
Chapter 2
Introduction to Extremum Seeking

In this chapter, we review the motivation behind extremum seeking methodology
and the advances in the field of extremum seeking of the last 15 years. Then we
present a basic introduction to stochastic extremum seeking, including how it relates
to standard deterministic extremum seeking with periodic perturbations and what
ideas are behind the study of stability of the resulting stochastic nonlinear system.

2.1 Motivation and Recent Revival

Extremum seeking is a non-model based real-time optimization approach for dy-
namic problems where only limited knowledge of a system is available, such as
when the system has a nonlinear equilibrium map which has a local minimum or
maximum. Popular in applications around the middle of the twentieth century, ex-
tremum seeking was nearly dormant for several decades until the emergence of a
proof of its stability [71], with a subsequent resurgence of interest in extremum
seeking for further theoretical developments and applications.

The increasing complexity of engineering systems, including feedback systems,
has led to many optimization challenges since analytic solutions to optimization
problems for multi-agent, nonlinear, and infinite-dimensional systems are difficult,
if not impossible, to obtain. This difficulty arises for many reasons, including the
presence of competing or adversarial goals, the high-dimensionality of the system,
and the inherent system uncertainty. Moreover, if a model-based solution is obtained
for these complicated optimization problems, it is likely to be conservative due to
modeling deficiencies. Hence, non-model based extremum seeking methods are an
attractive option to solve these problems.

Many works have focused on optimization/learning methods for unknown sys-
tems in a wide variety of fields. In games, most algorithms designed to achieve con-
vergence to Nash equilibria require modeling information for the game and assume
the players can observe the actions of the other players. The fictitious play strat-
egy is one such strategy (employed in finite games) where a player devises a best
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response based on the history of the other players actions. A dynamic version of
fictitious play and gradient response is developed in [126] and shown to converge to
a mixed-strategy Nash equilibrium in cases where previously developed algorithms
did not converge. In [38], regret testing with random strategy switches is proved to
converge to the Nash equilibrium in finite two-player games where each player mea-
sures only its own payoffs. In [150], a synchronous distributed learning algorithm,
where players remember their own actions and utility values from the previous two
times steps, is shown to converge in probability to a set of restricted Nash equilibria.
In [8, 48, 128], games with a continuum of traders are analyzed. Additional results
on learning in games can be found in [26, 37, 42, 54, 83, 127].

The extremum seeking (ES) method has seen significant theoretical advances
during the past decade, including the proof of local convergence [6, 27, 119, 140],
PID tuning [61], slope seeking [7], performance improvement and limitations in
ES control [70], extension to semi-global convergence [137], development of scalar
Newton-like algorithms [101, 102, 108], inclusion of measurement noise [135], ex-
tremum seeking with partial modeling information [1, 2, 33, 36, 50], and learning
in noncooperative games [40, 136].

ES has also been used in many diverse applications with unknown/uncertain
systems, such as steering vehicles toward a source in GPS-denied environments
[28, 30, 146], active flow control [15, 16, 24, 53, 63, 64], aeropropulsion [104, 144],
colling systems [82, 84] wind energy [32], photovoltaics [81], human exercise ma-
chines [148], optimizing the control of nonisothermal valve actuator [113], control-
ling Tokamak plasmas [25], and enhancing mixing in magnetohydrodynamic chan-
nel flows [96], timing control of HCCI engine combustion [62], formation flight
optimization [20], control of aircraft endurance based on atmospheric turbulence
[69], beam matching adaptive control [123], optimizing bioreactors [141], control
of combustion instability [9], control of nonisothermal continuous stirred reactors
[49], control of swirl-stabilized spray combustion [105], optimal control of current
profile in the DIII-D tokamak [110], laser pulse shaping [115], control of beam en-
velope in particle accelerators [122], control of an axial-flow compressor [142], and
stabilization of neoclassical tearing modes in tokamak fusion plasmas [143].

