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Chapter 2
Introduction to Optical Trapping

Light that is reflected, refracted or absorbed by small particles in general undergoes
a change in momentum. In turn, the particles experience an analogous change in
momentum, i.e. a resulting force. It was demonstrated already more than 40 years
ago that radiation pressure from a (laser) light source can accelerate microscopic
particles (Ashkin 1970). The historically most important insight, however, was that
microscopic particles cannot only be pushed by the radiation pressure, but they can
be at will confined in all three dimensions, leading to the powerful concept of optical
tweezers (Ashkin et al. 1986).

This chapter provides a short overview on the basic physical principles and con-
cepts of optical trapping and reviews important milestones. While the focus of this
overview will be on classical optical tweezers, related concepts and applications are
discussed when beneficial for the understanding of the following chapters.

2.1 A Short Note on the History

Although it contradicts everyday experience, it has been accepted ever since the
emergence of the electromagnetic theory by Maxwell that light waves are associated
with linear momentum (Maxwell 1873). The theoretical treatment consistently sub-
stantiates early explanations by Kepler, who believed that the repulsive forces of the
sun on comet tails issued from the radiation pressure of the sun light (Lebedev 1901).
Even before the invention of lasers, observations with elaborate experimental appa-
ratus proved the existence of radiation pressure qualitatively (Lebedev 1901; Nichols
and Hull 1901) and quantitatively (Nichols and Hull 1903). Optical micromanipu-
lation as a means to selectively confine and move small particles, however, requires
very high intensity gradients that are only possible with laser light sources. This field
of activities was initiated roughly 40 years ago by Ashkin in his seminal paper on
“acceleration and trapping of particles by radiation pressure” (Ashkin 1970), who
used a weakly focused laser beam in order to guide particles. He not only observed
the acceleration of microscopic particles by the radiation force but also noticed a
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6 2 Introduction to Optical Trapping

gradient force, pulling transparent particles with an index of refraction higher than
the surroundings towards the beam axis. Furthermore, he proposed and demonstrated
the concept of counter-propagating optical trapping (cf. also Chap. 4), where the
opposed radiation pressure of two laser beams leads to the stable three-dimensional
confinement of particles. Soon, other stable optical traps were demonstrated, includ-
ing the optical levitation trap where gravitational forces counteract the radiation
pressure (Ashkin and Dziedzic 1971). A major breakthrough in the field of optical
micromanipulation was the demonstration of a “single beam gradient force trap”,
which is nowadays known as optical tweezers (Ashkin et al. 1986). In optical tweez-
ers, a single laser beam is very tightly focused through a high numerical aperture lens
and by this means can establish gradient forces counteracting the scattering forces
in propagation direction. This simple and elegant implementation of an optical trap
enables the stable, three-dimensional optical trapping of dielectric particles.

Based on these fundamental findings, a whole field of optical micromanipula-
tion has developed. On the one hand, optical tweezers have been further developed
towards versatile, multifunctional tools by means of time-sharing approaches, holo-
graphic beam-shaping, and an uncountable number of technological refinements.
One the other hand, a wide range of alternative approaches has emerged that go
beyond the concept of single or multiple discrete optical tweezers but provide opti-
cal landscapes, tailored to a specific problem. A short section at the end of this chapter
gives an idea of some of these novel concepts.

2.2 Basic Physical Principles of Optical Tweezers

Optical tweezers can be qualitatively understood in terms of geometric ray optics.
Consider a spherical, transparent particle in a light field that has an inhomogeneous
intensity distribution in a plane transverse to the optical axis, for example a collimated
Gaussian beam. Furthermore, we recall that any light ray is associated with linear
momentum flux of p = nmed P/c, for a ray of power P, travelling in a medium with
the refractive index nmed. Tracing two rays that are incident symmetrically on the
sphere but have different intensities, as depicted in Fig. 2.1a, it is easy to see that the
vector sum of the momentum flux points away from the region of highest intensity.
Consequently, the sphere will experience a reaction force along the intensity gradient,
the gradient force Fgrad (Ashkin et al. 1986). The gradient force is accompanied by the
scattering force Fscat along the optical axis, which is further enhanced by reflection
from the surfaces and absorption.

Now consider a tightly focused beam (cf. Fig. 2.1b) as is typical of optical tweez-
ers. The spherical particle acts as a weak positive lens and changes the degree of
divergence or convergence of the focused light field. If the angle of the incident rays
is high enough, this can result in axial forces Fz that point backward if the particle
is positioned behind the focus of the rays. By this means, a stable trapping position
for the particle is achieved, i.e. any (small) displacement of the particle will result in
a restoring force toward the equilibrium position (Ashkin et al. 1986; Ashkin 1992).
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Fig. 2.1 Basic principle of optical tweezers in the geometric optics regime. a A transverse inten-
sity gradient will result in a gradient force Fgrad pointing towards the region of highest intensity.
b Strong focusing through a microscope objective (MO) can result in a backward force along the
optical axis (Fz)

Geometric optics yields a good qualitative picture but can also describe optical
tweezers quantitatively if the limits of the regime are respected. Naturally, geometric
optics only poorly describes the light field in the vicinity of the focus and furthermore
neglects any effects of diffraction and interference (Nieminen et al. 2010; Stilgoe
et al. 2008). Hence, geometric optics can only describe the limiting regime of particles
that are large compared to the wavelength of the light field (d � λ) (Ashkin 1992).
For quantitatively accurate results, as a rule of thumb usually the smallest dimension
of the particle should be at least 20 times the optical wavelength (Nieminen et al.
2007).

