
Chapter 2
A Pareto Model of Efficiency Dynamics

The Pareto efficiency principle for production systems stipulates that a given firm in
an industry is not relatively efficient in producing its outputs from given inputs, if it
can be shown that some other firm or combination of firms can produce more of some
outputs without producing less of any other output and without utilizing more of any
input. This principle has been extended and widely applied in efficiency analysis by
what has been called “data envelopment analysis” (DEA) in management science
literature. A vast amount of research has been made for DEA models, a good survey
for which is available in Cooper et al. (2004) in the framework of operations research.
A good economic survey is available in Sengupta (1995, 2003) and Sengupta and
Sahoo (2006).

The DEA models of Pareto efficiency have several interesting features which have
fostered numerous applications in several disciplines, e.g., microeconomics and man-
agement science. One important feature is that it provides a nonparametric measure
in the sense that no specific form of the production or cost function is assumed here;
no price data for inputs and outputs are also needed. Given the observed input and
output data, the model estimates the convex hull of the production function (surface)
by a series of linear programming (LP) models. This production frontier identifies
two subsets of firms, one efficient and the other not efficient. This characteriza-
tion of an industry into two groups of firms, the efficient and the inefficient, shows
that competitive pressures may work over time through market dynamics so as to
increase the market share of the relatively efficient firms. Also new innovations and
R&D investments if adopted by the efficient firms would increase their efficiency
by reducing unit production costs. This dynamics of innovation efficiency is central
to economic growth for the whole economy. Thus the linkage from firm efficiency
to industry efficiency and again from industry efficiency to overall efficiency for the
whole economy provides a most important feature of Pareto efficiency underlying the
DEA model. The traditional DEA model is basically static and it applies to a given
industry. Inter-industry comparisons are not attempted. Also it is backward looking
in the sense that only past observed input–output data are only considered. Future or
expected data are not considered. Stochastic aspects of data are ignored. Although
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there have been recent extensions of DEA model through dynamic and stochastic
variants, many features still remain unexplored. Our object here is to provide some
new extensions of the Pareto efficiency model, which have some integrative features,
where the economic sides of inter-industry efficiency are analyzed in detail.

Two types of efficiency measures are usually discussed in traditional DEA models.
One is technical or production efficiency, which measures the efficient firm’s success
in producing maximum output from a given set of inputs, or attaining minimum
input costs from a given set of output. The latter yields a cost efficiency frontier,
the former a production efficiency frontier. The DEA model may be viewed here as
a method of estimation of the production (or cost) frontier and compared with the
least squares method of regression. Whereas the least squares method estimates an
average production function, the DEA estimates the production frontier. The DEA
method is closer to the method of least absolute value of errors.

The cost-oriented version of the DEA model has been recently applied by
Sengupta (2000, 2003) and others to estimate the cost frontiers from cost and output
data. This version is more flexible than the production-oriented version in two ways.
One is that the cost data are usually available from accounting information such as
balance sheets and are more homogenous and additive for comparative purposes.
Secondly, innovations which take the form of learning by doing usually reduces unit
costs of production through cumulative experience embodied in knowledge capital.
Empirical applications to high-tech industries are relatively easier to perform.

The second type of efficiency analyzed in the traditional DEA model is the price or
allocative efficiency. This efficiency measures the efficient firm’s success in choosing
an optimal set of inputs with a given set of input prices. With varying output prices
this model can also maximize profits by choosing an optimal set of inputs and outputs.

While allocative efficiency seeks to determine the optimal input levels for mini-
mizing total input costs, production efficiency treats the observed inputs and outputs
as given and tests if each firm achieves the maximum possible level of output for
given inputs.

Two aspects of economic efficiency are almost ignored in the DEA model. One
is the effect of capital inputs, which is spread over several periods and hence con-
siderations of intertemporal cost minimization acquire importance here. For modern
high-tech firms like computers and telecommunications knowledge capital in the
form of experience and cumulative gain in skills is also very important. This capital
also has cumulative effects spread over a number of years. Creative destruction and
creative accumulation are the twin processes of technological progress. Here some
firms lead, others lag. The basic cause is innovation efficiency. Secondly, the DEA
model fails to analyze the distribution of two subsets of firms in an industry, one
being relatively efficient, the other inefficient. The efficiency gap between these two
subsets may increase over time, when new technology and the creative processes of
destruction stimulate the growth of the efficient firms. We have to analyze this aspect
through a technology gap model, which has been recently studied in modern growth
theory.
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2.1 Production and Allocative Efficiency

Consider a static DEA model for determining the production (technical) efficiency
of a reference unit (firm k) with m inputs and s outputs.

minλ,θ θ subject to

N∑

j=1

X jλ j ≤ θ Xk

N∑

j=1

Y jλ j ≥ Yk

N∑

j=1

λ j = 1; λ j ≥ 0; θ ≥ 0

(2.1)

(X j , Y j ) are column vectors of each firm j comprising m inputs and s outputs. Here
the reference unit or firm k is compared with the other n − 1 firms in the industry.
Then the optimal value or score θ∗ associated with the vector λ∗ provides a measure
of technical efficiency (TE), e.g., let θ∗ = 1.0 and the first of two sets of inequality
in (2.1) hold with equality, then firm k is 100% efficient at the TE level. If θ∗ is
positive but less than 1, then firm k is not technically efficient at the 100% level.
Overall efficiency OE j of a firm j however combines both TE j and AE j , where the
latter is allocative efficiency as

OE j = TE j AE j ; j = 1, 2, . . . , N

For testing the overall efficiency of a firm k one sets up the LP model

minx,λ q ′x subject to

N∑

j=1

X jλ j ≤ x

N∑

j=1

Y jλ j ≥ Yk

N∑

j=1

λ j = 1; x ≥ 0; λ ≥ 0

(2.2)

Here q is the input price vector with a prime denoting transpose. It is the competitive
price determined at the industry level, where each firms is assumed to be a price taker.
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Whereas x is the input vector to be optimally chosen by the firm k. Let (λ∗, x∗) be
the optimal solution, where (X j , Y j ) is the observed input–output vectors. Then if
the firm k is efficient in the OE sense, then its minimal cost is given by c∗

k = q ′x∗,
whereas the observed cost is ck = c′ Xk . Hence, we obtain

OEk = c∗
k

ck
= q ′x∗

q ′ Xk

TEk = θ∗

AEk = OEk

TEk
= c∗

k

θ∗ck

In case competitive output prices are given as p, then we replace the objective function
of (2.2) as

min
x,y,λ

p′y − q ′x

and the second constraint as
N∑

j=1

Y jλ j ≥ y

Here x and y are the two decision vectors of inputs and outputs to be optimally
chosen by the competitive firm. Optimal profit π∗ is then given by

π∗ = p′y∗ − q ′x

whereas the observed profit is πk = p′Yk − q ′ Xk for firm k. Here π∗ ≥ πk and the
efficient firm k attains the maximum profit level πk = π∗. For the inefficient firm
πk < π∗. If this gap continues over time, the competitive pressure of the market may
force the inefficient firm to exit.

Now consider a dynamic extension of the overall efficiency model (2.2), where we
assume an adjustment cost theory as discussed in Chap. 1. Here, we assume that firm k
uses a quadratic loss function to choose the sequence of inputs as decision variables
x(t) = (xi (t)) over an infinite planning horizon. The objective now is to minimize
the expected present value of a quadratic loss function subject to the constraints of
(2.2) as follows:

min
x(t),λ(t)

L = E
t

{ ∞∑

t=1

r t
[

q ′(t)x(t) + d ′(t)W d(t)

2
+ z′(t)H z(t)

2

]}

subject to
N∑

j=1

X j (t)λ j (t) ≤ x(t)
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N∑

j=1

Y j (t)λ j (t) ≥ Yk(t)

N∑

j=1

λ j (t) = 1

x(t), λ(t) ≥ 0

Here n is a known discount factor and the vectors d(t) = x(t) − x(t − 1) and
z(t) = x(t)− x̂(t) are deviations with W and H being diagonal matrices representing
weights. The quadratic part of the objective function may be interpreted as adjustment
costs, the first component being the cost of fluctuations in input usages and the second
comprising a disequilibrium cost due to the deviations from the desired target x̂(t).
On using the Lagrange multiplier μ(t) = (μi (t)) for the first constraint and assuming
an interior solution with positive xi (t) the optimal intertemporal path of input may
be specified as

αi x∗
i (t) = wi x∗

i (t − 1) + rwi x∗
i (t + 1) + hi x̂i (t)

−qi (t) + μ∗
i (t); i = 1, 2, . . . , m

where asterisk denotes optimal values and αi = wi (1+r)+hi and it is assumed that
future expectations are realized, i.e., Et (xi (t + 1)) = xi (t + 1). This last assumption
is also called rational expectations hypothesis implying a perfect foresight condition.
If this assumption fails to hold the model would have additional cost of disequilib-
rium.

Several implication of the optimal input path x∗
i (t) above may now be discussed.

First, if the observed input path Xk(t) does not coincide with the optimal path x∗(t)
over any t , we have intertemporal inefficiency and it may turn cumulative over time.
Secondly, the myopic optimal value x∗ computed from the LP model (2.2) can
directly be compared with the optimal path x∗(t). Since the static efficiency ignores
the potential losses over time, it is likely to be suboptimal. Finally, the cost and
production frontiers may be updated over time as input prices change.

