
Chapter 2
Mechanisms

Abstract This chapter begins with a description of the different types of mecha-
nisms that are generally used, especially in industrial robots. The parameters and
variables of the mechanisms are defined and the degrees of freedom are calculated.
Two methods to model a mechanism are presented. We show that in the Denavit-
Hartenberg method, the attachment of local coordinate frames to the links is pre-
cisely specified, and relative to these frames a minimum number of translational
and rotational parameters that describe the relative pose of two neighboring links
are defined. In the so-called method of Vector Parameters, link and joint vectors are
used to determine the geometry of the mechanism. As the reference position of a
mechanism is a free choice, this method enables us to select the most appropriate
reference position with respect to the requirements of the robot task.

In this chapter we shall consider a system of rigid bodies interconnected by joints.
Joints allow particular types of relative motions between the connected bodies. For
example, a rotational joint acts as a hinge and allows only a relative rotation between
the connected bodies about the axis of the joint. The relative movements allowed by
a joint are referred to as the joint variables or the internal coordinates. The rota-
tional joint has only one joint variable and that is the relative rotation between the
connected bodies.

A system of rigid bodies interconnected by joints is called a kinematic chain. In-
dividual rigid bodies within the kinematic chain are called links. A kinematic chain
can be serial, parallel, or serial and parallel combined together, i.e. the kinematic
chain can be open, closed, or branched.

A mechanism results when a kinematic chain has one of its links fixed to ground,
that link then being made immobile. The layout of the links and joints within a kine-
matic chain determines the motion properties of the mechanism that results from that
kinematic chain.

In this chapter we first determine how the motion of a mechanism can be deter-
mined by considering the number of links in its kinematic chain and the constraints
imposed by the joints connecting the links. We then describe several characteristic
types of joints and pay special attention to the kinematic pair, which is the simplest
kinematic chain, consisting of only two links connected by one joint. We then intro-
duce the parameters of the kinematic pair and use them in modeling of mechanisms.
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Fig. 2.1 Free body and body
attached to the base by the
help of a joint

We also become acquainted with the layout of links and joints which are frequently
used in robotics.

2.1 Joints and Degrees of Freedom

A basic property of a mechanism is its ability to move. A mechanism results from a
kinematic chain when, one of the links in the chain becomes fixed to ground. Thus
a mechanism has a fixed base link. This fixed link connects to one or more links
by one or more joints, and these links are then connected by joints to the remaining
links. The moving links in a mechanism are accomplishing various tasks, such as
grasping, picking and placing of objects, drilling, or grinding.

From a mathematical point of view, the degrees of freedom within a mecha-
nism equals the minimum number of the mechanism’s independent joint variables
which must be specified in order to uniquely determine the spatial pose of all bodies
belonging to the mechanism. This is also referred to as the number of degrees of
freedom in the mechanism [21].

2.1.1 Types of Joints

A rigid body which is free to move in a 3-dimensional space has six degrees of
freedom. The pose of a body is determined by λ = 6 parameters, where there are
three positional and three orientational coordinates. A body free to move in a plane
has λ = 3 degrees of freedom, two describing its position and one belonging to the
orientation of a body.

When a body is attached to the base by virtue of a joint, as shown in Fig. 2.1, its
number of degrees of freedom will be less than or equal to the number of degrees of
freedom of a free body. Suppose there are f independent joint variables associated
with a joint. We would say that the joint allows f degrees of freedom.
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Fig. 2.2 Translational and rotational joint

The number of degrees of freedom of a body rigidly connected to the base is
zero. When connected to the base by a joint, the body has at most as many degrees
of freedom as allowed by the joint, which is always less then λ. Typically a joint is
considered as a connection that allows certain motion of the body. Inversely, a joint
can be considered as a connection which limits the motion of a body by virtue of
constraints imposed by the joint. The difference between the possible degrees of
freedom (λ) and the number of degrees of freedom allowed by a joint (f ) is called
the number of constraints

c = λ − f. (2.1)

For example, in a rotational joint we have seen that f = 1 and hence in spatial
motion (λ = 6), c = 6 − 1 = 5. That is to say that a rotational joint eliminates 5
degrees of freedom of relative motion between the connected bodies.

The number of degrees of freedom allowed by a joint, and the nature of those
degrees of freedom, are determined by the shape of the contact areas between the
two bodies that are associated with the particular type of joint. The two simplest
joints allow f = 1 degrees of freedom and impose c = 5 constraints in spatial mo-
tion, or c = 2 constraints in planar motion. These are the translational and rotational
joints, shown in Fig. 2.2, often denoted in the literature by the letters T and R. Both
of these fundamental joints can be described by a unit vector e, which defines the
axis of either the linear displacement or rotation. The joint variable is the coordinate
q describing either the distance of translation or the angle of rotation. In Fig. 2.2
the graphical representations of translational and rotational joints are shown. These
representations will be adopted in the remainder of the text.

All other joints can be modeled as combinations of these two fundamental joints.
In some cases there is an interdependence between the rotation(s) and translation(s).
Let us examine some of the basic joints.

In addition to the translational and rotational joints there are the two degree of
freedom cylindrical joint and universal joint, which have f = 2, and the three degree
of freedom spherical joint, which has f = 3. The variety of joints in mechanical en-
gineering is much larger than these, but these are the joints fundamental to robotics.
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Fig. 2.3 Cylindrical and screw joints

Fig. 2.4 Universal joint

Figure 2.3 presents two joints types of joints found in spatial mechanisms which
can be represented by combination of a translational joint and a rotational joint,
shown on the right hand side of the figure. The first joint on the left is called a
cylindrical joint. Translation takes place in the direction of e1, rotation is about the
vector e2, and e1 and e2 are coincident. The joint variables are the distance q1 and
the angle of rotation q2, and they are independent. Hence f = 2 and c = 4. The
second joint is called a screw joint. This joint is also represented by a translation in
the direction of the vector e1 and rotation about the axis e2 and again e1 and e2 are
coincident. However, in the screw joint there is an interdependence between rotation
q2 and translation displacement q1. This interdependence can be described by the
relation �q1 = ξ�q2, where �q1 and �q2 represent changes in the joint variables
q1 and q2 and ξ is a known constant called the pitch of the screw. Thus although the
screw joint has two joint variables, it has only one independent joint variable, either
q1 or q2, and therefore it has f = 1 and c = 5.