An alternative approximate description of optical tweezers is the consideration of
particles that are very small compared to the wavelength (d � λ). In this Rayleigh
regime, particles can be seen as infinitesimal induced point dipoles that interact with
the light field. It is well known that a sphere of radius r in a homogeneous electric
field �E will be polarised and have an induced dipole moment of (Nieminen et al.
2007)

�pdipole = 4πn2
medε0r3

(
m2 − 1

m2 + 2

)
�E, (2.1)

with the relative refractive index of the particle m = npart/nmed, and the dielectric
constant in the vacuum ε0. Owing to this dipole moment, the particle will experience
a force in a non-uniform electric field (Harada and Asakura 1996)

�Fgrad = πn2
medε0r3

(
m2 − 1

m2 + 2

)
∇| �E |2. (2.2)

For small particles, this equation is also valid for a time-varying electric field and
in this case, the force can be written in terms of the intensity I of the light field:

�Fgrad = 2πnmedr3

c

(
m2 − 1

m2 + 2

)
∇ �I . (2.3)

This force obviously depends on the gradient of the intensity and, hence, naturally
is called gradient force. It points up the gradient for m > 1, i.e. for high-index
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Fig. 2.2 Basic principle
of optical tweezers in the
Rayleigh regime. A particle
exposed to a light field—a
mildly focused Gaussian
beam in this example—
experiences a transverse
force Fr and a force along
the beam axis Fz

Fr

FzMO

particles. For a static field, this expression would give the total force (Nieminen
et al. 2007). In case of time-varying fields, the oscillating dipole can be considered
as an antenna that radiates energy. The (vectorial) difference between energy removed
from the incident field and energy reradiated by the particle accounts for an associated
amount of change in momentum flux and hence results in a scattering force that has
a magnitude of (Harada and Asakura 1996)

Fscat = 8πnmedk4r6

3c

(
m2 − 1

m2 + 2

)
I, (2.4)

with the wavenumber k = 2π/λ. If the particle has absorbing properties, an addi-
tional force arises which also depends on the intensity but is proportional to r3 rather
than r6 (Nieminen et al. 2010). The sum of these forces, including the gradient force,
can be separated into a transverse component Fr and axial component Fz as depicted
in Fig. 2.2.

With an increasing degree of focusing, the three-dimensional intensity gradients
increase, the (axial) gradient force becomes stronger than the scattering force, and
three-dimensional trapping can become possible. Comparing the scaling of the gra-
dient force [Eq. (2.3)] and the scattering force [Eq. (2.4)] with the particle radius, one
could expect that small particles below a certain threshold can always be trapped.
This is not the case because there is an additional force due to the Brownian molec-
ular motion of the particle. The thermal kinetic energy associated with the Brownian
motion is kB T, with the Boltzmann’s constant kB and the temperature T. This energy
has to be compared to the depth of the optical trapping potential well, generated by
the conservative gradient force 1:

U = −2πnmedr3

c

(
m2 − 1

m2 + 2

)
I + C, (2.5)

where C is an arbitrary integration constant. Furthermore, the drag force due to the
dynamic viscosity η, which is Fdrag = −6πηrv for a spherical particle with radius
r = d/2 and velocity v, will decrease with the radius and thus less efficiently damp
the Brownian motion.

1 The potential energy is derived by integrating Eq. (2.3), assuming that the gradient force is
conservative.
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Both the geometric optical approximation and the Rayleigh approximation allow
for an intuitive understanding of the physical principles of optical trapping, but their
quantitative validity is restricted for typically trapped particles, which are often in
the order of the optical wavelength (d ≈ λ). In this intermediate regime, a more
rigorous treatment based on fundamental electromagnetic theory is required for the
quantitatively correct description of optical tweezers.

2.3 Optical Trapping as a Scattering Problem

In practice, many particles typically manipulated with optical tweezers, like bio-
logical cells or colloidal particles, are in the intermediate regime where the particle
size is in the order of the wavelength of the trapping laser light. Furthermore, for
optical tweezers the incident light field often is tightly focused to a very small focal
spot, in contradiction to the paraxial approximation. Thus, the light fields need to be
described rigorously in terms of the full Maxwell equation or the vectorial Helmholtz
equation2 in order to get quantitatively precise results.