Note however that the above model suffers from a number of restrictive features.
For example capital inputs are not distinguished from current inputs. Secondly, the in-
puts and outputs are all assumed to be deterministic, no stochastic considerations are
introduced. However, the firms could be risk averse and choose their inputs and out-
puts in a stochastic environment by adopting a risk averse attitude. Finally, market de-
mand is not separately introduced. If output supply exceeds demand, inventory costs
rise and the firm has to respond optimally by attempting to minimize expected inven-
tory costs. We would consider these aspects below with their economic implications.

Consider now the situation when the first (m − 1) inputs are current and the
last input xm(t) is capital comprising investment or knowledge capital as R&D as
a composite input with qm(t) as its price or cost. Assuming continuous discounting
at a rate r , the cost on current account of an initial investment outlay qm(t)xm(t) is
rqm xm . Thus, the total current cost is
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C =
m−1∑

i=1

qi xi + rqm xm

Minimizing this cost function subject to the constraints of the LP model (2.2) provides
a measure of overall efficiency in the short period. If x∗ is the optimal input vector
determined from this model, then the overall inefficiency of firm k in the use of
capital input is given by

OEk(xm) = rqm x∗
m

rqm xmk
= x∗

m

xmk

In the dynamic case the model has to be transformed as follows by including a
planning horizon and a dynamic investment path

min C =
T∫

0
e−r t

[∑m−1
i=1 qi (t)xi (t) + qm(t)xm(t)

]
dt

subject to
N∑

j=1

xi j (t)λ j (t) ≤ xi (t); i = 1, 2, . . . , m − 1

N∑

j=1

xmj (t)λ j (t) ≤ xm(t)

N∑

j=1

ys j (t)λ j (t) ≥ ysk(t); s = 1, 2, . . . , n

N∑

j=1

λ j (t) = 1; x ≥ 0; λ(t) ≥ 0

ẋm(t) = zm(t) − δxm(t)

(2.3)

We have n outputs for each of N firms in the industry and dot denotes time derivative.
The last relation relates investment ẋm(t) to gross investment zm(t) after depreciation
δxm(t). Since the price qm(t) of capital goods is not easily available, one may replace
it by the cost of gross investment c(zm(t)). This helps to determine the optimal time
path of investment z∗

m(t) and hence that of capital x∗
m(t). On using Pontryagin’s

maximum principle we may write the Hamiltonian function as

H = e−r t

{
m−1∑

i=1

qi (t)xi (t) + c(zm(t)) + pm(t) [(zm(t) − δxm(t)]

}
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If the optimal solution exists, then there must exist a continuous function pm(t)
satisfying the differential equation

ṗm(t) = (r + δ)pm(t) − μ

where μ = μ(t) is the Lagrange multiplier associated with the second constraint of
the model. Also we must have for each time point t the optimality condition

∂c(zm(t))

∂zm(t)
− pm(t) ≤ 0 ∀t,

i.e., marginal investment cost must equal the shadow price. In addition, the adjoint
variable pm(t) must satisfy the transversality condition

lim
t→T

e−r t pm(t) = 0 = lim
t→T

pm(t)xm(t)

Given the optimal investment path z∗
m(t), the optimal levels of current inputs x∗

i
where i = 1, 2, . . . , m − 1 may be determined from the static LP model embedded
in the model (2.3).

Some implications of the dynamic model above may be noted. First of all, assume
a quadratic investment cost function of the form c(zm) = (1/2)αz2

m where α > 0,
then the adjoint equations of the Pontryagin principle may be written as

ẋ∗
m = p∗

m

α
− δx∗

m

ṗ∗
m = (r + δ)p∗

m − μ∗

On combining these two linear equations one can derive the characteristic
equation as

u2 − ru − δ(r + δ) = 0

This has two real roots of opposite sign, i.e., u1 > 0 and u2 < 0. Hence, the steady-
state pair (x∗

m, p∗
m) has the saddle point property. We have to the negative root because

of the transversality condition and hence the path defined by [xm(t), pm(t)] converges
to the saddle point of the steady state (x∗

m, p∗
m). Secondly, if the observed path of

capital expansion equals the optimal path for every t , the firm would exhibit dynamic
efficiency, otherwise inefficiency may grow over time. Finally, at the steady state the
static LP model embedded in the dynamic model would yield the optimal production
frontier.

In case the input–output data D = (x, y) are stochastic, we have a random produc-
tion process. The concept of Pareto efficiency has to be redefined in this framework.
This can be defined in two different ways. One is to characterize the Pareto efficient
point in the data set D, when it is assumed to be convex and closed. In this case
if the production function is given by f (x1, . . . , xm), where x = (x1, x2, . . . , xm)
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is the input vector and the output y is a random variable generated by a stochastic
process y = f (x1, x2, . . . , xm). In this framework, Peleg and Yaari (1975) defines
a point d∗ ∈ D as efficient, if there exists no other point d ∈ D such that d > d∗.
Let d∗ ∈ D be efficient. Then they define π as a system of efficiency prices for d∗ if
and only if

π × d∗ ≥ π × d ∀d ∈ D

Let U be the set of concave and nondecreasing utility functions of a risk averse
decision maker, then they define that z dominates d risk aversely if

n∑

k=1

pku(zk) ≥
n∑

k=1

pku∗(dk)

for all u ∈ U and furthermore there exists an u∗ ∈ U such that

n∑

k=1

pku∗(zk) >

n∑

k=1

pku∗(dk)

where we assume n data points, each with probability pk ≥ 0. Finally, the vector
point d∗ is defined to be risk aversely efficient if there exists no other feasible point
d ∈ D that dominates d∗ risk aversely.

A second way of analyzing the Pareto efficiency models (2.1) and (2.2) when
the production process is stochastic is to adopt the efficiency distribution approach
which has been developed and applied by Sengupta (1988, 2000) in detail. A simple
way to describe this approach is to recast the Pareto efficiency model (2.1) in a dual
form with one output case for simplicity as:

min gk = β ′ Xk

subject to

β ′ X j ≥ y j

β ≥ 0; j = 1, 2, . . . , N

(2.4)

with X j as the input vector for each firm j producing one output y j . Here, prime
denotes transpose and the intercept term of the production function is subsumed
here by setting one of the inputs to equal unity. Let β∗ = β∗(k) be the optimal
solution for firm k and assume it to be nongenerate. Then y∗

k = β∗′(k)X (k) is the
optimal output associated with the production frontier then the firm k is efficient if
its observed output yk = y∗

k and it is not efficient by the Pareto principle if yk < y∗
k .

Now by varying k in the objective function over the set IN : {1, 2, . . . , N } one could
determine the subset of units say N1 in number which is relatively efficient. Then
N2 = N − N1 are relatively inefficient. Now consider the stochastic variations of
the input–output data X (s), y(s) where s = 1, 2, . . . , S is the set of realizations. Let
S1 and S2 be the two subsets, where the first contains the efficient units and S2 the
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inefficient ones. The efficiency distribution analyzes the probability distribution of
firms in the subsets S1, S2, and the whole set S. Once this distribution is estimated,
it can be used for decision making in several ways. Four aspects are most important
as follows:

1. Methods of stochastic programming may be applied so as to incorporate uncer-
tainty and risk aversion,

2. The form of the efficiency distribution may be estimated from samples in sets
S1, S2, and S. The forms may then be used in developing alternative estimates
of the production frontier by maximum likelihood (ML) or other nonparametric
methods,

3. The “statistical distance” between the two subsets S1 and S2 may be analyzed to
see if the two distributions are close or not. This may provide some insight into
the technology gap between the two subsets of efficient and inefficient units, and

4. The two subsets S1 and S2 may be enlarged by applying the Pareto efficiency
models (2.4) over successive time periods. The time series samples may then
be analyzed to see if the efficiency data over time are nonstationary or not. In
nonstationary case suitable error correction models have to be developed and
applied.

We may illustrate now several economic applications of the methods of stochastic
LP to the Pareto efficiency model (2.4) and its various transformations above. First,
consider the LP model (2.4) where each firm (or unit) is assumed to have single
output and m inputs. On using the optimal basis equations of this LP model, we
could express the parameters β∗

i as the ratio N/D, where N is the numerator and
D the denominator, both N and D depending on the stochastic input–output data.
Assume for simplicity that both N and D are two normally distributed variables
with means (N̄ , D̄), variances (σ 2

N , σ 2
D), and covariance σN D . Then the probability

distribution of the optimal solution can be explicitly computed as

Pr(β∗
i ) = (2π)−1/2 Q exp

(
−(D̄β∗

c − N̄ )2

2
(
σ 2

Dβ∗2
i − 2β∗

i σN D + σ 2
N

)
)

with Q = z−3/2
[

D̄σ 2
N − N̄σN D + β∗

i

(
N̄σ 2

D − D̄σN D

)]

z = σ 2
Dβ∗2

i − 2β∗
i σN D + σ 2

N

This empirical probability density function can be used to set up confidence intervals
for the optimal solutions β∗

i . Also statistical tests on the significance of stochas-
tic estimates of β∗

i can be performed. In case the normality assumption does not
hold, we have to derive the empirical distribution numerically. Secondly, consider an
application of the active approach of stochastic linear programming (SLP) to a plan-
ning model for India, which in the deterministic case solves for two outputs: consump-
tion and investment It in year t for maximizing total national output YT = CT + IT

at T where the planning horizon is t = 1, 2, . . . , T .
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max YT = CT + IT

subject to

It ≤ It−1 + λiβi It−1

Ct ≤ Ct−1 + λcβc It−1

It ≥ I0 > 0

Ct ≥ C0 > 0

λi + λc = 1

On using the following data I0 = 14.40, C0 = 121.7, and T = 4 and the expected
values β̄c = 0.706, β̄i = 0.335 we obtain the deterministic optimal solutions with
C4 = 153.72, I4 = 22.02, and Y4 = 175.74. In the stochastic case the parameters
βi , βc are random. Hence, we determine first the empirical density function as