Figure 2.4 shows a universal joint, or so called U-joint. This type of joint is also
found in spatial mechanisms and it is equivalent to two rotational joints whose axes
are intersecting. Kinematically it is represented by the rotational axes e1 and e2 and
the angles q1 and q2 which are independent. Hence the U-joint has f = 2 and c = 4.
A possible realization is shown in Fig. 2.4.
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Fig. 2.5 Spherical joint

Among the three degree of freedom joints, the spherical joint is encountered most
often. It is usually presented as the ball joint shown in Fig. 2.5. It is denoted by the
letter S. For this joint we have f = 3 and c = 3. The joint allows independent rota-
tions about three axes and is modeled by three rotations whose axes are intersecting
at the same point. In Fig. 2.5 these are the axes e1, e2, and e3 with corresponding
rotations q1, q2, and q3. We must be aware that the spherical joint with three se-
quential rotations is not completely equivalent to the ball joint. The joint with three
sequential rotations looses one degree of freedom when the third axis is collinear
with the first axis. Such a situation does not occur with the ball joint. However, due
to a constraint of force closure, the socket which encapsulates the ball must wrap
over more than a hemisphere of the ball, hence the spherical joint has a workspace
which is limited to significantly less than a hemisphere, and this is effectively as
limited a workspace as the joint with three sequential rotations.

As in robotics, the mechanics of joints is important when studying human move-
ments [93]. Among the so called synovial joints, where two bones are in contact,
we have ellipsoidal and saddle joints. These resemble rotational joints, but are not
completely equivalent. There also exist joints which do not have firm contact areas.
Here, the two bones are connected through elastic bands (ligaments). A unique joint
is that between the shoulder blade and the trunk, the scapulothoracic joint. In this
non-synovial joint, the shoulder blade actually slides and rotates between layers of
muscles on the back.

2.1.2 Types of Mechanisms

Links connected by joints create kinematic chains. These can be open, closed, or
branched [86] kinematic chains. Figure 2.6 shows some mechanisms coming from
different kinematic chains. The mechanism on the left results from a six link open
kinematic chain where one of the links is the fixed base. The five remaining links of
the chain move in space. The mechanism in the back results an eleven link closed
loop kinematic chain which has one of it links fixed to ground. The mechanism in
front and on the right results from a branched open kinematic chain.
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Fig. 2.6 Mechanisms from
open, closed and hybrid
open/closed kinematic chains

Fig. 2.7 Serial, parallel, and
hybrid kinematic chains

Figure 2.7 shows additional examples of mechanisms that result from open,
closed and hybrid open/closed kinematic chains. Mechanisms that result from open
kinematic chains, such as that on the left, are referred to as serial mechanisms. Serial
mechanisms typically have larger reachable workspace, but are less rigid. Mecha-
nisms that result from closed kinematic chains, or groups of closed kinematic chains,
such as that in the center, are referred to as parallel mechanisms. Parallel mecha-
nisms typically are more rigid and exhibit larger load capacity and improved accu-
racy, but have smaller workspace. In parallel mechanisms, many times the multiple
closed loops carry a single common link, referred to as the moving platform. In
these cases, typically the fixed link is also a common element and is referred to as
the fixed platform, or base. The links which connect between the moving and fixed
platforms are referred to as legs. The example of a parallel mechanism in Fig. 2.7
has an identifiable moving platform, fixed platform (base) and three legs. Mecha-
nisms that result from hybrid open/closed kinematic chains are referred as hybrid
serial/parallel mechanisms. Hybrid serial/parallel mechanisms exhibit a combina-
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Fig. 2.8 Remotely actuated
joints in a mechanism

tion of the traits of serial and parallel mechanisms. Both in robotics and with living
organisms we can find examples of hybrid parallel/serial mechanisms.

Industrial robots are usually serial mechanisms. It was only recently that parallel
robots (i.e. robots which are parallel mechanisms) were introduced into the indus-
trial arena. Within serial mechanisms all joints are actuated by the motors and the
motors closer to the base carry the motors farther from the base. This causes the mo-
tors closer to the base to be larger which has negative effects of increasing weight
and cost. Many times in parallel manipulators, the driving motors can all be located
on the base. The motors are smaller, less expensive and the machine is lighter.

Two simple examples of mechanisms often used in practice are shown in Fig. 2.8.
The first mechanism represents a situation where actuation of the rotation joint R
is accomplished through the translation T. We can think of R as being remotely
actuated by T. This is accomplished by connecting two additional rotational joints
Ra and Rb at both sides of translational joint. All together the mechanism now has
four joints, however, only one is actuated. As will be shown, this mechanism has
only one degree of freedom. Remote actuation of the rotation in a rotational joint
is often used in mechanical engineering. In robots with hydraulic and pneumatic
actuation, the T joint is an actuated hydraulic or pneumatic cylinder. In electrically
driven robots, the T joint is a lead screw driven by an electric motor. The joints
of living organisms are similarly remotely actuated by muscles, and in some cases
several joints are actuated by the same muscle. This causes coupling in human joint
motions. For example, when you curl your finger, your distal two knuckle joints
are actuated simultaneously. This is because the muscle actuating this distal pair of
knuckle joints spans across the two joints.

The second mechanism, shown in Fig. 2.8 is a parallelogram or pantograph
mechanism. The pantograph is a device originally intended to copy drawings in
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Fig. 2.9 Skeleton of human
arm and the shoulder girdle

either enlarged or reduced scale. Office lamps commonly make use of a pantograph
mechanism. The mechanism has five rotational joints, but only two degrees of free-
dom. It has interesting properties when a1 = a2 and b1 = b2. In that case, links a1
and a2 are parallel throughout the motion of the mechanism. The same is also true
for links b1 and b2. Assume that the joints R1 and R2 are actuated. When the ro-
tation R1 is held constant, the angle α1 is constant. Then by rotating the joint R2,
only the angle α2 is changing. When the rotation R2 is held constant, the angle α2
is constant. Then by rotating R1, only the angle α1 varies. Despite rotation R1, the
orientation of link a2 remains constant and only angle α1 varies. This alternate type
of remote actuation is used in many industrial robots, particularly those with high
payloads. The mechanism also has the advantage that the actuators for R1 and R2
do not translate.

The skeleton of a human arm consists of a large number of bones, see Fig. 2.9,
creating serial and parallel chains. The human arm is attached to the trunk through
the shoulder girdle, this being a parallel mechanism. The clavicle is connected to
the breastbone (a.k.a. sternum) via the sternoclavicular joint (S) from one side, and
from the other side to the scapula via the acromioclavicular joint (A). The scapula
glides along the back of the rib cage via the scapulothoracic joint (T) and at the
lateral end it is connected through the glenohumeral joint (G) to the upper arm.
A simplified model of a mechanism emulating the shoulder girdle is shown on the
right hand side of Fig. 2.9. The joints of the model all together have eleven degrees
of freedom. Later in the text we shall show however that this shoulder mechanism
has only five independent degrees of freedom.