2.2 Why Stochastic Extremum Seeking?

In existing perturbation-based extremum seeking algorithms, periodic (sinusoidal)
excitation signals are primarily used to probe the nonlinearity and estimate its gra-
dient. Biological systems (such as bacterial chemotaxis) do not use periodic probing
in climbing food or light gradients. In man-made source seeking systems, the nearly
random motion of the stochastic seeker has its advantage in applications where the
seeker itself may be pursued by another pursuer. A seeker, which successfully per-
forms the source finding task but with an unpredictable, nearly random trajectory, is
a more challenging target, and is hence less vulnerable, than a deterministic seeker.
Furthermore, if the system has high dimensionality, the orthogonality requirements
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Fig. 2.1 A quartic static map
with local minimum
f (−1) = 1 and global
minimum f (1) = −3

on the elements of the periodic perturbation vector pose an implementation chal-
lenge. Thus there is merit in investigating the use of stochastic perturbations within
the ES architecture. The first results in that direction were achieved in the discrete-
time case [98], using the existing theory of stochastic averaging in the discrete-time
case. Source seeking results employing deterministic perturbations in the presence
of stochastic noise have been reported in [133, 134], also in discrete time.

Stochastic extremum seeking and its stability analysis have some ideas and tech-
niques in common with classical methods of annealing, stochastic approximation,
and stochastic adaptive control [14, 43, 44, 75, 93–95].

2.3 A Brief Introduction to Stochastic Extremum Seeking

In this section, we present the basic idea of stochastic extremum seeking, make
a comparison with deterministic (periodically perturbed) extremum seeking, and
discuss a heuristic idea of stochastic averaging as a way of studying stability of a
stochastic extremum seeking algorithm.

While extremum seeking is applicable to plants with dynamics (plants modeled
by ordinary differential equations), in this section we introduce extremum seeking
on the simplest possible problem—the optimization of a static map f (θ). Without
loss of generality, we assume that f has a minimum at θ = θ∗ and we seek that
minimum.

For the purpose of illustration, we use the following quartic map

f (θ) = θ4 + θ3 − 2θ2 − 3θ, (2.1)

which is depicted in Fig. 2.1 and has a local minimum f (−1) = 1 and a global
minimum f (1) = −3. The second derivatives at the two minima are f ′′(−1) = 2 <

14 = f ′′(1), which is consistent with the global minimum at θ = 1 being much
“deeper” and “sharper” than the local minimum at θ = −1.
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Fig. 2.2 Block diagram for
deterministic extremum
seeking scheme for a static
map

2.3.1 A Basic Deterministic ES Scheme

Let us consider first the deterministic ES scheme shown in Fig. 2.2. The scheme em-
ploys a sinusoidal perturbation sin(ωt), which additively enters the map f (θ). The
measured output y = f (θ) is then passed through a washout filter and multiplied
by the same perturbation signal, sin(ωt), generating an estimate of the derivative
(scalar gradient) f ′(θ) at the input of the integrator. The integrator then updates
the estimate θ̂ (t) in the direction of driving the gradient to zero. For k > 0 the ES
scheme drives θ̂ (t) toward the nearest local minimum of f (θ), whereas for k < 0 the
scheme converges toward the nearest maximum. The washout filter s

s+h
is not re-

quired but it helps performance somewhat. The logic behind the use of the washout
filter is to kill the DC component of the map, f (θ∗), although the multiplication of
the output y with the zero-mean perturbation sin(ωt) also performs that role. The
washout filter is just more effective in eliminating the DC component of y, without
requiring that the perturbation frequency ω be relatively high.

The scheme in Fig. 2.2 has four design parameters, a, k, ω, and h. The amplitude
a provides a trade-off between asymptotic performance and the region of attraction
of the algorithm. The smaller the a, the smaller the residual error at the minimum
achieved, but also the larger the possibility of getting stuck at a local minimum.
Conversely, the larger the a, the larger both the residual error and the possibility of
reaching the global minimum. The gain parameter k controls the speed of conver-
gence, jointly with a which also influences the speed of convergence. The pertur-
bation frequency ω controls the separation between the time scale of the estimation
process, conducted by the integrator, and of the gradient estimation process, per-
formed by the additive and multiplicative perturbation. The higher the frequency ω,
the cleaner the estimate of the gradient and the smaller the effect of the perturba-
tions introduced by the higher-order harmonics and of the DC component of y. The
washout filter frequency h should be smaller than ω, so that the filter eliminates the
DC component in y without corrupting the estimation of the gradient f ′(θ).