P(βi ) = (10.508)3.520e−10.50βi β2.520
i


(3.520)

P(βc) = (1.541)1.088e−1.541βcβ0.088
i


(1.088)

The estimation method uses the method of moments first and then the ML procedure.
Here the planner’s choice of λi = 1−λc = 1/3 is used as an active decision ratio. In
this case we derive the first four moments of the distribution of Y4, i.e., expected value
E(Y4) = 180.10, variance Var(Y4) = 851.88, third and fourth moments around the
mean as 10,912.8 and 173,629.5. Clearly E(Y4) = 180.10 exceeds the optimal value
Y4 = 175.74 in the deterministic case. For other choice of the policy variables the
following results emerge

Y4 λi = 1/3 λi = 1/2 λi = 2/3

Mean 180.10 174.20 166.46
Variance 851.88 519.50 247.23
Skewness 0.1926 0.1648 0.1131
Kurtosis 2.39 2.32 2.36
Mode 160.8 157.3 159.8

The planner’s choice of a risk averse policy may be formalized by transforming the
above model as

max E

(
T∑

t=0

r t u(ct )

)

subject to

nit ≤ (1 + λi (t)βi ) it−1
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nct ≤ ct−1 + (1 − λi (t)) βi it−1

it = It

Lt

ct = Ct

Lt

Lt = L0(1 + n)t

it ≥ i0 > 0; ct ≥ c0 > 0

Here u(ct ) is the planner’s utility function assumed to be concave, r is the positive
discount rate, and ct , it denote per capita consumption and investment outputs.

Consider again the optimal basis of the LP model (2.4) written as

β1a11 + β2a21 = 1

β1a12 + β2a22 = 1

where ai j = xi j/y j are stochastically distributed with mean āi j and variance σ 2
i j .

Then the optimal solution β∗
1 in the stochastic case can be approximately computed as

β∗
1 = (ā22 − ā21) (ā11ā21)

−1

[
1 + ã12ã21

ā11ā22
+
(

ã12ã21

ā11ā22

)2
]

where ai j = āi j + ãi j with E ãi j = 0.
Clearly the expected value of β∗

1 can be written as

E β∗
1 = (ā22 − ā21) (ā11ā21)

−1

[
1 + σ 2

12σ
2
21

(ā11ā22)2 + . . .

]

Hence E β∗
1 > β1 in the deterministic model when the mean values of ai j are used.

The usual confidence interval and the statistical tests of significance can be made for
the stochastic estimate β∗

1 and β∗
2 .

Finally, the stochastic variations in the Pareto efficiency model (2.2), for example,
may be due to input price fluctuations q. If this is the case then the model (2.2) can
be transformed by building risk aversion into the decision model as

min W = q̄ ′x + αx ′V x

subject to the constraints of model (2.2)

Here, the vector q of input prices is assumed to be distributed with expectation q̄
and variance–covariance matrix V . The positive parameter α denotes the weight on
the risk of price fluctuations indicated by the variance of costs q ′x = x ′V x , where
prime denotes transpose.



38 2 A Pareto Model of Efficiency Dynamics

The estimation of the form of the efficiency distribution may be illustrated by
an example discussed in detail by Sengupta (2000). Here the data set is taken from
Greene (1990) which includes 123 firms (or plants) in the US electric utility industry,
comprising total input costs c j , three input prices of capital, labor and fuel, and total
output. Denoting observed costs in logarithmic units by z j = ln c j and the three
inputs in logarithmic units by xi j with the intercept term x0 j = 1, we may set up the
LP model of Pareto efficiency as

min hk = b′ Xk =
3∑

i=0

bi Xik

subject to

z j ≥ b′ X j

b ≥ 0

j = IN = {1, 2, . . . , N }

Here in logarithmic units x1 = output, x2 = price of capital, x3 = price of labor,
x0 = 1, and fuel price is used as the normalized factor. Clearly the firm (or plant) k
is Pareto efficient, i.e., it is on the cost frontier if it satisfies for the optimal solution
vector b∗ the conditions: zk = z∗

k = b∗′ Xk and s∗
k = zk − z∗

k = 0, where s∗
k is the

optimal slack variable. If firm k is relatively inefficient, then the observed cost is
higher than the optimal cost, i.e., zk > z∗

k . By varying the objective function over
k ∈ IN in the Pareto model above, we generate two subsets S1 and S2 of efficient
and inefficient units containing N1 and N2 = N − N1 samples. The total sample is
S = S1 + S2.

To analyze the probability distribution of minimal costs z∗
k with k ∈ S1 we follow

several steps as follows. In the first step, we apply the method of moments to identify
the probability density function p(z∗) from the set of Pearsonian curves, which
includes most of the frequency curves arising in practice. This identification is based
on the kappa criterion, which is based on the first four moments around the mean
(i.e., mean μ, μ2, μ3, μ4) as follows:

β1 = μ2
3

μ3
2

β2 = μ4

μ2
2

k1 = 2β2 − 3β1 − 6

k2 = β1(β2 + 3)2

4(4β2 − 3β1)(2β2 − 3β1 − 6)

p(z∗) = β1(8β2 − 9β1 − 12)

4β2 − 3β1
− (10β2 − 12β1 − 18)2

(β2 + 3)2
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The value of k2 with its sign determines which of the 12 curves fit the efficiency
values. Thus if k2 is zero and β1 = 0, β2 = 3 then we obtain the normal density. In
our case the estimated values turned out to be mean μ = 0.170, variance μ2 = 0.021,
μ3 = 0.004, μ4 = 0.002, β1 = 1.972, β2 = 5.105, k1 = −1.708, and k2 = −1.308.
This yields the beta density as follows

p(z∗) = 138.80(1 + 6.289z∗)−0.074(1 − 0.884z∗)5.564

which defines an inverted J-shaped curve much like the exponential density. The
initial estimates by the method of moments can be improved upon by applying the
ML method based on the method of scoring. By using this procedure the final estimate
of the efficiency distributed based on samples in S1 appears as follows:

p(ε) = 131.21(1 + 6.104ε)−0.132(1 − 0.723ε)4.158

ε j = z j − z∗
j ≥ 0

This empirical density function is now used in step 2 in the linear model

z j = b′ X j + ε j , ε ≥ 0

to estimate the parameter vector b by applying the ML method of nonlinear estima-
tion.

Finally, we compare the two efficiency distributions of cost as z j belongs to S1
and S2. The statistical distance between these distributions may then measure the
efficiency gap. Various applications of the concept of distance have been discussed
by Sengupta (1983). Two economic implications of the efficiency gap concept are
useful in practice. The concept of “structural efficiency” at the industry level was at
first used by Farrell (1957) which broadly measures the degree to which an industry
keeps up with the performance of its own best practice firms. Secondly, one can
compare two or more industries in terms of their structural efficiency. Consider
for example, two comparable industries A and B and let FA(t) and FB(t) be the
respective cumulative distributions of optimal outputs. Then one may define that
industry A dominates industry B in structural efficiency in the sense of first-degree
stochastic dominance (FSD), i.e., A FSD B if FA(t) ≤ FB(t) ∀t and the inequality
is strict for some t . In the empirical application discussed above for the case of beta
density we found that the cdf of the inefficient units F2(z) dominates that of the
efficient units F1(z). By duality this implies that the distribution of efficient output
based on S1 samples has first-order stochastic dominance over the inefficient units in
samples S2. Hence, the mean output for S1 samples is higher than that in S2 samples
and the variance for S1 is equal to or lower than S2.

The allocative efficiency model may be directly related to the cost efficiency
model, when market data on prices are available. Under imperfect demand conditions
and demand uncertainty, cost efficiency models can directly relate total costs to output
and compare the relative cost efficiency of different firms in the industry. We would
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discuss now several formulations of this approach, where each firm is assumed to
have one output (i.e., composite output) and total costs comprising labor, capital, and
material inputs. Capital may be fixed in the short run.