The upper arm (humeral bone) can be considered as part of a serial mechanism.
In the elbow joint the humeral bone connects to radial bone and ulna, creating a par-
allel mechanism. Every finger together with the corresponding metacarpal bone rep-
resents a serial mechanism. In this way the palm is an example of the branched kine-
matic chain. When the palm and the fingers grasp an object, the kinematic chains of
the fingers are closed and the hand is transformed into a parallel mechanism.
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Fig. 2.10 Mechanism of
industrial manipulator
(courtesy of Stäubli)

The kinematic structure of a human arm is adapted to three principal functions.
The primary function of the shoulder and elbow joints is to bring the hand into
a desired position in space. The function of the wrist is to rotate the hand into a
desired orientation, while grasping is the function of the palm and fingers.

The great majority of today’s robots are industrial manipulators. An example is
shown in Fig. 2.10. These are mechanical arms, which, through the shoulder joint,
are attached to a fixed base. A robot gripper or another tool is attached to the distal
end of the manipulator. The mechanisms of most industrial robots can be divided
into two mechanisms, one for positioning and another for orientating. The posi-
tional part of the mechanism in Fig. 2.10 includes the rotations R1, R2, and R3 and
ranges from the shoulder to the lower arm. Its main task is to position the robot end-
point into the desired position. The orientational part of the mechanism, which is
in Fig. 2.10 denoted by rotations Ra, Rb, and Rc, represents the robot wrist, whose
main task is to bring the gripper or end-point tool into the desired orientation. Each
of these two parts requires three degrees of freedom.

Let us examine first the positional part of the mechanism. In this positional part
of the mechanism, both translational and rotational can be used, since both types of
joints can contribute to the positioning a point belonging to the mechanism. The axes
of these joints can be directed arbitrarily in space. However, we shall limit ourselves
to those structures where the successive translational or rotational axes are either
parallel or perpendicular and at times intersecting, which is the case in industrial
manipulators. Such positional mechanisms can always be placed in a pose such that
all its joint axes are parallel to one of the axes of the fixed coordinate frame x,
y, z. Therefore we can select among translational joints Tx, Ty, and Tz in the x,
y, z directions, and rotational joints Rx, Ry, and Rz about the x, y, z directions,
for the three joints of the mechanism. The number of all possible combinations of
three of these six joints is 63 = 216. All of these combinations do not result in a
spatial mechanism. For example, structures, such as TxTxTx and TxTyRz, do not
permit motion in at least one of the directions of the coordinate frame x, y, z. If
we wish to have a spatial mechanism, its joint variables must enable motion in all
three directions. Thus each joint variable must provides for a component of motion
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Table 2.1 Spatial positional
mechanisms RxRxRy RxRxRx RxTxRy RxTyTx TxRxTz

RxRxRz RxRyTx RxTxRz RxTzTx TxRyTy

RxRyRz RxRyTy RxTyRy TxRxRx TxTyRx

RxRyRy RxRyTz RxTyRz TxRxRy TxTyRy

RxRyRz RxRzTx RxTzRy TxRxRx TxTyTz

RxRzRx RxRzTy RxTzRz TxRyRx

RxRzRy RxRzTz RxTxTy TxRyRz

RxRzRz RxTxRx RxTxTz TxRxTy

in one direction which is independent of the motions caused by the other two joint
variables.

The letter in parentheses denotes the direction of the action of each degree of free-
dom. In this way we have Tx → (x), Ty → (y), Tz → (z), Rx → (y, z), Ry → (x, z)
and Rz → (x,y). The mechanism RzRxTy → (x,y)(y, z)(y) is a spatial mechanism,
as each degree of freedom enables displacement of the mechanism in a unique direc-
tion. With such analysis of all 216 mechanisms, 129 spatial mechanism are selected.
Some of them appear twice in the analysis and some differ only in the orienta-
tion with respect to the coordinate frame. Such examples are RzRxRx and RzRyRy.
When excluding all repeated variations, 37 different positional spatial mechanism
remain [46], as shown in Table 2.1.

Only some of these mechanism are used as industrial robots. The International
Federation of Robotics classifies in its statistical reports five types of positioning
mechanisms that are found in industrial robots. They are shown in Fig. 2.11. To-
gether with five serial mechanisms, we are presenting also a parallel mechanism,
whose structure is not included in the classification. The parallel mechanism in
Fig. 2.11 has three degrees of freedom. In general, parallel mechanisms differ con-
siderably from serial mechanisms, in that the positioning and orienting functions in
parallel mechanisms are typically completely coupled whereas in serial mechanisms
they are typically only partially decoupled.

The orientational part of the robot mechanism needs to include at least three
degrees of freedom in order to be able to bring the end-point tool into the desired
orientation. By combining the rotations Rx, Ry, and Rz, 27 different wrist structures
can be created. However, only the structures with successively perpendicular axes
are considered. If the first rotation has the x direction, the next must be in the y or
z direction. If the second rotation goes along y axis, the third must be about z or x
and when the direction of the second joint axis is z, the third must be aligned with y
or x axes. We have 12 such structures, which are all kinematically equivalent. They
differ only with respect to the orientation of their attachment to the terminal link of
the positioning mechanism.
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Fig. 2.11 Positional
mechanisms of industrial
manipulators according to the
classification of International
Federation of Robotics
include TTT Cartesian
manipulator, TRT cylindrical
manipulator, TRR Scara
manipulator, RRT spherical
manipulator, RRR articulated
manipulator and parallel
manipulator

2.1.3 Degrees of Freedom in Mechanisms

The links of a mechanism are interconnected with various types of joints, either
single or multiple points. Some examples of mechanisms are shown in Fig. 2.12.
The number of independent degrees of freedom allowed by a joint i will be denoted
as fi , while the number of constraints imposed by the joints by ci . All together the
mechanism has i = 1,2, . . . , n joints and i = 0,1,2, . . . ,N links. The number 0
belongs to the reference link, i.e. the base. This is the fixed link in the kinematic
chain from which the mechanism was derived. The base link does not move, while
the remaining links i = 1,2, . . . ,N are in motion.

The number of degrees of freedom F belonging to a mechanism is defined as
the number of independent joint variables which need to be specified in order to
uniquely define the spatial configuration of the mechanism, i.e. in order to uniquely
define the pose of every link in the mechanism. The number of degrees of freedom in
a mechanism is obtained by first summing up the degrees of freedom made available
by all mobile links of a mechanism, which would be λN . This would be the number
of degrees of freedom in the mechanism if there were no joints. From this we must
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Fig. 2.12 Two spatial and one planar mechanism

deduct the number of constraints introduced into the mechanism by each of the
joints. This is expressed by the following equation

F = λN −
n∑

i=1

ci .