In the following we will have a brief look at a rigorous description of optical
tweezers that is based on the classical Lorenz-Mie theory and the closely related
T-matrix method. In principle, optical trapping of homogeneous, optically linear
and isotropic microspheres can be described analytically by Lorenz-Mie solutions
(Mie 1908) for the scattering of the incident light at the sphere (Nieminen et al.
2007). The original Lorenz-Mie description, however, is restricted to plane-wave
illumination, which obviously is not applicable to optical tweezers. The extension to
arbitrary illumination is commonly called generalised Lorenz-Mie theory (Gouesbet
2009). Therefore, the incident light field �Einc and the scattered light field �Escat are
represented in terms of vector spherical wavefunctions (VSWFs) (Nieminen et al.
2007):

�Einc =
∞∑

n=1

n∑
m=−n

anm �M (3)
nm + bnm �N (3)

nm (2.6)

�Escat =
∞∑

n=1

n∑
m=−n

pnm �M (1)
nm + qnm �N (1)

nm . (2.7)

Here, �M (i)
nm, �N (i)

nm are the VSWFs of the ith type, n, m are the radial and azimuthal
mode indices, and anm, bnm, pnm, qnm are the expansion coefficients. The choice
of VSWFs as the basis for the incident and scattered light field is convenient with
respect to the generalised Lorenz-Mie theory (Nieminen et al. 2003). The expan-
sion coefficients usually cannot be found analytically for beams typically used in

2 We recall that solutions of the Helmholtz equation are solutions of the Maxwell equations if we
additionally require that the fields are divergence free, i.e. ∇ · �E = 0 and ∇ · �H = 0 (Novotny and
Hecht 2006)
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optical tweezers, like the fundamental Gaussian beam or Laguerre-Gaussian beams,
but usually are derived numerically because these beams are not exact solutions of
the vectorial Helmholtz equation but only solve the paraxial Helmholtz equation
(Nieminen et al. 2003). One method is using a least-square fit to produce a repre-
sentation of the incident light field that matches the (paraxial) beam in the far field
(Nieminen et al. 2007; Nieminen et al. 2003). Once the incident light field is given in
the representation of Eq. (2.6), the task to solve is finding the pnm, qnm of the light
field that has been scattered by the particle. When incident and scattered light fields
are known, there are straightforward means of calculating the force and torque acting
on the particle by considering the (angular) momentum content of the incident and
scattered light (Nieminen et al. 2007).

For the case of a homogeneous, isotropic sphere there is no coupling between
different modes and, thus, the scattered and incident fields are connected by

pnm = ananm (2.8)

qnm = bnbnm, (2.9)

with the coefficients an, bn given by the Lorenz-Mie theory (Nieminen et al. 2007).
In the more general case of an arbitrarily shaped particle, coupling needs to be con-
sidered and the expansion coefficients of the scattered wave are given by (Nieminen
et al. 2007)

pn′m′ =
nmax∑
n=1

n∑
m=−n

An′m′nmanm + Bn′m′nmbnm (2.10)

qn′m′ =
nmax∑
n=1

n∑
m=−n

Cn′m′nmanm + Dn′m′nmbnm, (2.11)

where the infinite sums have been truncated at nmax. With the convention that the
coefficients pn′m′ , qn′m′ are elements of the column vector �p and anm, bnm are rep-
resented by �a, we can write

�p = T�a, (2.12)

with the transition matrix T, which often simply is called T-matrix. For the case of
spherical particles, this matrix is diagonal and completely determined by the Mie
coefficients. While the matrix is more complex for a general particle, however, it
still only depends on the properties of the particle and is independent of the light
field. This particular property is important for the numerical calculation for opti-
cal tweezers when the trapping forces or torques at (many) different positions in
the light field are of interest or when different light fields are considered. In these
cases, the T-matrix only needs to be calculated once for a given particle and can be
reused for further calculations, dramatically decreasing calculation times especially
for non-spherical particles.
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Figure 2.3 shows a few examples of numerical simulations for different numer-
ical apertures of the focusing lens. The numerical code used for these simulations
is founded on a publicly available Matlab computational toolbox (Nieminen et al.
2007) and was extended in order to calculate two-dimensional intensity profiles and
the full three-dimensional force field. In Fig. 2.3a it can be seen that a Gaussian beam
which is focused by a lens with a numerical aperture of NA = 0.75 does not create a
stable potential well for the particle. Increasing the numerical aperture to NA = 1.0
(Fig. 2.3b) yields an equilibrium position for the simulated particle of a diameter
of one wavelength and a relative refractive index of nrel = npart/nmed ≈ 1.19.

However, this potential minimum is rather shallow and only even stronger focus-
ing (e.g. NA = 1.34, Fig. 2.3c) can create a potential well deep enough to trap
the particle in the presence of Brownian motion. For all cases it can be seen that
the trapping potential is weakest in direction of beam propagation (+z) because the
scattering force always has a component pointing in this direction which only can
be compensated by the gradient force in −z direction.