Figure 2.3 shows the time response of a discrete-time version of the deterministic
ES algorithm in Fig. 2.2. Even though the algorithm starts from the local minimum
θ = −1, it does not remain stuck at the local minimum and converges to the global
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Fig. 2.3 Time response of a
discrete-time version of the
deterministic extremum
seeking algorithm in Fig. 2.2,
starting from the local
minimum, θ̂ (0) = −1. The
parameters are chosen as
ω = 5, a = 0.4, k = 1

minimum θ = 1. However, if the amplitude a and the gain k were chosen smaller,
the algorithm would be unable to overcome the “hump” between θ = −1 and θ = 1
and it would remain stuck at the local minimum.

2.3.2 A Basic Stochastic ES Scheme

Limitations of the deterministic ES scheme include the fact that the perturbation
is uniformly bounded (by a), which may highly restrict the algorithm’s region of
attraction, and the fact that learning using a single-frequency sinusoidal perturba-
tion is rather simple-minded and rare in probing-based learning and optimization
approaches encountered in biological systems.

To overcome such limitations of deterministic probing signals, we consider using
stochastic probing signals. Sinusoidal signals have two properties that are crucial for
extremum seeking: (i) their mean is zero and (ii) when squared, the mean is positive.
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Fig. 2.4 Block diagram for
stochastic extremum seeking
scheme with unbounded
perturbations for a static map

Such properties are similar to the properties of Gaussian white noise signals, namely,
zero expectation and positive variance.

Hence, we consider replacing the signals sin(ωt) in Fig. 2.2 by white noise Ẇ (t),
where W(t) is a standard Brownian motion process (also referred to as the Wiener
process). However, such a perturbation is overly aggressive and makes the mathe-
matical analysis intractable because it enters the differential equation in a nonlinear
manner (it gives rise to quadratic and other functions of Ẇ ).

To soften the impact of the white noise perturbations, while introducing random-
ness and making the resulting dynamics mathematically tractable, we replace the
signals sin(ωt) in Fig. 2.2 by the signal η(t) obtained by passing white noise Ẇ (t)

through a low-pass filter
√

εq

εs+1 for some positive constants ε and q , or, given in terms
of an Ito differential equation, we employ the perturbation η(t) governed by

ε dη = −η dt + √
εq dW. (2.2)

The resulting stochastic ES scheme is shown in Fig. 2.4.
Figure 2.5 shows the time response of a discrete-time version of the stochastic

ES algorithm in Fig. 2.4. Starting from the local minimum θ = −1, the algorithm
converges to the global minimum θ = 1.

2.3.3 A Heuristic Analysis of a Simple Stochastic ES Algorithm

To provide the reader with some intuition and motivation, in this section we provide
a preliminary and completely informal analysis of the extremum seeking algorithm
in Fig. 2.4. We present a series of calculations which, though not reflective of the
rigorous methods pursued in the book, do illustrate heuristically the basic ideas
behind establishing stability and quantifying the convergence rates of ES schemes.

To simplify our analysis, we eliminate the washout filter from the ES scheme,
namely, we replace s

s+h
in Fig. 2.4 by a unity gain block. This approximation is
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Fig. 2.5 Time response of a
discrete-time version of the
stochastic extremum seeking
algorithm in Fig. 2.4, starting
from the local minimum,
θ̂ (0) = −1. The parameters
are chosen as q = 1,
ε = 0.25, a = 0.8, k = 10

certainly justified for h that is small relative to other parameters, particularly relative
to k. The elimination of the washout filter results in a first-order system, whose sole
state is the state θ̂ of the integrator in Fig. 2.4, and which is driven by another first-
order linear stochastic system with state η. Despite the low order, the analysis of the
closed-loop system is not trivial because the system is nonlinear, time-varying, and
stochastic.