We shall insert ci = λ − fi from (2.1) into the above equation. It follows

F = λ(N − n) +
n∑

i=1

fi. (2.2)

The expression above is well known as Grübler’s formula [84].
Let us now calculate the number of degrees of freedom of the mechanisms shown

in Fig. 2.12. On the far left we have a serial mechanism in space (λ = 6) with
four joints (n = 4), a two degree of freedom universal joint (f1 = 2), two rotational
joints (f2 = f3 = 1), and a translational joint (f4 = 1). The mechanism has five
links (including the base), four of them are mobile (N = 4). According to Grübler’s
formula the number of degrees of freedom in the mechanism is

F = 6(4 − 4) + 5 = 5.

Therefore, the gripper of the robot end-point has five degrees of freedom. We can
also observe, that in serial mechanisms the number of mobile links N always equals
the number of the joints n

n = N. (2.3)

Therefore, the expression in parentheses in Grübler’s formula, (N − n), is always
zero for serial mechanisms. The number of degrees of freedom of a serial mech-
anism is equal to the sum of the independent joint variables associated with each
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joint

F =
n∑

i=1

fi (2.4)

for both planar and spatial mechanisms.
Let us now examine the degrees of freedom of the mechanism shown in the

middle of Fig. 2.12. This mechanism is also serial and spatial (λ = 6) and has four
joints (n = 4), a two degree of freedom universal joint (f1 = 2), a rotational joint
(f2 = 1), a spherical joint (f3 = 3) and a translational joint (f4 = 1). In accordance
with (2.4) the mechanism has

F = 2 + 1 + 3 + 1 = 7

degrees of freedom. The robot gripper cannot have more than λ = 6 degrees of free-
dom, the mechanism is therefore kinematically redundant. A redundant mechanism
can hold the gripper in a desired position and orientation, while the rest of the mech-
anism is still movable. This is referred to as a self-motion of the mechanism and it
is a characteristic of a redundant mechanism.

In the right side of Fig. 2.12 is shown a planar parallel mechanism, hence λ = 3.
The mechanism has six joints (n = 6), all of them are either rotational or transla-
tional, and six links, where five are mobile (N = 5). In accordance with Grübler’s
formula, the number of degrees of freedom is

F = 3(5 − 6) + 6 = 3.

This is also the number of the degrees of freedom of the gripper. In parallel mecha-
nisms we are dealing with the following inequality

n > N, (2.5)

and the simplification (2.4) does not hold.
By using Grübler’s formula we shall calculate the number of degrees of free-

dom for the mechanisms from the previous section. The mechanisms from Fig. 2.8
are both planar, therefore λ = 3. With the upper mechanism we have n = 4 and
f1 = f2 = f3 = f4 = 1. The mechanism has four links one of them is selected as a
reference link, therefore N = 3. It follows

F = 3(3 − 4) + 4 = 1,

which further proves the statement that this mechanism has only a single degree of
freedom. In the lower mechanism there is n = 5 and f1 = f2 = f3 = f4 = f5 = 1.
This mechanism has five links, from which one is a reference one, therefore N = 4.
It follows

F = 3(4 − 5) + 5 = 2.

The pantographic mechanism has two degrees of freedom and can be used to posi-
tion a point on its terminal link.
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The mechanism of the shoulder girdle from Fig. 2.9 is a spatial mechanism, hence
λ = 6. The mechanism has five one degree o freedom joints f1 = f2 = f3 = f4 =
f5 = 1 and two three degree of freedom joints f6 = f7 = 3, therefore n = 7. After
subtracting the reference link, we have all together N = 6 links. There is

F = 6(6 − 7) + 11 = 5.

Thus the upper arm has five degrees of freedom. The shoulder girdle, the mechanism
without the spherical glenohumeral joint G, has only two degrees of freedom. This
can be calculated by subtracting one spherical joint and one link in the preceding
equation, giving

F = 6(5 − 6) + 8 = 2.

The calculation of the number of degrees of freedom of the industrial manipulator
from Fig. 2.10 is even simpler as the expression (2.4) can be used. This spatial serial
mechanism has only rotations and f1 = f2 = f3 = f4 = f5 = f6 = 1, therefore

F = 6.

The gripper at the end of the robot has six degrees of freedom and can be placed in
an arbitrary position and orientation inside its workspace.

2.2 Parameters and Variables of a Kinematic Pair

A kinematic pair is the basic element of a kinematic chain. It consists of two links
connected by a joint with a translational or rotational degree of freedom. In the liter-
ature there exist two approaches to the mathematical description of a kinematic pair.
The difference between them is in the attachment of the coordinate frames to both
links. The so called Denavit and Hartenberg method [17] is based on an adapted
homogeneous transformation matrix. This method makes use of four scalars, which
will be called the Denavit and Hartenberg parameters of a kinematic pair. Four is
the minimum number of parameters required for describing the link geometry and
the relative joint displacement of the links in a kinematic pair. This leads to a min-
imum number of arithmetic operations in computations, which is an advantage of
the method. Denavit and Hartenberg establish precise rules on how to position and
orient the two coordinate frames and this first step in modeling of a mechanism
can be cumbersome. If the rules are not followed precisely, the resulting kinematic
equations are incorrect.

In the second approach, the method of Vector Parameters, vectors are used to
describe a kinematic pair [46]. This method is based on the general rotational matrix
and is therefore computationally more complex. The benefit of the method is in a
simpler determination of the parameters of a kinematic pair. A similar vectorial
method was introduced by [79] in modeling robot dynamics.
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Fig. 2.13 Description of the position and direction of a cylindrical joint in a Cartesian coordinate
frame

2.2.1 Cylindrical Joint in a Cartesian Space

The motion characteristics of the joints described in the beginning of this chapter
can be illustrated with the aid of various combinations of rotational or translational
joints, whose coordinates are appropriately mathematically related. As the basis for
many of these joints, we use the cylindrical joint, wherein the rotation and transla-
tion between connected links takes place about and along a single axis, see Fig. 2.3.
In order to describe this joint mathematically, we must know the position and direc-
tion of this axis with respect to the selected coordinate frame, and the values of the
translational and rotational joint variables.

In the left side of Fig. 2.13 the position and direction of the joint axis is de-
termined with respect to the Cartesian frame using the minimum possible number
of parameters. To do this we introduce the common normal between the joint axis
and the z axis of the coordinate frame. We know the common normal between two
arbitrary non-parallel lines is unique. The location of the common normal can be
determined by assessing the length, d , measured along z axis from the origin to the
foot of the common normal on the z axis. The angle θ , represents the rotation about
the z axis and is measured from the x axis to the direction of the common normal.
The length of the common normal is b. The angle α represents the rotation of the
joint axis about the common normal. These four scalar parameters d , θ , b, and α

are the minimum number of parameters required to describe the location of the axis
of a cylindrical joint in a Cartesian coordinate system. Denavit and Hartenberg’s
scalar parameters of a kinematic pair is based on these four parameters. Denavit and
Hartenberg notation will be explained later in the text.