2.4 The Paraxial Approximation

A rigorous treatment of optical tweezers within electromagnetic theory is obviously
the favourable approach to obtain a quantitative description of the local forces acting
on arbitrary particles. On the other hand, the approximate descriptions derived in
Sect. 2.2 proved to be very useful for understanding the physical origin of the opti-
cal potential well. In particular, Eq. (2.5) for the optical energy potential due to the
gradient force in the Rayleigh regime is valid—assuming the small-particle approxi-
mation holds true—for any three-dimensional light intensity distribution I (�r). In the
following, we will see that an adequate estimate of the quality of the optical potential
landscape can be obtained even when paraxial beams are assumed—an assumption
which obviously needs to be carefully discussed in the regime of tightly focused
laser beams.

A useful measure for evaluating the validity of the paraxial approximation is the
ratio of wavelength λ and beam waist ω0 (Davis 1979)

s = λ

2πω0
, (2.13)

which should be small for paraxial beams. Tight focusing narrows the beam waist
and thus increases the errors introduced by the paraxial approximation. In order to get
an impression of the quantity of the errors, we assume a fundamental Gaussian beam
which is focused through a microscope objective lens with a numerical aperture
of NA = 1.1. With the definition of the numerical aperture NA = nmed sin(�)

and the beam waist of ω0 = λ/(π�) (Eichler et al. 2004) and a typical value of
the refractive index of the immersion oil nmed = 1.52, the parameter s can be
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Fig. 2.3 Optical potential landscape for a spherical particle due to a focused fundamental Gaussian
beam propagating in +z direction. Three different numerical apertures for the focusing lens are
considered (a)–(c). In the left column, transverse and longitudinal intensity distributions of the
focused light fields are shown. The displayed area is about 3×3 wavelengths. In the middle column,
the numerically calculated local forces acting on the particle are shown (arrow matrix). The absolute
values are additionally encoded in the colour values behind the arrow matrix, emphasising areas
of low (blue) and high (red) forces. In the right column, the same force field is displayed upon
the intensity distribution, showing the shift between focus position and equilibrium position of the
particle. All axes are labelled in units of wavelength. The particle is assumed to have a diameter of
one wavelength and a refractive index of nparticle = 1.59; the surrounding fluid is assumed to have
a refractive index of nmed = 1.34 (water)
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calculated as3 s ≈ 0.4. For this regime, following Barton and Alexander (Barton
and Alexander 1989), an average deviation of the electric field of approximately 20%
from the rigorous treatment can be expected. Although this is a large error, and the
maximal error can be even more significant in particular locations in the vicnity of
the focus, it can be expected that the qualitative structure of the field is adequately
described. In order to increase the accuracy, higher order terms can be included. For
the same value s ≈ 0.4, a fifth order approximation yields an average error of only
approximately 3%.

2.5 Measuring Forces

One of the unique features of optical tweezers is their ability not only to trans-
fer extremely small forces to micro- and nanoscopic particles but also to measure
forces in the piconewton range with high precision. Although, in principle, the opti-
cal potential is known from the intensity distribution in the sample [cf. Eq. (2.5)]
(Viana et al. 2007), the usual way is to probe the potential with a particle of the
same kind as is to be used for the force measurement. This automatically elimi-
nates a couple of experimental uncertainties, such as transmission properties of the
microscope objective, the exact transverse beam profile, or effects due to the small-
particle approximation, and includes them in the calibration. For the calibration, a
particle is trapped in the optical potential well and its motion due to the Brownian
molecular motion is monitored. As illustrated in Fig. 2.4a, the particle automatically
scans or “explores” the shape of the potential well, having a higher probability of
presence at the minimum of the potential well. Figure 2.4b shows the number N(x)
that a particle was observed at a particular position x, which gives the probability
function p(x). Often, an optical potential induced by optical tweezers can be approx-
imated as harmonic (cf. Fig. 2.4c). In that case the calibration procedure yields a
scalar calibration factor k, the stiffness of the optical trap. In this approximation, the
force a particle feels is directly proportional to its displacement �x from the equi-
librium position (x = 0), i.e. | �F | = k�x . Force measurement in this configuration
means measuring the new equilibrium position and thus �x as illustrated in Fig.
2.4d. As the displaced particle still underlies Brownian motion, the measured force
always is a superposition of external forces and forces due to Brownian motion. The
uncertainty due to Brownian motions decreases with measurement time as the mean
value of the stochastic process is exactly the (displaced) equilibrium position.

3 Note that the s parameter is independent of the wavelength.
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Fig. 2.4 Basic principles of force measurement. A trapped particle has a higher probability of pres-
ence at the potential minimum (a), resulting in an according histogram of positions (b). For typical
configurations and applications, the potential well can be approximated as harmonic (c), resulting
in a linear relation between external forces acting on the particle and the particle’s displacement (d)

2.5.1 Particle Position Detection

All methods for the calibration of optical trapping potentials rely on the position
tracking of a probe particle. Two methods have established for particle tracking in
optical tweezers. The (lateral) particle position can be detected by observing the
laser light transmitted through the particle or reflected from it. The interference
pattern, e.g. of the transmitted light and the light not influenced by the particle, is
detected, usually in the back focal plane of the condenser, by means of a position
sensitive semiconductive sensor (Tolić-Nørrelykke et al. 2006). The sensor can be a
lateral effect detector or, more frequently used, a quadrant photo diode. Tracking the
intensity maximum in the back focal plane enables highly sensitive position detection
of the particle. The total intensity, summed over all four quadrants of the photo diode,
also gives a convenient measure of the axial position of the particle (Ghislain et al.
1994). Instead of the trapping laser, an additional laser can be used to detect the
particle position.