Let C j and C∗
j be the observed and optimal (minimal) costs of output y j for firm

j = 1, 2, . . . , n, where C j ≥ C∗
j and assume that optimal costs is strictly convex

and quadratic as C∗
j = b0 + b1 y j + b2 y2

j , where the positive parameters b0, b1, b2
are to be determined. To test the relative cost efficiency of firm h we minimize the
sum

∑n
h=1 |εh | of absolute errors εh = Ch − C∗

h subject to

b0 + b1 y j + b2 y2
j ≤ C j ; j = 1, 2, . . . , n

The dual of this model is the Pareto efficiency model that may be used to test the
relative cost efficiency of firm h as follows:

min θ subject to
n∑

j=1

C jλ j ≤ θCh

n∑

j=1

y jλ j ≥ yh

n∑

j=1

y2
j λ j ≥ y2

h

n∑

j=1

λ j = 1; λ j ≥ 0

Let (λ∗
j , θ

∗) be the optimal solution with all slack variables zero. If θ∗ = 1.0, then
firm h is on the cost efficiency frontier, i.e., Ch = C∗

h where asterisk denotes optimal
costs. If θ∗ < 1 then there exists a convex combination of other firms such that∑

λ∗
j C

∗
j < Ch , i.e., firm h is not on the cost frontier. The relative inefficiency is then

εh = Ch − C∗
h > 0. Now consider the cost frontier for the j th firm and specify its

average cost

AC j = c∗
j = C∗

j

y j
= b0

y j
+ b1 + b2 y j

On minimizing this average cost we obtain the optimal output size y∗∗
j as

y∗∗
j =

(
b0

b2

)1/2

AC j (y∗∗
j ) = b1 + 2(b0b2)

1/2
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This output level y∗∗
j may also be called optimal capacity output, since it spec-

ifies the most optimal level of capacity utilization. Since marginal cost at y∗∗
j is

MC j = b1 + 2b2 y∗∗
j we have MC j = AC j (y∗∗

j ) at the optimal capacity output.
If the market is competitive, then market price p equals MC j . If n increases (de-
creases) whenever AC j > MC j (AC j < MC j ), then competitive equilibrium en-
sures that p = AC j (y∗∗

j ) = MC j (y∗∗
j ). Thus competition and free entry lead to the

condition that price equals minimum average cost and hence to an optimal number
of firms. In imperfect competition however price exceeds MC j and hence excess
capacity would result.

In the competitive case the dynamics of entry and exit of firms in the industry
may be modeled as k j g j where g j = MC j − AC j and n j > 0

dn j

dt
= max(0, k j g j ) when n j = 0

Here n j is the number of firms belonging to the j th cost structure and k j is a positive
constant denoting the speed of adjustment. The industry equilibrium can now be
modeled as

min C =
K∑

j=1

n j C j (y j )

subject to
K∑

j=1

n j y j ≥ D

y j ≥ 0; n j ≥ 0

where it is assumed that there are K types of cost structures. On using the Lagrange
multiplier p for the demand constraint where D is total market demand assumed to
be given and C j (y j ) = b0 + b1 y j + b2 y2

j as before, we may compute the optimal
output vector y = y(n, D) with the equilibrium market clearing price p = p(n, D).

There is an alternative way of analyzing the impact of market demand on the
allocative efficiency model. Consider the case where the firm has to select the output
y and the input vector x = (xi ) by minimizing total input cost C

min C =
m∑

i=1

qi xi

subject to
n∑

j=1

xi jλ j ≤ xi
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n∑

j=1

y jλ j ≥ y

n∑

j=1

λ j = 1; y ≥ d j ; λ j ≥ 0

i = 1, 2, . . . , m; j = 1, 2, . . . , n

Here d j is the market share of demand of firm j assumed to be given or forecast by
the firm. On using p as the Lagrange multiplier for the demand constraint, we may
compute the optimal values

p = α, βi = qi , and αy j = β0 +
∑

i

βi xi j

for the optimal production frontier of firm j , where the Lagrangian is

L = −
m∑

i=1

qi xi +
m∑

i=1

βi

⎛

⎝xi −
n∑

j=1

xi j λ j

⎞

⎠+α

⎛

⎝
n∑

j=1

y j λ j

⎞

⎠+p(y−d j )+β0

⎛

⎝1 −
n∑

j=1

λ j

⎞

⎠

On using this price p we may also rewrite the objective function in terms of profit
π = py −∑

qi xi . In case demand is stochastic we may maximize expected profit
E(π) = p E(min(y, d̃)) − q ′x , where d̃ is stochastic demand and prime denotes the
transpose of the input price vector q. If the stochastic demand d̃ has a cumulative
distribution function F , we may then calculate the optimality conditions as

p
[
1 − F(y∗)

]− α∗ ≤ 0

α∗y j − β∗′x j − β∗
0 ≤ 0

β∗ ≤ q

Then for the efficient firm h we would obtain

y∗ = F−1
(

α∗

p

)

α∗yh = β∗
0 + β∗′ Xh

β∗ = q

Clearly the fluctuation in demand affects the level of efficient output y∗ through
the inverse of the distribution function F of demand. For example if demand follows
an exponential distribution with parameter δ, then one obtains the optimal output as

y∗ = 1

δ

(
ln p − ln α∗)
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The higher the value of δ, the lower becomes the optimal output. So long as the
observed output yh of firm h is not equal to optimal output y∗ we have output
inefficiency. The input inefficiency is measured by the divergence of β∗

i from qi .
If the market is not competitive, a more generalized condition would hold at the
optimal output y∗ as

p
[
1 − F(y∗) − ε−1

d

]
− α∗ = 0

where εd is the price elasticity of demand. Thus higher (lower) elasticity would lead
to lower (higher) prices in this type of market.

In case of fluctuations in input and output prices we have to allow for risk aversion
by the firms in the industry. Let q and p be distributed with mean values (q̄, p̄) and
variance–covariance matrices (Vq , Vp) then we replace the objective function of the
allocative efficiency model as maximizing the risk adjusted profit π̂ = p̄y − q̄ ′x +
(r/2)(y′Vp y) + (x ′Vq x) where r measures the degree of risk aversion, which is
assumed to be the same for all firms. In case the optimal solutions for the efficient
firm would have to satisfy the following conditions

x∗ = 1

r
V −1

q (β∗ − q̄) ≥ 0

y∗ = 1

r
V −1

p ( p̄ − α∗) ≥ 0

This implies that the higher the variance, the lower would be the efficient levels of
inputs and outputs. Similar would be the impact of higher degrees of risk aversion.

The cost-oriented model of Pareto efficiency may be related to the concept of von
Neumann efficiency. We would discuss this aspect in some detail in the next two
sections. Here we indicate briefly the implications of relative efficiency, when it is
based on revenue and cost considerations. Let R j = py j and C j = c j y j denote
total revenue and cost of firm j with output y j . We compute the relative efficiency
in terms of the scalar variable λ by using the von Neumann type model as follows:

min λ subject to

R j ≥ λC j ; y = 1, 2, . . . , n

λ ≥ 0

(2.5)

We only consider firms which are “productive” in the sense λ ≥ 1 i.e., profitable or
break-even. For the traditional von Neumann model unproductive units with λ < 1
do not survive in the long run. The necessary conditions of optimality for the above
model then reduce to

n∑

j=1

μ j C j for λ > 0

μ j (R′
j − λC ′

j ) = 0, y j > 0
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where prime denotes partial derivative with respect to y j . The second equation im-
plies

MR j = λMC j

where MR j = p = MC j in case of perfect competition. For the imperfect market
λ > 1 and hence marginal revenue exceeds marginal cost, which yields higher profit.

In case knowledge capital in the form of R&D investment tends to reduce average
cost, i.e.,

c j = C j

y j
= a − bK j ; a, b > 0

then we can adjoin this as a constraint of model (2.5). This then yields the transformed
optimality condition

μ j
[

p − λ(a − bK j )
] = 0 for y j > 0

implying p = λ(a − bK j )

Thus as technology progress occurs in the form of new capital K j , productivity
improves, average cost declines, and price declines. Over the last two decades the
modern industries using computer power have increased labor productivity steadily,
where the total factor productivity growth has achieved a rate of 2% per year over the
period of 1958–1996. It has increased more in the recent period. High productivity
growth led to falling unit costs and prices. For instance average computer prices
declined by about 18% per year from 1960 to 1995 and by 27.6% per year over
1995–1998. R&D investments and learning by doing have contributed significantly
to this trend of declining unit costs and prices.

The long run dynamics of industry growth may easily be formulated through the
innovation investment through R&D and knowledge capital. Innovation stimulates
efficiency and this leads to long run growth of profits. This profit is reinvested in
the network of new capital and R&D which in their part stimulate further economic
growth. One may therefore specify the long run growth model as follows:

max
∞∫

0
e−r t

[
λ(t) − q I j

]
dt

subject to

py j ≥ c j y j

c j = a − bK j

K̇ j = I j − δK j

j = 1, 2, . . . , n

(2.6)

where dot denotes time derivative, r is the positive discount rate, q is the cost of
investment, and δ is the depreciation rate. On writing the Hamiltonian as
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H = e−r t

⎡

⎣λ(t) − q j I j +
n∑

j=1

μ j
{

pyp − λ
(
ay j − bK j y j

)}+ h j
(
I j − δK j − K̇ j

)
⎤

⎦

the adjoint equations for optimality may be written as

ḣ j = (r + δ)h j − bλy j

K̇ j = I j − δK j
(2.7)

the other necessary conditions are

n∑

j=1

(ay j − by j K j )μ j = 1

λ > 0

μ j (p − λc j ) ≤ 0

y j ≥ 0

j = 1, 2, . . . , n

lim
t→∞ e−r t p(t) = 0 (transversality)

h j = q j

I j ≥ 0

The steady-state equilibrium for the dynamic system (2.7) has two useful implica-
tions: one is the optimal growth rate λ(t) rises when the shadow price of capital h j (t)
increases. Secondly, the stability of the system (2.7) can be easily computed from
the adjoint equations in terms of characteristic roots of the system. It can be shown
that the characteristic roots (one positive, one negative) satisfy the conditions of a
saddle point equilibrium.