The right side of Fig. 2.13 the location of a joint axis is defined by the position
of an arbitrary point on the axis. This is represented by the vector b = (bx, by, bz)

T.
The direction of the axis is defined by the unit vector e, which points in a direction
along the axis. Here, the position and direction of the line is determined by the two
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Fig. 2.14
Denavit-Hartenberg
parameters of a kinematic
pair

vectors, b and e, where eTe = 1 and the component of b along e is arbitrary. The
method of Vector Parameters is based on these two vectors and a general rotation
matrix. Note that vectors b and e include information about the direction of the joint
axis, which is not directly described by the four scalar parameters d , θ , b, and α.

2.2.2 Scalar Parameters of a Kinematic Pair

Let us examine first the characteristic properties of the Denavit-Hartenberg method
in modeling a kinematic pair. The links and joints will be enumerated in a way
which is widely accepted in robotics [67]. The links and joints can be enumerated in
a second way [15] without changing the important properties of the approach. Here
we follow [67].

Figure 2.14 shows a kinematic pair consisting of links i − 1 and i connected by
cylindrical joint i. At the end of the link i we have the joint i + 1. The coordinate
frame, which is attached to link i, is oriented in such a way, that its zi axis is aligned
with the joint axis i + 1, while the xi axis goes along the common normal between
the joint axes i and i + 1. The origin of this frame is positioned at the intersection
of this common normal and the i + 1 joint axis. The third axis is represented by the
yi = zi × xi .

The Denavit-Hartenberg parameters, describing the geometry and the relative
displacement between the bodies of a kinematic pair, are the following:

di : translational coordinate—the distance between the origin of the coordinate
frame xi−1, yi−1, zi−1 or the end-point of the normal bi−1 and the starting
point of the normal bi . The distance di is positive in direction of the axis zi−1;

θi : rotational coordinate—the angle of rotation between the links i and i −1, which
is measured from bi−1 to bi , i.e. from xi−1 to xi , about the zi−1 vector;

bi : length of the link i—the length of the common normal of joint axes i and i + 1,
representing the length of the i-th link, measured positively in the direction
from the joint axis i to the joint axis i + 1;
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Fig. 2.15
Denavit-Hartenberg
parameters shown as
sequence of two translations
and two rotations

αi : angle of inclination between two consecutive axes—the angle measured about
the xi axis between the vectors zi−1 and zi .

The scalars di , θi , bi , and αi represent the minimal number of the parameters
required for a complete description of an arbitrary kinematic pair with the cylin-
dric joint. When a joint is rotational, the joint variable of the kinematic pair is θi ,
while the rest of the parameters are constant. When a joint is translational, the joint
variable of the kinematic pair is di , while the other three parameters are constant.

While using the Denavit-Hartenberg parameters, the kinematic pair is considered
as a sequence of two translations and two rotations. As shown in Fig. 2.15, the
coordinate frame xi−1, yi−1, zi−1 is superimposed over the frame xi , yi , zi through
translation by the distance di along the i-th joint axis and rotation by the angle θi

about the joint axis i This is followed by a translation bi , which is perpendicular to
the joint axes i and i + 1, and rotation by the angle αi about the common normal
between the joint axes i and i + 1.

The pose between the coordinate frames xi−1, yi−1, zi−1 and xi , yi , zi is given by
the homogeneous transformation matrix Hi−1,i , which always has the same form.
It is a product of a homogeneous transformation matrix Qi−1,i , describing the joint
translation di and rotation θi , and the homogeneous transformation matrix Si−1,i ,
describing the length bi and the link inclination αi . We have

Hi−1,i = Qi−1,iSi−1,i , (2.6)

with the matrices

Qi−1,i =

⎡

⎢⎢⎣

cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 di

0 0 0 1

⎤

⎥⎥⎦ (2.7)
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and

Si−1,i =

⎡

⎢⎢⎣

1 0 0 bi

0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤

⎥⎥⎦ . (2.8)

After the multiplication it follows

Hi−1,i =

⎡

⎢⎢⎣

cos θi − sin θi cosαi sin θi sinαi bi cos θi

sin θi cos θi cosαi − cos θi sinαi bi sin θi

0 sinαi cosαi di

0 0 0 1

⎤

⎥⎥⎦ . (2.9)

This matrix can be adapted to any kinematic pair which consists of one rotation and
one translation. In robot systems the axes of consecutive joints i and i + 1 are often
either parallel or orthogonal. In these cases the transformation matrix has a simpler
form. When the axes are parallel, the inclination angle between the joint axes is
αi = 0 and we have

Hi−1,i =

⎡

⎢⎢⎣

cos θi − sin θi 0 bi cos θi

sin θi cos θi 0 bi sin θi

0 0 1 di

0 0 0 1

⎤

⎥⎥⎦ . (2.10)

When the axes are orthogonal, we have αi = ±π/2. The simplified homogeneous
transformation matrix has the following form

Hi−1,i =

⎡

⎢⎢⎣

cos θi 0 ± sin θi bi cos θi

sin θi 0 ∓ cos θi bi sin θi

0 ±1 0 di

0 0 0 1

⎤

⎥⎥⎦ . (2.11)

With the Denavit-Hartenberg method it is important to draw attention to the case
when axes i and i + 1 are orthogonal and intersecting. In this case parameter bi is
zero and the common normal xi is the normal to the plane defined by the intersecting
axes. There are two oppositely directed possibilities for the direction of xi . Either is
acceptable. As well, in the case when neighboring axes i and i + 1 are parallel, the
direction xi is defined, but its position is not. In this case parameter bi is arbitrary
and is usually selected so as to reduce the total number of parameters describing the
mechanism.

2.2.3 Vector Parameters of a Kinematic Pair

Consider the method of Vector Parameters, which is primarily used in the remainder
of this book, and the procedure for determining the parameters of a kinematic pair.
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Fig. 2.16 Vector parameters
of a kinematic pair

Figure 2.16 shows links i − 1 and i connected by a cylindrical joint i. The position
and direction of the joint axis is determined by the link vector bi−1,1 and the unit
joint vector ei . Link i can be translated by a distance di in the direction ei , and
rotated through an angle θi about ei , relative to link i − 1. The coordinate frame xi ,
yi , zi is attached to link i and frame xi−1, yi−1, zi−1 is attached to link i − 1.