As an alternative to photo diode based position detection, video microscopy with
subsequent image analysis has gained importance with the advent of high resolution,
high-speed digital video cameras in recent years (Gibson et al. 2008). While position
detection with video microscopy is very flexible—e.g. it can easily be extended to
multiple traps—the precision in position detection usually is lower compared to laser
tracking schemes, owing to the relatively large pixel size of a typical video camera
sensor. Also, the temporal resolution of video based position detection is still at
least an order of magnitude lower than direct tracking of the laser beam, even with
high-end video cameras.

2.5.2 Calibration Schemes

Having the position data of a trapped particle, there are several ways to characterise
and calibrate the optical potential well and deduce the trap stiffness k (Neuman and
Block 2004). For a harmonic potential, the overdamped oscillation of a particle in the
optical trap can be described analytically and the power spectrum of the dynamics
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can be written as a Lorentzian distribution (Svoboda and Block 1994):

S( f ) = kB T

2π3β
(

f 2
0 + f 2

) . (2.14)

Here, β is the viscous drag coefficient of the particle and f0 = k/(2πβ) the corner
frequency which can be deduced from a best fit to the power spectrum with Eq. (2.14).
For a free sphere with radius r far away from any surface, the viscous drag coefficient
is known to be β = 6πηr while it has to be corrected in the vicinity of a surface by a
distance-dependent factor given by Faxen’s law (Svoboda and Block 1994). With a
known viscous drag and the corner frequency determined from the power spectrum,
the trap stiffness can be calculated. Precise calibration requires to consider further
influences on the power spectrum, including frequency dependence of the drag force,
effects due to the finite sampling frequency or frequency dependence of the position
detection sensor (Berg-Sørensen and Flyvbjerg 2004).

The trap stiffness can also be determined by monitoring the variance of the thermal
fluctuation of a trapped particle. The equipartition theorem gives the thermal kinetic
energy of a particle which can be related to the optical potential energy of a trap with
stiffness k (Neuman and Block 2004):

1

2
kB T = 1

2
k < x2 >, (2.15)

where < x2 > is the variance of the displacement from the equilibrium position.
While the simplicity of this method, in particular the independence from the viscosity
of the medium, is a clear advantage, it is hard to detect errors because the variance
is an “intrinsically biased estimator” (Neuman and Block 2004). Since variance is
derived from the square of a quantity, any noise or drift will always increase the
variance and leads to an apparent decrease of the determined stiffness.

From the optical potential well, however, the probability function for the displace-
ment of a trapped particle can be deduced (Florin et al. 1998):

p(x) = exp

(−U (x)

kB T

)
= exp

(−kx2

2kB T

)
, (2.16)

where the first equals sign is valid for any potential U (x) while the second sign holds
true only for a harmonic potential.

Alternatively, the optical potential can also be probed by applying known forces
and monitoring the displacement for different forces (Felgner et al. 1995). The applied
force usually is viscous drag force on the particle. Consequently, all considerations
on the drag force discussed above are valid. In principle it is possible to apply a
discrete number of different forces or rather choose a continuous function like a
sinusoidally varying force. As with the probability function, the drag force method
is suitable to characterise even non-harmonic potentials. Furthermore, this method
gives a straightforward way to determine the maximal force or the depth of the
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potential well by increasing the applied force until the particle escapes from the
optical trap (Neuman and Block 2004; Malagnino et al. 2002).

In typical biological samples often particular local parameters are not directly
accessible. For example, it might be difficult to determine the viscosity of the medium
surrounding a trapped organelle or reference bead inside a biological cell. Further-
more, the local temperature usually is unknown as the laser focus of the optical
trap induces thermal energy and heats up the sample depending on the absorption
properties. A combination of the calibration schemes discussed above, however, can
yield enough independent parameters to enable real-time in situ calibration even in
complex biological systems (Wan et al. 2009).

2.6 Dynamic Optical Tweezers

Although single optical tweezers at a fixed position already enable many applications,
it is often desirable to have a trap that can be displaced in the sample chamber.
In Fig. 2.5a the basic configuration of optical tweezers is depicted. A collimated
laser beam is focused through a lens with short focal length, which usually is a
microscope objective, into a sample chamber that contains a fluid with dispersed
particles. In order to move the focal spot and thus the optical trap to a different
position in the plane orthogonal to the beam axis, the incident laser beam needs to
have an angle with respect to the beam axis as shown in Fig. 2.5b. A diverging or
converging beam, on the other hand, would shift the focal plane along the beam axis
(Fig. 2.5c).

