure of the
kinematically admissible
velocity field
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zones. Those are ec and dg. Each of the plastic zones is symmetric relative to the
x-axis. Therefore, it is sufficient to consider the upper half of each zone. In par-
ticular, the kinematically admissible velocity field in the upper half of the plastic
zone pkgk1p1 can be chosen in the same form as in the zone 0bcd shown in Fig. 2.2
(the presence of rigid zone 2 is not essential since any rigid zone can be considered
as a special case of plastic zones in which feq ¼ 0Þ: Then, according to Eq. (2.5)
the rate of work dissipation in the plastic zone pkgk1p1, including the rate of work
dissipation at the velocity discontinuity curves gk and kp as well as at any velocity
discontinuity curves inside this zone, is equal to

Epkgk1p1 ¼
UBWdr0

ffiffiffi

3
p 3þWd

H

� �

: ð2:44Þ

It is seen from Fig. 2.9 that Wd ¼ W � xd: Therefore, Eq. (2.44) becomes

Epkgk1p1 ¼
UB W � xdð Þr0

ffiffiffi

3
p 3þW � xd

H

� �

: ð2:45Þ

Analogously, for the upper part of the plastic zone qmem1q1 the rate of work
dissipation, including the rate of work dissipation at the velocity discontinuity
curves em and mq as well as at any velocity discontinuity curves inside this zone,
can be obtained in the following form

Eqmem1q1 ¼
UB W þ xcð Þr0

ffiffiffi

3
p 3þW þ xc

H

� �

: ð2:46Þ

It is worth recalling here that xc� 0: The amount of velocity jump across the
velocity discontinuity lines df and ec is us½ �j jdf¼ us½ �j jec¼ 2U: Therefore, the rates
of work dissipation at these lines are

Edf ¼
r0
ffiffiffi

3
p
ZZ

Sd

us½ �j jdf dS ¼ 4UB ydj jr0
ffiffiffi

3
p ; Eec ¼

r0
ffiffiffi

3
p
ZZ

Sd

us½ �j jecdS ¼ 4UB ycj jr0
ffiffiffi

3
p :

ð2:47Þ

The rate at which one external force F does work is given by Eq. (2.41). The
rate of total internal work dissipation is 2Epkgk1p1 þ 2Eqmem1q1 þ Edf þ Eec: Since
two identical forces act, it follows from Eqs. (1.4), (2.41), (2.45), (2.46), and
(2.47) that

Fu

4BWr0
¼ W � xdð Þ

4
ffiffiffi

3
p

W
3þW � xd

H

� �

þ W þ xcð Þ
4
ffiffiffi

3
p

W
3þW þ xc

H

� �

þ ydj j þ ycj j
2
ffiffiffi

3
p

W
:

ð2:48Þ

As before, the smallest value between Fu and F 0ð Þ
u from Eqs. (2.48) and (2.5),

respectively, should be chosen. The solution (2.5) provides a better prediction for
small cracks. The solution (2.48) is not valid for large cracks. The restrictions
follow from the inequality given after Eq. (2.5) and can be written in the form
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W � xdð Þ=H� 1 and W þ xcð Þ=H� 1: The solution given in Kotousov and Jaffar
(2006) can be adopted when one of these inequalities is not satisfied.
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