In the reference position of the kinematic pair, both joint variables of the kine-
matic pair are assigned zero values, i.e. θi = 0 and di = 0, and the frame is taken to
be parallel to the preceding frame xi−1, yi−1, zi−1.

With this method it is not necessary that one of the axes xi , yi , zi is parallel to
the joint vector ei , as is the case with the Denavit-Hartenberg method. In the method
of Vector Parameters the geometry of a kinematic pair and the relative displacement
between the link are defined by the following parameters:

ei : joint vector—the unit vector defining the rotational or translational axis of
the i-th joint;

bi−1,i : link vector—the vector describing the length and direction of the link i − 1
(the length and the direction of the link i is given by the vector bi,i+1);

θi : rotational coordinate—the angle measured about the ei axis in the plane per-
pendicular to the vector ei (the rotation coordinate is zero when the kine-
matic pair is in its reference position);

di : translation coordinate—the distance measured in the direction ei (the trans-
lation coordinate is zero when the kinematic pair is in its reference position).

The cylindrical joint in Fig. 2.17 can be reduced to either a rotational joint,
or a translational joint. When the kinematic pair is rotational (upper example in
Fig. 2.17), the joint variable is the rotational coordinate θi , while di = 0. When the
mechanism is in its reference position, then θi = 0 and coordinate frames xi , yi , zi

and xi−1, yi−1, zi−1 are parallel. When the kinematic pair is translational (lower
example in Fig. 2.17), the joint variable is translational coordinate di , while θi = 0.
When the kinematic pair is in the reference position, we have di = 0. The coordinate
frames xi , yi , zi and xi−1, yi−1, zi−1 are now parallel irrespective of the value of
translational coordinate di .
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Fig. 2.17 Vector parameters
of a kinematic pair

By changing the values of the rotational coordinate θi , the coordinate frame xi ,
yi , zi is rotating together with the i-th link with respect to the preceding link i − 1
i.e. with respect to the preceding frame xi−1, yi−1, zi−1. When changing the val-
ues of the translational coordinate di , the displacement is translational and only the
distance between the origins of both frames is changing.

Let us mathematically define the transformation between coordinate frame xi−1,
yi−1, zi−1 and coordinates frame xi , yi , zi . Frame xi , yi , zi is translated relative to
frame xi−1, yi−1, zi−1 along the vector bi−1,i and along the vector diei . Then it is
rotated through an angle θi about the unit vector ei

Hi−1,i =
[

Ai−1,i die
(i−1)
i + b(i−1)

i−1,i

0 0 0 1

]
. (2.12)

The rotation matrix Ai−1,i , defining the transformation between the vector spaces
�3

i−1 and �3
i , is obtained by the use of general formula (1.48), where the rotational

vector is the joint vector e(i−1)
i and the rotation coordinate is θi . In practical appli-

cations the kinematic pair can be placed in a reference position where joint vector
ei is parallel to one of the axes of the frame xi , yi , zi . In this case the rotation ma-
trix Ai−1,i can be calculated with one of the simplified expressions (1.51), (1.52)
or (1.53).
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In the reference position, coordinate frames xi−1, yi−1, zi−1 and xi , yi , zi are
parallel (θi = 0 in di = 0), and we have

Hi−1,i =
[

I b(i−1)
i−1,i

0 0 0 1

]
. (2.13)

When a joint is only rotational (di = 0), then

Hi−1,i =
[

Ai−1,i b(i−1)
i−1,i

0 0 0 1

]
, (2.14)

and when a joint is only translation (θi = 0), we have

Hi−1,i =
[

I die
(i−1)
i + b(i−1)

i−1,i

0 0 0 1

]
. (2.15)

In general, all the components of the vector parameters ei and bi−1,i are non-
zero. In special cases, depending on the selection of a joint center and the reference
position of a kinematic pair, some of the components of these vector parameters can
be zero. The scalar Denavit-Hartenberg parameters of a kinematic pair represent a
special case of vector parameters. The advantages of using the method of Vector Pa-
rameters is in the simplicity of the coordinate frame assignments and in the freedom
of choosing any relative position of the two links as the position where the joint
variables are zero.

When comparing the Vector Parameters of a kinematic pair with scalar Denavit-
Hartenberg parameters, the following important difference can be noticed. With
Vector Parameters the length of the translation di is measured from the selected
reference position in the direction of vector ei . With Denavit and Hartenberg pa-
rameters the length of the translation di is the distance between the intersection of
vector bi−1 with joint axis i and the intersection of vector bi with joint axis i. With
Vector Parameters the angle of rotation θi is assessed from the selected reference po-
sition about vector ei . With Denavit and Hartenberg parameters the angle of rotation
θi is defined as the angle between vectors xi−1 and xi .

2.3 Parameters and Variables of a Mechanism

In this section we extend the description of a kinematic pair to the description of an
entire mechanism which consists of several links and joints. The extension is rel-
atively straightforward. First we consider this description in terms of the Denavit-
Hartenberg parameters and then by the Vector Parameters. The two methods are
compared via the example robot mechanism shown in Fig. 2.18. Examples of mech-
anisms with various kinematic arrangements can be found in [6, 67, 77].

The serial spatial mechanism shown in Fig. 2.18 has n = 4 degrees of freedom.
At one end it is attached to the base, while a gripper is mounted to the other end.
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Fig. 2.18 Example of mechanism with four degrees of freedom

The mechanism has three rotations with joint variables q1, q2, and q4 and one trans-
lation with joint variable q3. The links are denoted as 0,1, . . . ,4, and the joints are
numbered 1,2,3,4. The mechanism has N = n = 4 of mobile links. Their lengths
are given by distances h0, h1, l1, l2, l3, h3, and l4. The link 0 is the fixed base.

2.3.1 Denavit and Hartenberg Parameters of a Mechanism

In the Denavit and Hartenberg method, a local coordinate frame is attached to each
mobile link of a mechanism. The motion of this frame is observed relative to a fixed
reference frame x0, y0, z0 which is attached to the fixed base. The i-th joint connects
the links i − 1 and i, i = 1,2, . . . , n. Recall, with serial mechanisms the number of
joints n is equal to the number of mobile links N . The Denavit-Hartenberg parame-
ters of a mechanism are determined in the five following steps [77, 84]:

Step 1 In order to reduce the number of parameters, the fixed frame x0, y0, z0 is
typically attached to body 0 in such a way that the z0 axis is coincident with the
axis of joint 1. Axis x0 is arbitrarily directed in the plane perpendicular to the
axis of joint 1. Typically this is a direction considered to be the forward reaching
direction of the robot. The origin of the frame is positioned anywhere along the
axis of joint 1. The choice of origin is typically made to try and eliminate ad-
ditional parameters. Being a right hand coordinate system, the third axis of the
frame, y0, is known from x0 and z0, y0 = z0 × x0;
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Step 2 Attach to each subsequent joint axis i = 2,3, . . . , n the axis zi−1, which
belongs to coordinate frame xi−1, yi−1, zi−1. The origin of this frame is located
on the axis of i-th joint at the foot of the common normal from the axis of joint
i − 1 to the axis of joint i. When the axes of the joints i − 1 and i are parallel
and the i-th joint is rotational, the origin of the frame is positioned so that di = 0,
reducing the number of non-zero parameters. When the joint is translational, the
origin of the frame can be positioned anywhere along the i-th joint axis. When
joint axes i − 1 and i intersect, the origin of the frame is positioned at the point
of intersection;

Step 3 For each moving link i − 1 we define axis xi−1, i = 2,3, . . . , n, in the direc-
tion of the common normal between joint axes i − 1 and i, in the direction from
joint axis i − 1 towards joint axis i. When the axes of joints i − 1 and i intersect,
axis xi−1 is perpendicular to the plane containing the intersecting axes, and can
be directed in either direction perpendicular to the plane. Be aware that which
normal direction is chosen influences the value of angle θi , which is measured
between the vectors xi−1 and xi about axis zi−1. Being a right hand coordinate
system, the third axis of the frame is determined as yi−1 = zi−1 × xi−1;

Step 4 The robot end effector coordinate frame xn, yn, zn has its origin placed at a
reference point on the gripper. The axis zn lies anywhere in the plane perpendic-
ular to xn, where in Step 3, xn was aligned along the common normal between
zn−1 and zn. When the last joint n is rotational, axis zn is taken to be parallel to
the n-th joint axis. The yn axis is found as, yn = zn × xn;

Step 5 With coordinate frames for all links i = 1,2, . . . , n assigned in the manner
described above, we can determine the values of the Denavit-Hartenberg param-
eters, which are usually presented in a tabular form.

Following the above rules, we place coordinate frames onto the links of the
mechanism shown in Fig. 2.18, resulting in Fig. 2.19. To make determination of
the kinematic parameters easier, we position the mechanism in such a way that the
consecutive joint axes are either perpendicular or parallel. We begin with the fixed
body 0, and frame x0, y0, z0. Axis z0 is placed along the axis of joint 1. The origin
of the frame can be selected anywhere along this axis, most conveniently at h0 +h1.
In this case h0 and h1 will not appear in the kinematic equations. It may be more
convenient however, to place the frame’s origin on the robot base. The axis x0 is
taken perpendicular to z0, in what we consider to be the forward facing direction of
the robot.

Axis z1 is placed along the axis of joint 2. Its origin is at the intersection of z1
with the common normal between the axes of joints 1 and 2. The length of the com-
mon normal is b1 = l1. The offset distance between the frames in the z0 direction is
d1 = h0 + h1 and is constant. Axis x1 lies in the direction of the common normal
and the angle measured between the axes z0 and z1 about the axis x1 is the incli-
nation angle α1 = π/2. Consistent with Fig. 2.18, the variable of the first joint is
θ1 = q1 + π/2. It is measured from axis x0 to axis x1 about z0.

Axis z2 is directed along joint axis 3. Its origin is at the intersection of the axes
of joints 2 and 3. The length of the common normal is b2 = 0 and the offset distance
between the frames in the z1 direction is zero, so d2 = 0. As the joint axes intersect,



84 2 Mechanisms

Fig. 2.19 Placement of the
coordinate frames for the
mechanism with four degrees
of freedom

Table 2.2
Denavit-Hartenberg
parameters of the mechanism
from Fig. 2.19

i bi αi di θi

1 l1 π/2 h0 + h1 q1 + π/2

2 0 π/2 0 q2 + π/2

3 0 π/2 q3 + l2 + l3 π/2

4 l4 0 −h3 q4 + π/2

we have x2 = z1 × z2 (this vector could have been taken in the opposite direction).
The angle of inclination α2 is measured from z1 to z2, about axis x2, and α2 = π/2.
The variable of the second joint is θ2 = q2 + π/2. It is measured from x1 to x2
about z1.

Axis z3 lies on joint axis 4. Its origin is at the intersection of the axes of joints
3 and 4. The length of the common normal is b3 = 0. The offset distance between
the frames in the z2 direction is the variable of the third joint, and is given by d3 =
q3 + l2 + l3. As the joint axes intersect, we have x3 = z2 × z3 (this vector could have
been selected in the opposite direction). The inclination angle α3 is measured from
z2 and z3 about x3, and α3 = π/2. Observe that the angle between x2 and x3 about
the z2 axis does not change and is a constant θ3 = π/2.

Attachment of axis z4 on the gripper is arbitrary, since there is no joint 5. Take
z4 parallel to axis 4. The origin of this frame is placed on a reference point on the
gripper, which might represent a tool tip, or the midpoint of the gripper. Axis x4 is
in the direction of the common normal from z3 to z4. The length of the normal is
b4 = l4 and the offset distance between the frames in the direction of z3 is d4 = −h3.
The inclination angle between z3 and z4, measured about x4 is α4 = 0. The variable
of the fourth joint is θ4 = q4 + π/2. It is measured from x3 to x4 about z3. The
Denavit-Hartenberg parameters, belonging to the mechanism from Fig. 2.19, are
given in Table 2.2.
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Even in this case of a simple robot mechanism, we observe that placement of the
coordinate frames according to Denavit-Hartenberg method is rather complex. An
advantage of the Denavit and Hartenberg method is that the transformation matrices
between the frames always have the same general form. We only have to enter the
values of the parameters from Table 2.2 into (2.9). In our case we have

H0,1 =

⎡

⎢⎢⎣

− sinq1 0 cosq1 −l1 sinq1
cosq1 0 sinq1 l1 cosq1

0 1 0 h0 + h1
0 0 0 1

⎤

⎥⎥⎦ ,

H1,2 =

⎡

⎢⎢⎣

− sinq2 0 cosq2 0
cosq2 0 sinq2 0

0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ ,

H2,3 =

⎡

⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 q3 + l2 + l3
0 0 0 1

⎤

⎥⎥⎦ ,

H3,4 =

⎡

⎢⎢⎣

− sinq4 − cosq4 0 −l4 sinq4
cosq4 − sinq4 0 l4 cosq4

0 0 1 −h3
0 0 0 1

⎤

⎥⎥⎦ .

We have substituted sin(qi + π/2) = cosqi and cos(qi + π/2) = − sinqi .