Decline in unit costs and prices due to investment in innovation capital may also
be modeled in terms of the traditional Pareto efficiency model as:

min θ subject to
n∑

j=1

c jλ j ≤ θch

n∑

j=1

y jλ j ≥ yh

n∑

j=1

K jλ j ≤ Kh
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n∑

j=1

λ j = 1; λ j ≥ 0; j = 1, 2, . . . , n

where K j is innovation capital, c j is unit cost, and the observed data include c j ,
y j , and K j . We have to test the relative Pareto efficiency of firm h. By the Pareto
criterion the firm h is efficient if the optimal values of θ, λ j are such that θ∗ = 1.0
and λ j ≥ 0 and the following two conditions hold: all the slack variables are zero
and

∑
j c jλ

∗
j = ch . In this case the optimal unit cost frontier may be written as

β1c j = β0 + αy j − β2 K j or c j = β0

β1

α

β1
y j − β2

β1
K j

This implies that increasing K j has the effect of reducing unit costs for firm j , when
it is on the unit cost frontier. The dynamics of growth for the efficient firm may then
be specified by the capital accumulation function

K̇ j = I j − δK j

where an increase in investment for innovation I j would expand the capital base
�K j = K̇ j (t), which in its part would help long run growth through cost and price
declines. On the entry–exit side the firms which are not efficient would face increasing
pressure of competition and the exit rate would tend to rise. Industry equilibrium
would be restored by the number of efficient firms surviving the competitive pressure
and meeting total market demand and its growth.

2.2 Industry Growth and Efficiency

There are two ways of analyzing industry efficiency and its impact on industry growth.
One is the production and allocation efficiency model discussed in model (2.1) and its
generalizations. Here we identify two sets of firms in the industry, one is efficient and
the other is less efficient. Based on the efficient subset one could estimate a production
or cost frontier for the industry and compare this with an alternative frontier based
on the whole sample containing both efficient and less efficient firms. This has been
usually followed in traditional models of DEA and the standard econometric models
with one-sided error terms.

This approach has two limitations however. One is that the theory fails to analyze
the competitive pressure felt by the inefficient firms since their resources are not
optimally used. The allocation of total industry resources between the efficient and
the inefficient firms would definitely change due to the entry–exit process. Secondly,
there is an externality or spillover effect of innovation and R&D capital for the whole
industry, where knowledge diffusion across firms would have definite efficiency
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impacts on firms. The traditional DEA model fails to include this spillover effect in
their efficiency evaluations.

Both these problems were analyzed by the industry production frontier approach
developed by Johansen (1972) and generalized by Sengupta (1989, 2006). We would
discuss this approach in this section in some detail link industry efficiency and growth.

By using two inputs (i = 1, 2) and one output (y) and n firms ( j = 1, 2, . . . , n),
Johansen sets up the following LP model to determine the short-run industry pro-
duction function Y = F(V1, V2):

max Y =
∑

y j

subject to
n∑

j=1

ai j y j ≤ Vi ; i = 1, 2

0 ≤ y j ≤ ȳ j ; j = 1, 2, . . . , n

(2.8)

where Y is aggregate industry output and V1, V2 are the two current inputs for the
industry as a whole, i.e., Vi = ∑

j xi j . The capacity is denoted by the output ȳ j for
each firm, where in the short run it sets the upper limit of production. The observed
input–output coefficients are ai j = xi j/y j . Ignoring the output capacity terms ȳ j in
the short run, the necessary first-order conditions for the optimum are

2∑

i=1

βi ai j ≥ 1

y j ≥ 0

where β1, β2 are the shadow prices of the two current inputs, the optimal values of
which denote the marginal productivities of the inputs in the industry as a whole.
The dual of the LP model (2.7) is

min C =
∑

i

βi Vi

subject to β ∈ R(β)

where R(β) =
{

β :
∑

i

βi ai j ≥ 1, βi ≥ 0

} (2.9)

It is clear that the inputs can be increased from 2 to m, in which case the LP model
becomes similar to the Pareto model (2.1) before, except for three differences. One
is that the criterion of maximum industry output is used here implying a two-stage
screening process of a decentralized firm under competition. Since under competition
price p is given for each firm, the objective function of (2.8) may be replaced by
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max
n∑

j=1

py j

and hence the necessary condition may be written as

p =
∑

i

βi ai j for y j > 0

where p = MC j rule holds. Under imperfect competition the objective function
would be replaced by max pY = (a − bY )Y where market demand is D = a − bY
and demand equals supply by the market clearing condition. In this case the optimality
condition would reduce to

MR j = p
(

1 − |e j |−1
)

= MC j =
∑

i

βi ai j

where MR is marginal revenue and |e j | is absolute value of demand elasticity.
The second difference of model (2.8) is that the distribution ai j of inputs which

is called capacity distribution by Johansen determines the efficient level of industry
output. These input coefficients are very different from the ratios xi j/y j used in the
DEA model. The latter ratios do not consider the industry allocation problem at all.
To consider this aspect in more detail, let a1, a2 be two input coefficients distributed
over n firms according to a bivariate probability density function f (a1, a2) and let
G(a) = G(a1, a2) = {(a1, a2): β1a1+β2a2 ≤ 1, β1 ≥ 0, β2 ≥ 0} be the utilization
region in the parameter space describing the pattern of utilization of capacity through
the two input coefficients. Then one could define the aggregate output Y = ∑

y j

and the two aggregate inputs Vi = ∑
j xi j as

Y =
∫ ∫

G(a1,a2)

f (a1, a2) da1 da2 = g(β1, β2)

V1 =
∫ ∫

G(a1,a2)

a1 f (a1, a2) da1 da2 = h1(β1, β2)

V2 =
∫ ∫

G(a1,a2)

a2 f (a1, a2) da1 da2 = h2(β1, β2)

where the functions g(·), h1(·), and h2(·) represent aggregate output and the two
inputs corresponding to any given set of feasible optimal values of β1, β2 belonging to
the utilization region G(a1, a2). Assuming invertibility and other standard regularity
conditions we may solve for β1 and β2 from above:

β1 = h−1
1 (V1, V2)

β2 = h−1
2 (V1, V2)
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and substituting these values we obtain the macro (industry) production frontier

Y = F(V1, V2)

One has to note that the industry production function F(V1, V2) need not be lin-
ear even though the LP models underlying them are linear. This is due to the
initial distribution assumed for the input coefficients f (a1, a2). Thus Houthakker
(1956) found that if the capacity distribution follows a generalized Pareto distrib-
ution f (a1, a2) = Aaα1−1

1 aα2−1
2 where A, α1, α2 are positive constants, then the

aggregate industry production function takes the well known Cobb–Douglas form

ln F(V1, V2) = ln B + γ1 ln V1 + γ2 ln V2

where γ1 = α1

1 + α1 + α2

γ2 = α2

1 + α1 + α2

and B is a constant

Several economic implications of the industry production frontier approach may be
discussed. At first one could replace aggregate industry inputs by the sectoral inputs
comprising several industries and derive aggregate sectoral production frontiers.
Similarly, economy-wide macro production frontiers and their dual cost frontiers may
easily be derived. Secondly, by adding capital inputs K and its dynamic evolution
K̇ = I − δK through gross investment I , one could derive a dynamic production
frontier Y = F(V1, V2, K ) through optimizing an industry objective function

max Y − c(I )

where c(I ) is the cost of aggregate gross investment.
Thirdly, one may compare the industry efficiency model (2.8) with the Pareto

efficiency model (2.1). If the optimal allocation of industry input Vi to firm k is
denoted by x̂ik = xik/vi and substituted in (2.1) assuming a two input case, then one
could test if at this level x̂ik firm k is Pareto efficient or not. Since industry efficiency
includes all spillover effects, it is more representative of overall efficiency.

Finally, the industry efficiency model (2.7) may be used for policy purposes,
when the state can influence allocation decisions through appropriate tax subsidy
measures. Also the stochastic aspects of the resource allocation process may be
analyzed. Assume that the input availabilities Vi and the production coefficients ai j

are random

ai j = āi j + αi j

Vi = V̄i + βi



50 2 A Pareto Model of Efficiency Dynamics

where bar denotes mean values and the errors αi j and βi are assumed for simplicity
to be independent with zero mean values and finite variances. One approach to this
stochastic model is to follow a passive policy by considering only the mean values
and solve the mean LP model for optimal policy. A second method is to adopt the
active (or planning) approach by introducing the allocation ratios ui j for the resources
and analyzing the implications of selecting them at alternative levels. For instance,
the constraints of the LP model (2.8) may be written as

a11 y1 ≤ u11v1

a12 y2 ≤ 1 − u11

v1

a21 y1 ≤ u21v1

a22 y2 ≤ 1 − u21

v2

y j ≥ 0

u11, u21 ≥ 0

Now assume that the errors αi j , βi satisfy the following optimal basis equations for
a specific set (u0

11, u0
21) of the allocation ratios:

y1 = (V̄1 + β1)u0
11

ā11 + α11

y2 = (V̄2 + β2)(1 − u0
21)

ā21 + α21

On expanding the right-hand sides, assuming the errors to be symmetric and taking
expectations we obtain

E(y1) = u0
11V̄1

ā11
+ u0

11V̄1σ
2
11

(ā11)3

{
1 + 3σ 2

22

(ā11)2 + . . .

}

E(y2) = (1 − u0
21)V̄2

ā22
+ (1 − u0

21)(V̄2σ
2
22)

(ā22)3

{
1 + 3σ 2

22

(ā22)2 + . . .