It is important that the beam hits the back aperture of the microscope objective
always with the same diameter and at the same, centred position in order to keep
the optical trap operating and its properties unchanged (Ashkin 1992; Fällman and
Axner 1997). One possibility is to use an afocal telescope of two lenses in order to
create an optically conjugated plane of the back aperture of the microscope objective
(cf. Fig. 2.5d). Any angle introduced at this plane, e.g. by a gimbal mounted mirror
(Fällman and Axner 1997), will result in a corresponding angle at the back aperture
of the microscope objective without a shift in position. Similarly, any divergence
introduced with a constant beam diameter at this plane, will be reproduced with a
constant beam diameter at the back aperture of the microscope objective.

Position control can be automated if computer-controlled scanning mirrors are
used (Sasaki et al. 1991; Misawa et al. 1992; Visscher et al. 1993). A similar approach
uses acousto-optic deflectors (AODs) at the conjugate plane (Simmons et al. 1996).
AODs can introduce an angle by utilising a dynamic Bragg grating inside a piezo-
electric material and this function principle allows for an extremely high rate of
different deflection angles to be set. One powerful application is time-shared optical
tweezers, where the laser beam is directed to one position, held there for a short time
and then directed to the next position. If this is done iteratively and the stopover at
each position is long enough to pull back a particle to the centre position, and also
the absence of the laser beam is short enough to prevent the particles escaping due
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MO

L f1 L f2

f1 f1+f 2 f2
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(a)

(d)

(b) (c)

Fig. 2.5 Basic principle of position control in optical tweezers. a–c The position of the laser focus
and hence the optical trap is translated three-dimensionally by variation of the incidence angle and
divergence of the laser beam. d Technical realisation with a Keplarian telescope (L f 1, L f 2) and
beam manipulation in a conjugate plane (CP) of the back aperture of a microscope objective (MO).
From (Woerdemann et al. 2012)

to Brownian motion, many particles can be trapped quasi simultaneously (Sasaki
et al. 1991; Visscher et al. 1993; Mio et al. 2000; Mirsaidov et al. 2008).

One ingenious way to realise control of beam angle and beam divergence in
one particular plane without mechanical manipulation is diffraction at computer-
generated holograms, also known as diffractive optical elements (DOEs) in this
context. The hologram can be imprinted statically in optical materials (Dufresne
and Grier 1998; Dufresne et al. 2001), e.g. by lithographic methods, or alterna-
tively displayed by a computer-controlled spatial light modulator (SLM) (Reicherter
et al. 1999; Liesener et al. 2000). The latter implementation enables versatile spatio-
temporal structuring of the light field, leading to dynamic holographic optical
tweezers (HOT) (Curtis et al. 2002). The classical use of HOT is the generation
of multiple optical traps simultaneously. A thorough discussion of the fundamental
concepts of HOT will be provided in Chap. 7.

2.7 Some Applications of Single Optical Tweezers

Optical tweezers have found a huge number of applications since their first demon-
stration by Arthur Ashkin and colleagues 25 years ago (Ashkin et al. 1986). In par-
ticular biological questions on a single cell or single-molecule (Svoboda and Block
1994; Stevenson et al. 2010) level can be well addressed with optical tweezers for
two reasons. First, there is no other tool available that enables handling of single
cells, organelles, and macromolecules with such a flexibility and precision at the
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same time without any physical contact that could possibly contaminate a sample.
Second, optical tweezers can be used to exert defined forces and, more importantly,
measure extremely small forces with an unrivalled precision (Neuman and Block
2004; Berg-Sørensen and Flyvbjerg 2004; Florin et al. 1998; Ghislain and Webb
1993; Jahnel et al. 2011).

Further applications of optical tweezers and closely related methods can be found
in such diverse fields as colloidal sciences (Grier 1997), microfluidics (Leach 2006;
MacDonald et al. 2003), microscopic alignment (Friese et al. 1998; O’Neil and
Padgett 2002), particle separation (Imasaka et al. 1995) and sorting (MacDonald
et al. 2003; Perch-Nielsen et al. 2009; Jonas and Zemanek 2008), or molecular
motor dynamics (Asbury et al. 2003; Maier 2005). Optical tweezers experiments
can answer fundamental physical questions, including the direct transfer of optical
angular momentum (O’Neil et al. 2002; He et al. 1995), hydrodynamic interactions
(Meiners and Quake 1999; Crocker 1997), and—of course—light-matter interaction
(Dholakia and Zemanek 2010).

It has been demonstrated that dynamically steered and modulated optical tweezers
can generate an optical thermal ratchet that biases the Brownian motion of diffusing
particles (Faucheux et al. 1995). Quite recently, highly interesting insights into the
physical origins of Brownian motion at very short time scales were obtained, where
random diffusion is originated by ballistic motion processes (Huang et al. 2011).

This list is by no means exhaustive or complete but represents a small selection
of interesting applications; an excellent overview can be found, for example, in
Reference (Padgett et al. 2010).