We start by introducing notation to describe the system in Fig. 2.4. We note that

θ(t) = θ̂ (t) + aη(t) (2.3)

and denote the estimation error as

θ̃ (t) = θ∗ − θ̂ (t). (2.4)

Combining (2.3) and (2.4), we get

θ(t) = aη(t) − θ̃ (t). (2.5)

Then, from the integrator block we observe that the estimation error is governed
by
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˙̃
θ(t) = −˙̂

θ(t)

= kη(t)y(t)

= kη(t)f
(
θ(t)

)
. (2.6)

Using (2.5) and applying the Taylor expansion to f (θ) around θ∗ up to second
order, we get

f (θ) = f (aη − θ̃ )

≈ f
(
θ∗) + f ′(θ∗)(aη − θ̃ ) + 1

2
f ′′(θ∗)(aη − θ̃ )2. (2.7)

Given the assumption that the map f (θ) has a minimum at θ∗, it follows that
f ′(θ∗) = 0, which yields

f (θ) ≈ f
(
θ∗) + 1

2
f ′′(θ∗)(aη − θ̃ )2

= f
(
θ∗) + 1

2
f ′′(θ∗)[a2η2 − 2aηθ̃ + θ̃2]. (2.8)

Substituting (2.8) into (2.6), we get

˙̃
θ ≈ kη

{
f

(
θ∗) + 1

2
f ′′(θ∗)[a2η2 − 2aηθ̃ + θ̃2]

}

= kη

[
f

(
θ∗) + a2

2
f ′′(θ∗)η2 − af ′′(θ∗)ηθ̃ + 1

2
f ′′(θ∗)θ̃2

]
. (2.9)

Grouping the terms in powers of η, we obtain

˙̃
θ(t) ≈ k

{
η(t)

[
f

(
θ∗) + 1

2
f ′′(θ∗)θ̃2(t)

]

− η2(t)af ′′(θ∗)θ̃ (t)

+ η3(t)
a2

2
f ′′(θ∗)

}
. (2.10)

The signal η(t) is a stochastic perturbation governed by the stochastic linear
differential equation (2.2), where W(t) is the Wiener process. With small ε, the
signal η is a close approximation of white noise. Using elementary Ito calculus, it
is easy to calculate the expectations of the three powers of η appearing in (2.10).
These expectations have the properties that

lim
t→∞E

{
η(t)

} = 0, (2.11)

lim
t→∞E

{
η2(t)

} = q2

2
, (2.12)

lim
t→∞E

{
η3(t)

} = 0. (2.13)
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Fig. 2.6 Block diagram for
stochastic extremum seeking
scheme with bounded
perturbations for a static map

To illustrate how these relations are obtained, we consider the case of η2, namely,
(2.12), which is obtained by applying Ito’s differentiation rule to η2 with the help of
(2.2), which yields the ODE

ε

2

dE{η2}
dt

= −E
{
η2} + q2

2
(2.14)

The solution of the linear ODE (2.14) is

E
{
η2(t)

} = e−2t/εE
{
η2(0)

} + q2

2

(
1 − e−2t/ε

)
(2.15)

→ q2

2
as t → ∞. (2.16)

When ε is small, it is clear from (2.15) that the convergence in time t is very fast.
This is the case with the convergence rates of all three expectations given in (2.11),
(2.12), and (2.13).

Approximating now the η-terms in (2.10) by their respective expectations, after
a short transient whose length is O(ε), the estimation error is governed by

˙̃
θ(t) ≈ −kaq2

2
f ′′(θ∗)θ̃ (t). (2.17)

This completes our heuristic preliminary study of stability of the stochastic ES
scheme in Fig. 2.4. Local stability is expected, in a suitable probabilistic sense,
provided ka > 0 and provided the map has a minimum at θ∗. Moreover, the con-
vergence speed is governed by the values of the parameters k, a, q , and also by the
value of f ′′(θ∗) > 0. The “flatter” the extremum, the slower the convergence and,
conversely, the “sharper” the extremum, the faster the convergence toward it.

Rigorous stability analysis of stochastic ES algorithms is presented in Chaps. 5
and 6. However, the scheme in Fig. 2.4 with the unbounded stochastic perturbation
η(t) is not amenable to rigorous analysis. To make analysis feasible, using averaging
theorems that we develop in Chap. 4, we replace η in the algorithm in Fig. 2.4 by a
bounded stochastic perturbation sin(η), obtaining the algorithm in Fig. 2.6.
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Algorithms in Figs. 2.4 and 2.6 have very similar local convergence properties.
The convergence speeds of the two algorithms are related as

speedsin(η)

speedη

= (1 − e−q2
)

q2
. (2.18)
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