}

where σ 2
i i is the variance of ai j . If we assumed instead zero errors for αi j and βi then

the optimal solutions are

y10 = u0
11V̄1

ā11

y20 = (1 − u0
21)V̄2

ā22
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Thus it follows that E(y j ) > y j0 for j = 1, 2. This shows that it pays to have
information on the probability distribution of y j . For a specific choice of the allocation
ratios (u0

11, u0
21) the expected gain of higher output Y must of course be evaluated

against any higher risk due to higher variance of Y .
Finally, the capacity distribution concept of Johansen’s industry efficiency model

can directly be related to the Pareto efficiency mode in a DEA framework. One needs
to reformulate Johansen’s approach as a two-stage optimization process, where the
production function has one output y = f (v, x1) with m variable inputs denoted by
vector v and one capital input x1, which is fixed in the short run. In the first stage,
we assume x1 be a fixed constant and then set up the LP model

min Cu = β ′vk + μx1k

subject to
m∑

i=1

βivi j + b jμ ≥ y j j = 1, 2, . . . , n

βi ≥ 0 i = 1, 2, . . . , m

The dual of this problem is

max Y =
n∑

j=1

y j

subject to
N∑

j=1

vi j y j ≤ vik

N∑

j=1

b j y j ≤ x1k

y j ≥ 0 j = 1, 2, . . . , n

Here we drop the constraint on x1k since it is constant. In the second stage, we solve
for the shadow price μ of the capital input as

min μx1k

subject to

biμ ≥ y j −
m∑

i=1

β∗
i vi j

μ ≥ 0 j = 1, 2, . . . , N



52 2 A Pareto Model of Efficiency Dynamics

where β∗ = (β∗
i ) is determined as the optimal solution in the first stage. On using

the optimal solution μ∗ when the reference firm k is efficient in the long run, we
obtain the production frontier

yk =
m∑

i=1

β∗
i vik + bkμ

∗

If the output and the inputs are measured in logarithmic terms, then this production
frontier would be of Cobb–Douglas form. In Johansen’s model the quasi-fixed input
is replaced by a constraint y j ≤ ȳ j , where ȳ j is capacity measured in output. In such
a case the shadow price μ∗

j is zero whenever y∗
j < ȳ j . If the firm in reference k is

efficient, then it must satisfy the optimality condition

m∑

i=1

β∗
i vik + μ∗

k = y∗
k

μ∗
k > 0

β∗
i ≥ 0

This implies full capacity utilization yk = ȳk for the efficient firm.
Note that the efficient firm’s optimal capital expansion decision can be influenced

by the overall industry in two ways. One is through the externality or spillover effect
whereby research investment done by other firms in the industry improves the quality
of input x1k . The sooner the kth firm adopts this new knowledge, the earlier it can
augment its stock of x1k . Thus the distribution of the industry level x1 across firms
is crucial. Secondly, the short run cost function may involve both x1 and its time rate
of change ẋ1 and in this case we have to minimize an intertemporal cost function so
as to obtain a dynamic cost frontier.

2.3 Economy-Wide Growth

Industry growth generates intersectoral growth through technical diffusion, trade, and
linkages. We discuss these aspects briefly in the framework of economic models.

Consider a Pareto efficiency model with one output (y j ) and m inputs (xi j ), where
j denotes a sector comprising several industries. Assume N sectors and denote by
hat over a variable its percentage growth rate, i.e., ẑ = �z/z(t) where the percentage
is measured as average over 5 years in order to indicate a long run change. The model
then takes the form



2.3 Economy-Wide Growth 53

min θ subject to
N∑

j=1

x̂i jλ j ≤ θ x̂ih

N∑

j=1

ŷ jλ j ≥ ŷh

N∑

j=1

λ j = 1

λ j ≥ 0 j = 1, 2, . . . , N

By the Pareto efficiency test, sector h is efficient if there exists a value θ∗ = 1.0 with
all slack variables zero such that

∑

i

β∗
i x̂ih = 1

β∗
i ≥ 0

α ŷ j = β∗
0 +

∑

i

β∗
i x̂i j

β∗
0 free in sign

where α and βi are appropriate Lagrange multipliers at their optimal values. This
implies for the j th efficient sector of growth frontier

ŷ j = γ0 +
m∑

i=1

γi x̂i j

γ0 = β∗
0

α

γi = β∗
i

α

The variable γ0 indicates a shift of the production frontier upward if γ0 > 0. In
this case we obtain Solow’s measure of technological progress, which is sometimes
proxied by growth of labor productivity. If we assume one of the inputs available to
sector j as a proportion of the aggregate knowledge capital, then the productivity of
the externality or spillover effect may be directly measured.

The long run impact of investment on economic growth may be specifically ana-
lyzed in this type of model as follows:
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min θ subject to
N∑

j=1

Ii jλ j ≤ θ Iih

N∑

j=1

�y jλ j ≥ �yh

N∑

j=1

λ j = 1

λ j ≥ 0 j = 1, 2, . . . , N

Here Ii j is investment demand by sector j for capital resources in sector i . In an inter-
country model, this represents the investment demand of country j for the capital
inputs of country i . When the sector j is Pareto efficient we would now obtain as
before

�y j = γ0 +
∑

i 
= j

γi Ii j + γ j I j j

where the second and third term on the right-hand side would indicate the productivity
impact of investment of all other sectors and the jth sector respectively. As before
a positive value of γ0 would indicate technological progress representing technical
diffusion for the whole economy.

In the Leontief-type input–output (IO) model intersectoral linkages are captured
through output and input demands. Denoting the vectors of gross output and final
demand by x and y for an n-sector economy, the IO model may be viewed as an
optimizing model:

min C = c′x
subject to

x ≥ Ax + y

x ≥ 0

where c is the vector of final input costs like labor and capital costs and A is the
input–output coefficient matrix. On using p as the vector of Lagrange multipliers,
the optimal solution may be written as

p = A′ p + c

x > 0

with prime denoting transpose. The implicit price vector p equals the unit costs of
raw materials and final inputs. Here Ax denotes demand linkage and A′ p denotes
linkage through inputs. The vector p may be interpreted as competitive equilibrium
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prices equaling marginal costs. The dual of the LP model above is

max Y = p′y = national income

subject to p ≤ A′ p + c and p ≥ 0

which yields the efficiency characterization of the economy-wide competitive equi-
librium. Debreu (1951) developed a more general concept of economy-wide effi-
ciency. This concept of efficiency is termed the coefficient of resource utilization
developed for a competitive general equilibrium framework. To develop at a par-
tial equilibrium framework we consider a cluster of N industries, each with input
x( j) and output y( j) vectors for j = 1, 2, . . . , N . Furthermore assume a linear
technology set:

R( j) = {(y, x) | A( j)y( j) ≤ x( j); x( j), y( j) ≥ 0}

Denote by R the set of finite intersections of the sets R( j) and assume that each set
R( j) is compact. Then the set R is compact. Now if the set R is not empty, how
could we define some points in R as efficient relative to others. Debreu’s coefficient
of resource utilization used the similarity of the technology set for the N industries to
define a set Rmin to denote the minimal physical inputs required to achieve an output
level y∗. The distance from an output vector y to the set Rmin may then provide a
measure of inefficiency. Thus a vector point y∗ ∈ Rmin is termed efficient, if there
exists no other y ∈ R such that y ≥ y∗ with at least one component strictly greater.

This concept of efficiency is not limited to the linear technology set in the LP
framework alone. It can be applied to any nonempty convex sets R arising for example
through nonlinear production relations. Note that by the assumption of convexity of
the output feasibility set Rmin, there must exist a vector of prices p such that

p′(y∗ − y) ≥ 0, i.e., p′y ≤ p′y∗

where prime denotes transpose. Denote by y0 a vector collinear with y but belonging
to the set Rmin, i.e., y0 = r y, then it follows

max
y∗∈Rmin

p′y
y′y∗ = 1

r
max

(
p′y0

y′y∗

)

≤ 1

r

where ρ = 1/r indicates the coefficient of resource utilization due to Debreu. Clearly
ρ = 1.0 when y0 = y∗. Note that ρ attains its maximum value of unity when
y0 = y∗. In all other cases of ρ < 1.0 we have inefficiency with dead weight loss.
These implicit prices p associated with the efficient point y∗ are not however unique
and may not correspond with the market prices. Also, the characterization of the
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minimum feasibility set Rmin is also not unique. Hence the coefficient of resource
utilization may not be very useful in practical applications.

An interesting area where the economy-wide IO model can be applied is the
international trade, where technology and its diffusion have expanded the market
dynamics. The dynamics of modern technology and its growth have intensified the
pressure of competitiveness. Increasing economies of scale in computer and commu-
nication technology have driven down unit costs and prices in the global market and
this trend is likely to continue as advances in R&D innovations move forward. As a
result the structure of comparative advantage in international trade is changing very
fast. The Pareto efficiency model may easily be applied to characterize efficiency in
international trade. We consider some examples here in terms of technology growth
and its impact on trade flows.