2.8 Optical Angular Momentum and Torque

Of particular interest from the fundamental physical point of view is the ability of
light fields not only to transfer linear momentum to matter but also spin angular
momentum (SAM) and orbital angular momentum (OAM). SAM is strongly related
to the polarisation state of light, resulting in a value of | �S| = ±� per photon for
circularly polarised light, where the sign is given by the chirality. An experimental
proof of this relation was shown in the famous experiment by Beth (Beth 1936).

OAM is related to a tilt of the wavefront. In case of a screw wavefront dislocation
with exp(i�ϕ) azimuthal phase dependence, also called an optical vortex, the pitch
of the screw defines the topological charge �. The orbital angular momentum then
is given as �� per photon (Allen et al. 1992; Leach et al. 2002). A direct experi-
mental validation of this relation was done with optical tweezers only quite recently
(He et al. 1995) compared to the experimental proof of spin angular momentum.

SAM and OAM decouple in the paraxial approximation (Berry 1998; Barnett
2002) but may be transferred into each other in strongly focused beams (Nieminen
et al. 2008). While spin angular momentum always is intrinsic in the sense that its
value does not depend on the choice of calculation axis, OAM may be either intrinsic
or extrinsic (O’Neil et al. 2002).
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Low-order Laguerre-Gaussian (LG) beams are the experimentally most easily
realised light fields with orbital angular momentum. Mathematically, LG beams are
a complete set of free-space solutions (Okulov 2008; Saleh and Teich 2008) of the
paraxial wave equation in the cylindrical system of coordinates (Saleh and Teich
2008; Dholakia and Lee 2008):

LG�
p(�r) ∝

(
r

ω(z)

)�

L�
p

(
2r2

ω2(z)

)
exp

[(
−r2

ω2(z)

)
+ i

(
−kr2

2R(z)
+ (2p + � + 1)�G (z) − �ϕ

)]
.

(2.17)
Here, z, r,ϕ are coordinates in the cylindrical system of coordinates, L�

p are the
generalised Laguerre polynomials, p, � are mode parameters and � also determines
the topological charge, ω(z) indicates the diameter of the beam, R(z) the phase front
curvature, and �G(z) the Gouy phase shift.4

LG beams are self-similar in a sense that they maintain their transverse intensity
profile during propagation except for a radial scaling factor. Of particular importance
for optical trapping applications are modes with p = 0, which have the shape of a
single ring or “doughnut”. Particles are confined to this ring by transverse gradient
forces and feel torque due to a transfer of OAM. In consequence, particles can move
continuously on the ring of high intensity.

2.8.1 Generation of Light Fields Carrying Orbital Angular
Momentum

LG beams can be generated in various ways, usually by converting other laser modes
like the fundamental Gaussian TEM00 mode or higher modes. The astigmatic mode
converter that consists of two cylindrical lenses with suitable distance utilises the
property that any LG and Hermite-Gaussian (HG) mode can be composed of a finite
number of HG modes (Allen et al. 1992; Beijersbergen et al. 1993).5 With appropriate
choice of the transverse input angle, an incident (higher order) HG mode can be
decomposed in different HG modes that gain a different (Gouy) phase shift while
being transmitted through the cylindrical lenses. The input HG mode and the relative
phase shift between the decomposed modes can be chosen in a way that the output is
a desired LG mode. The conversion efficiency of this mode converter is rather high
and the mode purity can be high but it is very sensitive to the alignment and also the
requirement for specific higher order HG modes is a limitation (Beijersbergen et al.
1993).

Mode conversion from a fundamental Gaussian (TEM00) beam, which is readily
available in high quality from the majority of commercial lasers, into an LG beam

4 To keep the presentation concise, some quantities are only loosely defined here. Cf. Chap. 6,
Sect. 6.1 for a more rigorous definition.
5 More strictly speaking, LG as well as HG modes are a complete, orthogonal basis of solutions
of the paraxial wave equation. Thus, any HG or LG mode can be expanded in a finite series of either
modes (Beijersbergen et al. 1993).
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can be achieved by imprinting the vortex phase term exp(i�ϕ) explicitly onto the
Gaussian beam by means of a spiral phase plate (Beijersbergen et al. 1994). Depend-
ing on the overlap of input mode and desired output mode, this approach couples
a majority of the input power into a desired LG�

p=0 output mode. However, still a
significant part usually couples into higher p-modes, resulting in higher order rings
besides the desired doughnut shape (Ando et al. 2009). The output mode purity can
be significantly increased if the input beam is pre-shaped to resemble the shape of
the doughnut beam before passing the spiral phase plate (Machavariani et al. 2002).

A mode converter that has not yet found wide application but is interesting from
the fundamental point of view can be realised with second-harmonic generation
(SHG). An LG beam that undergoes SHG results in another LG beam that does not
only possess twice the frequency, but also doubles the index � of the mode (Dholakia
et al. 1996). By this means, higher order � modes can be derived from lower order
LG modes.