Let Ii j (t) be country j’s demand for country i’s goods for investment purposes in
period t and yt (t) be national income of country i in period t . A Pareto efficiency
model for the trade frontier may then be specified as

min θ subject to
n∑

i=1

Ii j (t)λi (t) ≤ θyk j (t)

n∑

i=1

yi (t)λi (t) ≥ yk(t)

n∑

i=1

λi (t) = 1

λi (t) ≥ 0

On using the Kuhn–Tucker theorem the frontier may be written as

αyi (t) = β0 +
n∑

j=1

β j Ii j (t)

for λi > 0. This yields

yi (t) = γ0 +
n∑

j=1

γ j Ii j (t)

where γ0 = β0

α
and γ j = β j

α

If we assume a lag in investment expenditure as

Ii j (t) = bi j y j (t − 1) + ui j
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then we obtain

yi (t) = γ̃0i +
n∑

j=1

γ̃ j y j (t − 1)

with γ̃0i = β0 +∑n
j=1 β j ui j

α
and γ̃i j = β j bi j

α

In matrix terms this can be written as

Y (t) = AY (t − 1) + g

where A = (γ̃i j ) and g = (γ̃0i )

Since γ̃i j are all non-negative and are most likely to have the properties of a Leontief-
type IO model, we would have the convergence of the solution Y (t) of the above
dynamic model as follows

Y (t) → (I − A)−1g with (I − A)−1 > 0

Also 0 < μA < 1 where μA is the Frobenius root of A.
Export growth of a country has a direct dynamic impact on the industry growth

of a country. The rapid industry growth of Southeast Asian countries in the last three
decades, often called “growth miracles” has been generated by a steady growth in
exports of technology-intensive products. Two types of innovations played critical
roles. One is the incremental innovation, which improves modern technology contin-
ually, whereas basic innovations represent long-term improvements in production,
communications, and distribution processes. Sengupta (2010) has discussed in some
detail the various forms of these two types of innovations. General purpose technolo-
gies are helped most by incremental innovations, whereas basic innovations build and
improve the capacity to improve technological capability. They include long-term
factors such as R&D investment, learning by doing, and even improvements in skill
levels and education of the work force. A Pareto efficiency model may easily capture
these growth effects. For an n country model denote by Ẽ j = �E j/E j the growth
of exports of country j . Let Tj and c j be incremental improvements in technology
inputs and capacity investments. Then the export frontier of a successful innovator
may be modeled as:

max θ subject to
n∑

j=1

Ẽ jλ j ≥ θ Ẽk

n∑

j=1

c jλ j ≤ ck
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n∑

j=1

Tjλ j ≤ Tk

n∑

j=1

π jλ j ≤ πk

n∑

j=1

λ j = 1

λ j ≥ 0

Here π j = cw −c j denotes unit costs at world level and country level. When country
j is on the efficient export frontier we would have

α Ẽ j = β0 + β1c j + β2Tj + β3π j

when the Lagrangian function is

L = α
(∑

Ẽ jλ j − θ j Ẽk

)
+ β1

(
ck −

∑
c jλ j

)
+ β2

(
Tk −

∑
Tjλ j

)

+ β3

(
πk −

∑
π jλ j

)
+ β0

(
1 −

∑
λ j

)

with non-negative multipliers α, β0, β1, β2, β3. The export growth frontier then be-
comes

Ẽ j = �E j/E j = γ0 + γ1c j + γ2Tj + γ3π j

with γ0 = β0

α
and γi = βi

α

Here π j captures the comparative cost advantage of country j in terms of unit costs
as labor productivity. This measures the relative competitive advantage of countries
leading in innovations. Fagenberg (1988) has discussed empirical models for 15 in-
dustrial countries over the period of 1960–1983 and found the impact on export share
from improved capacity and technological competitiveness and cost competitiveness
which are reflected in price competitiveness to be significant. Castellacci (2002) also
found for the 26 OECD countries (1991–1999) that the technology gap between the
leading innovators and less successful countries explains most of the difference in
export growth.

According to Fagenberg (1988) the capacity to innovate variable c j depends on
three factors: (a) the growth in technological capability and know-how that is made
possible by diffusion of technology from the countries on the world innovation fron-
tier to the rest of the world (Q̃ = �Q/Q), (b) the growth in physical productive
equipment and infrastructure (K̃ = �K/K ), and (c) the rate of growth of demand
(D̃ = �D/D). He also assumes that the growth in knowledge follows a logistic
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diffusion curve
�Q

Q
= a0 − a1

Q

Q∗

where Q/Q∗ is the ratio between the country’s own level of technological devel-
opment and that of the world innovation frontier. On combining these relations we
arrive at the growth of the market share S of exports as follows

�S

S
= b0 + b1

(
Q

Q∗

)
+ b2

(
�K

K

)
− b3

(
�D

D

)

+ b4

(
�T

T
− �Tw

Tw

)
− b5

(
�P

P
− �Pw

Pw

)

Here the subscript w denotes the world level and P denotes the price level of the
exporting country taken as a proxy for average costs. The coefficients b1 through b5
are non-negative.

All these models emphasize the most dynamic impact on productivity by inno-
vations, which in their most generic form were emphasized by Schumpeter. One
could identify four dynamic aspects in his theory of innovations which provide the
engine of growth of modern capitalism. One is the creative destruction, where old
method of production, communication, and distribution is replaced by new ones that
are more efficient and more suitable for expanding markets. The second is tech-
nology and innovation creation through advances in basic research and knowledge
capital. This enhances the productive capability of the successful innovations. The
third is the technology diffusion, which occurs through exports and imports which
facilitate the spillover effects. The productivity gains from new innovations are dif-
fused to other countries across the world and also other firms in a given country. The
so-called backward and forward effects spread the interdependence across coun-
tries and across industries. Finally, the new innovations, e.g., developments in soft-
ware and computer research are strongly oriented to scale economies and increasing
returns. This tends to have increased the market power of the successful innovating
firms. Their increased market share in the global market facilitated by mergers and
acquisitions has significantly altered the market structure of world trade. This trend
has challenged the paradigm of competitive equilibria and their guiding principles.
In the world of innovations and spillover effects of R&D various forms of noncom-
petitive market structures evolved in recent times. Schumpeterian theory predicted
this outcome.

2.4 Innovations and Growth

In recent times competition has been most intense in modern high-tech indus-
tries such as microelectronics, computers, and telecommunications. Product and
process innovations, economies of scale, and learning by doing have intensified the
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Table 2.1 Elasticities of manufacturing labor productivity per worker in OECD countries (1994–
1998)
Elasticity coefficients
Industry b0 b1 b2 b3 Adj R2 n

Total 8.065∗ 0.339∗∗∗ 0.540∗∗∗ 0.143∗∗ 0.45 120
High-tech 8.255 0.299∗∗∗ 0.466∗∗∗ 0.156∗ 0.35 80
Low-tech 8.166∗ 0.089 0.909∗∗∗ 0.156 0.76 40

Note One, two and three asterisks denote significant t values at 10, 5, and 1% respectively

competitive pressure leading to declining unit costs and prices. Thus, Norsworthy
and Jang (1992) in their measurement of technological change in these industries
over the last decade noted the high degree of cost efficiency due to learning by do-
ing and R&D investment. Also the empirical study by Jorgenson and Stiroh (2000)
noted the significant impact of the growth of computer power on the overall US
economy. As the computer technology improved, more computing efficiency was
generated from the same inputs like skilled labor. Thus the average industry pro-
ductivity growth (i.e., TFP growth in a specific industry) achieved a rate of 2% per
year over the period of 1958–1996 for electronic equipment, which includes semi-
conductors and communications equipment. High productivity growth led to falling
unit cost and price. For instance the average computer prices have declined by 18%
per year from 1960 to 1995 and by 27.6% per year over 1995–1998. More recent
estimates for 2000–2005 exceed 30% per year. R&D investments and learning by
doing have contributed significantly to this trend of decline in unit costs and prices.

The increase in productivity due to innovations leads to increased market shares for
the technology-intensive firms. Through falling prices it can help expand the market
and product innovations can even create new markets, e.g., the iPod and iPhone.
Corley et al. (2002) analyzed the average annual rates of growth of labor productivity
over the period 1990–1998 in the manufacturing sector and the contributions of
R&D and gross fixed capital formation per worker for eight OECD countries. The
regression equation is of the form:

y = b0 + b1x1 + b2x2 + b3x3 + error

where,

y = level of labor productivity in industry i averaged over 4 years 1994–1998,
x1 = R&D expenditure per worker averaged over 4 years,
x2 = gross fixed capital formation per worker in industry i averaged over 1994–
1998,
and x3 = share of R&D scientist and engineers in the labor force averaged over
1994–1998.

All the variables are taken in logarithms so that the coefficients b1–b3 denote
elasticities. The estimates are given in Table 2.1.



2.4 Innovations and Growth 61

The results show very clearly that all three forms of investment denoted by x1–x3
have significant effect on labor productivity in the manufacturing sector. Thus a 1%
increase in physical investment to labor ratio raises the labor productivity level by
0.54%, followed by R&D where the effect on productivity is 0.34% and human
capital investment where the effect is 0.14%. It is remarkable that the R&D elastic-
ity coefficient for the high-tech manufacturing sector is more than three times the
value for the low-tech manufacturing sector. Physical investment is found to be the
dominant determinant of labor productivity in both high- and low-tech industries
in the manufacturing sector. In this respect the NICs in Asia have similar growth
experiences.

We now consider a class of semi-parametric models where efficiency gains pro-
vide the key to growth of firms and industries. The impact of innovations as R&D or
knowledge capital is analyzed here in terms of three types of models. One empha-
sizes the unit cost reducing impact of R&D. Second, the impact on output growth
(TFP growth) through input growth including R&D inputs is formalized through
a growth efficiency model. Here a distinction is drawn between level and growth
efficiency, where the former specifies a static production frontier and the latter a dy-
namic frontier. Finally, the overall cost efficiency is decomposed into technical (TE)
or production efficiency and allocative efficiency (AE). Thus the three components
of efficiency growth, i.e., �TFP, �TE, and �AE may completely measure the firm
and efficiency growth.