A very versatile approach to generate arbitrary LG modes is the use of computer-
generated holograms (CGHs). In the simplest case these CGHs can be seen as a
diffractive, usually off-axis, equivalent of a spiral phase plate that enables the gen-
eration of any arbitrary LG�

p=0 mode (Heckenberg et al. 1992) or LG�=0
p mode

(Arlt et al. 1998). CGHs can be tailored for optimal efficiency or optimal purity of
the produced output LG modes (Arlt et al. 1998) with remarkable results. In particular
with computer-addressable SLMs, holographic mode conversion can be performed
in a very flexible way. By this means, even much complexer beams that also carry
OAM can be created, like higher order Bessel beams (Volke-Sepulveda et al. 2002)
or helical Mathieu beams (Chavez-Cerda et al. 2002). The holographic generation
of complex beams, although not with an emphasis on orbital angular momentum,
will be comprehensively discussed in Chap. 5 on non-diffracting Mathieu beams and
Chap. 6 on self-similar Ince-Gaussian beams. Complex superpositions of different
light beams carrying OAM enable tailoring local OAM density and intensity, leading
to possibly highly exciting optical landscapes (Zambrini and Barnett 2007).

2.8.2 Measurement and Applications of Optical Angular
Momentum

The standard method for detecting the OAM content of a light field is to create an
interferogram between the field under investigation and a reference field, usually a
plane wave or TEM00 mode or a higher LG or HG mode (Padgett et al. 1995). The
detection of the full OAM content of a arbitrary light field, however, is a non-trivial
task and methods have been proposed and used to solve it under certain constraints
(Parkin et al. 2006). The total SAM of a light field on the other hand is relatively easy
to access by measuring the polarisation state of the light field (Parkin et al. 2006).
By dynamic application of (known) SAM states, the total optical angular momentum
and thus the OAM can be derived (Parkin et al. 2006; Simpson et al. 1997).
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Optical angular momentum can be transferred to matter by various physical prin-
ciples (Padgett and Bowman 2011). Absorption is a universal means to transfer SAM
as well as OAM, i.e. absorbed photons transfer their SAM and OAM to the particle
that absorbs the light. If the light is not (completely) absorbed, the difference between
incident and scattered light gives the amount of transferred optical angular momen-
tum. The SAM content of a light wave can be altered by birefringent properties of a
particle. If a particle, for example, transforms (a portion of) linearly polarised inci-
dent light into circularly polarised light, the SAM of the light wave increases by �

per photon and the particle feels the opposite amount of angular momentum in order
to conserve the total amount of angular momentum. OAM an the other hand can
be transferred if a particle changes the wave front tilt of the incident light wave. A
microscopic version of a spiral phase plate, for example, transfers light without OAM
into light carrying OAM (Asavei et al. 2009). The negative difference is transferred
to the particle.

Probably the most exciting field of applications of optical angular momentum in
the field of micromanipulation is the continuous driving of micro machines (Padgett
and Bowman 2011; Asavei et al. 2009; Ladavac and Grier 2004). Light waves carrying
optical angular momentum are also utilised in quantum optics where, e.g. the transfer
of information encoded in OAM states of light (Gibson et al. 2004) is of current
interest. A review of recent developments in this area can be found elsewhere (Franke-
Arnold et al. 2008).

2.9 Conclusion and Perspectives

The basic concept of optical trapping has developed into many branches that partly
share only the basic physical process of (angular) momentum transfer from light
to matter with the original optical tweezers. In particular the sophisticated shap-
ing of light fields has attracted many researchers in recent years and a multitude of
exciting applications have arisen. The most prominent application scenario probably
is the flexible creation of multiple individual spots. In Chap. 7 we will discuss holo-
graphic optical tweezers which are versatile tools enabling the dynamic generation
of hundreds of individual traps simultaneously. With “generalised phase contrast”,
a competing technique for the generation of multiple traps has emerged
(Glückstad and Palima 2009). In Chap. 3, a more advanced phase contrast method,
holographic phase contrast, is introduced. A couple of higher order light modes
have also been proposed and partly demonstrated for exciting applications in optical
micromanipulation. In Chap. 5, for example, we will see that non-diffracting beams
have many desirable features making them a promising choice for the creation of
three-dimensionally structured matter. Higher order Gaussian beams and in partic-
ular the class of Ince-Gaussian beams discussed in Chap. 6 can significantly aid in
applications like the organisation of microparticles, where a high degree of order
is aimed at. A holographically generated array of LG�

p=0 beams was shown to be
capable of creating and driving microscopic pumps that can generate a micro flow in
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situ (Ladavac and Grier 2004). Quite recently, it has been demonstrated that absorb-
ing particles can be trapped in air, utilising tube-shaped (Desyatnikov et al. 2009;
Shvedov et al. 2009; Shvedov et al. 2010) and bottle-shaped hollow light fields
(Shvedov et al. 2010; Zhang and Chen 2011) and employing photophoretic forces
(Kerker and Cooke 1982) rather than optical forces. Again, as with the examples of
applications of single optical tweezers, the list of exciting innovations is endless and
the mentioned works are only an arbitrary selection. Many more examples, however,
will be provided within the following chapters.
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