Denote unit cost by c j = C j/y j , where total cost C j excludes R&D cost denoted
by r j for firm j = 1, 2, . . . , n. Then we set up the nonparametric model also known
as a DEA model as

min θ subject to
n∑

j=1

c jλ j ≤ θch

n∑

j=1

r jλ j ≤ rh

n∑

j=1

y jλ j ≥ yh

n∑

j=1

λ j = 1

λ j ≥ 0 j ∈ In = {1, 2, . . . , n}

On using the dual variables α, β0, β1, β2 and solving the linear program we obtain
for an efficient firm h, θ∗ = 1 and all slack zero the following average cost frontier

c∗
h = β∗

0 − β∗
2 rh + α∗yh
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since β∗
1 = 1 if θ∗ > 0. Here y j is output and r j is R&D spending. If we replace rh

by cumulative R&D knowledge capital Rh as in Arrow’s learning by doing model,
then the AC frontier becomes

c∗
h = β∗

0 − β∗
2 Rh + α∗yh

A quadratic constraint as
n∑

j=1

r2
j λ j = r2

h

may also be added to the above LP model, where the equality constraint is added so
that the dual variable β∗

3 may be free of sign. So long as the coefficient β∗
3 is positive rh

or Rh may be optimally chosen as r∗ or R∗ if we extend the objective function as
min θ + r or min θ + R and replace rh or Rh by r or R. In this quadratic case if the
coefficient β∗

3 is positive, rh may be optimally chosen as r∗:

r∗ = 1 + β∗
2

2β∗
3

Clearly, if θ∗ < 1 in the LP model, the firm h is not efficient since then
∑n

j=1 c jλ
∗
j <

ch , so that other firms, or a convex combination of them, have lower average costs.
Thus an innovating firm gains market share by reducing unit costs i.e., as rh or Rh

rises, it reduces unit costs c∗
h when β∗

2 > 0.
Now consider growth-efficiency measured in a nonparametric way. Consider a

firm j producing a single composite output y j with m inputs xi j by means of a
log-linear production function:

y j = β0

m∑

i=1

eBi xβi
i j j = 1, 2, . . . , N

where the term eBi represents the industry effect or a proxy for the share in total
industry R&D. On taking logs and time derivatives one can derive the production
function

Y j =
m∑

i=0

bi Xi j +
m∑

i=1

φi X̂i

where

bi = βi

b0 = β̇0

β0

X0 j = 1 j = 1, 2, . . . , N
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eBi = φi X̂i

Xi j = ẋi j

xi j

Yi j = ẏi j

yi j

X̂i =
∑N

j=1 ẋi j
∑N

j=1 xi j

and dot denotes time derivative. Note that b0 here denotes technical progress in
the sense of Solow (representing long run TFP growth) and φi denotes the industry
efficiency parameter.

We now consider how to empirically test the relative efficiency of firm h in an
industry of N firms with observed input–output data (xi j , yi j ). We use the nonpara-
metric DEA model as an LP model:

min Ch =
m∑

i=0

(b j Xih + φi X̂i )

subject to
m∑

i=0

(b j Xi j + φi X̂i ) ≥ Y j j = 1, 2, . . . , N

bi ≥ 0

φi ≥ 0

and b0 is free in sign. Denote the optimal solutions by b∗ and φ∗. Then the firm h is
growth efficient if

Yh = b∗
0 +

m∑

i=1

(b∗
i Xih + φ∗

i X̂i )

If instead of equality it is a “less than” sign, the hth firm is not growth efficient—
observed output growth is less than the optimal output growth. Note that this nonpara-
metric DEA model has several flexible features. First of all, one could group the firms
into two subsets, one growth-efficient, and the other less efficient. The successful
innovating firms are necessarily growth-efficient. Their technical progress parameter
b0 may also be compared. By measuring b∗

0(t), φ∗
j (t), and b∗

i (t) over sub-periods one
could estimate if there is efficiency persistence over time. Secondly, if the innovation
efficiency is not input-specific, i.e., eBi = φ(t), then one could combine the two
measures of dynamic efficiency as say b∗

0 + φ∗ = b̃∗
0. In this case the dual problem

becomes:

max u subject to
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N∑

j=1

λ j Xi j ≤ Xi j i = 0, 1, . . . , m

N∑

j=1

λ j Y j ≥ uYh

N∑

j=1

λ j = 1

λ j ≥ 0

If the optimal value u∗ is one, then firm h is growth efficient, otherwise it is inefficient.
Finally, we note that the growth-efficiency model can be compared with the level
efficiency of firm h by running the LP model as

min Ch = β̃0 +
m∑

i=1

(
β̃i ln xih + φ̃i xi

)

subject to

β̃0 +
m∑

i=1

(
β̃i ln xi j + φ̃i ln xi

)
≥ 0

xi =
N∑

j=1

xi j

β̃i , φ̃i ≥ 0

and β̃0 is free in sign.
We now consider an empirical application of growth-efficiency to the US computer

industry. The data are from Standard and Poor’s Compustat database, where on
economic grounds a set of 40 firms over a 16-year period 1984–1999 is selected. The
companies included here comprise such well-known firms as Apple, Compaq, Dell,
IBM, HP, Toshiba, and also less well-known firms such as AST Research, etc. For
measuring growth efficiency we use a simpler cost-based model where any observed
variable z̃ denotes ż/z or the percentage growth in z.

min θ(t) subject to
N∑

j=1

C̃ j (t)μ j (t) ≤ θ(t)C̃h(t)

N∑

j=1

ỹ j (t)μ j (t) ≥ ỹh(t)
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Table 2.2 Impact of R&D on growth efficiency based on the cost-oriented model

1985–1989 1990–1994 1995–2000
θ∗ β∗

2 θ∗ β∗
2 θ∗ β∗

2

Dell 1.00 2.71 1.00 0.15 0.75 0.08
Compaq 0.97 0.03 1.00 0.002 0.95 0.001
HP 1.00 1.89 0.93 0.10 0.88 0.002
Sun 1.00 0.001 1.00 0.13 0.97 1.79
Toshiba 0.93 1.56 1.00 0.13 0.97 1.79
Silicon groups 0.99 0.02 0.95 1.41 0.87 0.001
Sequent 0.72 0.80 0.92 0.001 0.84 0.002
Hitachi 0.88 0.07 0.98 0.21 0.55 0.001
Apple 1.00 1.21 0.87 0.92 0.68 0.001
Data general 0.90 0.92 0.62 0.54 0.81 0.65

N∑

j=1

μ j (t) = 1

N∑

j=1

ỹ2
j (t)μ j (t) = ỹ2

h

μ j ≥ 0 j ∈ In

where C j (t) and y j (t) denote total cost and total output of firm j and the quadratic
output constraint is written as an equality, so that the cost frontier may turn out to
be strictly convex if the data permits it. The dynamic cost frontier showing growth
efficiency may then be written as

C̃h(t) = Ċh(t)

Ch(t)
= g∗

0 + g∗
1 ỹh(t) + g2 ỹ2

h

If one excludes R&D spending from total costs Ch and denote it by Rh(t), then the
dynamic cost frontier can be specified in finite growth-form as

�Ch(t)

Ch(t)
= β∗

0 + β∗
1
�yh(t)

yh(t)
− β∗

2
�Rh(t)

Rh(t)

Here β∗
1 , β∗

2 are non-negative optimal values and β∗
0 is free in sign. Here the elas-

ticity coefficients β∗
2 estimates in the DEA framework influence the growth of R&D

spending on reducing costs. The estimates for the selected firms in the computer
industry are given in Table 2.2.

Consider now a regression approach to specify the impact of R&D inputs on
output measured by net sales. Here x1–x3 are three inputs comprising R&D inputs,
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net capital expenditure and all other direct production inputs. The production function
turns out to be

y = 70.8∗ + 3.621∗∗x1 + 0.291∗∗x2 + 1.17∗x3 R2 = 0.981

where one and two asterisks denote significant t-values at 5 and 1% respectively.
When the regressions are run separately for the DEA growth efficient and inefficient
firms, the impact of R&D inputs is about 12% higher for the efficient firms, while
the other coefficients are about the same. When each variable is taken incremental
form the estimates are

�y = −6.41 + 2.65∗∗�x1 + 1.05∗∗�x2 + 1.17∗�x3 R2 = 0.994

It is clear that the R&D input has the highest marginal contribution to output in the
level form and incremental form.

Recently, an empirical attempt has been made by a world team of experts to
construct an innovation capacity index (ICI) and Lopez-Claros (2010) has prepared
a world report on all the member countries of UN. This index is most broad so as
to include five major components: (a) institutional environment, (b) human capital,
(c) legal framework, (d) research and development, and (e) adoption and use of
information and communication technologies. The rapid growth of the successful
NICs in Southeast Asia owes a great deal to the high rank of the ICI index. A classic
example is Taiwan which has a high rank of 11 in the ICI over the period of 2009–
2010 with Japan, South Korea, and China having ranks 15, 19, and 65. This record of
Taiwan reflects exceptionally high performance in a number of indicators including
patent registration (per capita) in which Taiwan is number 1, R&D worker density
(rank 4), student enrollment in science and engineering (rank 4). The improvement
in ICI index leads to significant economies of scale and reduction in unit costs. This
helps the growth of markets and rapid industry growth.
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