2.3.2 Vector Parameters of a Mechanism

Consider applying the Method of Vector Parameters to the same example. The
method of Vector Parameters allows arbitrary placement of the coordinate frames.
The method is applied in the following five steps [46], with the coordinate frames
attached to the bodies as follows:

Step 1 The mechanism is placed into the desired reference position (initial pose).
One can consider the reference position as the zero position, where the values
of all joint variables are taken as zero, θi = 0, di = 0, i = 1,2, . . . , n. The fixed
coordinate frame x0, y0, z0 which is attached to the base, is arbitrarily located in
the space. Usually it is attached to a reference point on the 0 link, which may be
the point where the mechanism is attached to the ground;

Step 2 The centers of the joints i = 1,2, . . . , n are selected. The center of the i-th
joint can be taken anywhere along the axis of joint i. A local coordinate frame
xi , yi , zi is placed on the i-th joint center in such a way that its axes are parallel
to the axes of the fixed coordinate frame x0, y0, z0. The local frame xi , yi , zi is
attached to link i and displaces with it;
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Step 3 A joint vector ei is placed onto each axis of the mechanism. The trans-
lational variable di is measured in the direction of the joint vector, while the
rotational variable θi is measured about it;

Step 4 Link vectors bi−1,i are directed from the origin of coordinate frame xi−1,
yi−1, zi−1 to the origin of frame xi , yi , zi i = 1,2, . . . , n, locating the origin of
frame i relative to frame i − 1. Link vector bn,n+1 lies between the origin of the
coordinate frame xn, yn, zn and the robot end-point;

Step 5 Joint vectors ei and the link vectors bi−1,i are expressed in the coordi-
nate frame xi−1, yi−1, zi−1 (the vector bn,n+1 in the frame xn, yn, zn), as the
vectors e(i−1)

i , b(i−1)
i−1,i , and b(n)

n,n+1 do not depend upon the variables θi and di ,
i = 1,2, . . . , n. Taking into account that in the reference (initial) pose of the
mechanism all local frames xi , yi , zi , i = 1,2, . . . , n, are parallel to the reference
frame x0, y0, z0, the joint and link vectors can be determined in the following way

e(i−1)
i = e(0)

i , (2.16)

b(i−1)
i−1,i = b(0)

i−1,i , b(n)
n,n+1 = b(0)

n,n+1. (2.17)

Sometimes another frame, xn+1, yn+1, zn+1, is introduced at the reference point
on the robot gripper. There is no movement between the frames xn, yn, zn and xn+1,
yn+1, zn+1 since both are attached to the same link. Thus the transformation between
them is constant. From the point of view of the kinematics the frame xn+1, yn+1,
zn+1 is not necessary, but it may assist in defining the grasp of a tool in the gripper
of the mechanism.

In order to simplify the development and form of the kinematic equations, it is
desirable that the maximum number of the components of vectors e(0)

i , b(0)
i−1,i , and

b(0)
n,n+1 are zero in the reference position. When a mechanism has consecutively per-

pendicular or parallel joint axes, which is common in practical robot structures, the
mechanism can be placed into a reference position in such a way that particular joint
axes are parallel to the axes of the fixed reference frame. As well, with appropriate
choice of the joint centers, the link vectors can be chosen so that they are directed
parallel to one of the axes of the fixed reference frame.

The method of Vector Parameters will be demonstrated for the same example of
a four degree of freedom mechanism shown in Fig. 2.18. The result is presented in
Fig. 2.20. The reference position of the mechanism, which corresponds to when the
joint variables are zero, q1 = q2 = q3 = q4 = 0, is shown in Fig. 2.20. The vector
parameters and the joint variables corresponding to the reference position of the
mechanism and the selected positions of the joint centers as shown in Fig. 2.20, are
presented in Table 2.3.

The rotational variables θ1, θ2, and θ4 are measured in planes which are perpen-
dicular to axes e1, e2, and e4 respectively, while translational variable d3 is mea-
sured in the direction of axis e3. All joint variables are zero when the mechanism
is in its reference position (initial pose). In Fig. 2.21 the mechanism is shown in a
pose, where all four variables are nonzero and positive. The variable θ1 is the an-
gle between the initial (reference position) direction and the current direction of the
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Fig. 2.20 Placement of the
coordinate frames for the
mechanism with four degrees
of freedom

Table 2.3 Vector parameters
and variables of the
mechanism from Fig. 2.20

i 1 2 3 4

θi q1 q2 0 q4

di 0 0 q3 0

i 1 2 3 4

e(i−1)
i 0 1 0 0

0 0 1 0

1 0 0 1

i 1 2 3 4 5

b(i−1)
i−1,i 0 0 0 0 0

0 l1 l2 l3 l4

h0 h1 0 −h3 0
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Fig. 2.21 Rotational and
translational variables for the
mechanism with four degrees
of freedom

axis y1, the variable θ2 is the angle from the initial (reference position) direction to
the current direction of the axis z2, the variable d3 is given by the distance from the
initial (reference position) position to the current position of the axis x3, and θ4 is
the angle from the initial (reference position) direction to the current direction of
the axis x4. These variables correspond to the joint displacements q1, q2, q3, and q4,
which are defined in Fig. 2.18.

The selected parameters are inserted in (2.12)

H0,1 =

⎡

⎢⎢⎣

cosq1 − sinq1 0 0
sinq1 cosq1 0 0

0 0 1 h0
0 0 0 1

⎤

⎥⎥⎦ ,

H1,2 =

⎡

⎢⎢⎣

1 0 0 0
0 cosq2 − sinq2 l1
0 sinq2 cosq2 h1
0 0 0 1

⎤

⎥⎥⎦ ,

H2,3 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 q3 + l2
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ ,

H3,4 =

⎡

⎢⎢⎣

cosq4 − sinq4 0 0
sinq4 cosq4 0 l3

0 0 1 −h3
0 0 0 1

⎤

⎥⎥⎦ .
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Here, the simplified expressions for the rotation matrices were used (1.51), (1.52),
(1.53), describing the rotations about the axes of the coordinate frame. This is made
possible by our choice of reference frame and reference position.

Placing a coordinate frame x5, y5, z5 onto the reference point of the robot gripper,
we obtain the following additional homogeneous transformation matrix

H4,5 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 l4
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ ,

which is independent of the joint variables, as the frames x4, y4, z4 and x5, y5, z5 are
both attached to body 4 and are parallel and only displaced for by a constant distance
l4. In a purely kinematic sense the additional frame x5, y5, z5 need not be attached
to the mechanism, as the position and orientation of the gripper can be described by
the x4, y4, z4 frame alone. This additional frame however may be used to define the
grasp of a tool, body 5, by the gripper, body 4, since in many applications control of
the tool’s position and orientation is the ultimate goal.

This chapter has introduced the Denavit and Hartenberg method and the method
of Vector Parameters. Both methods were applied to a kinematic pair and then to
an example of a four degree of freedom mechanism. In the Denavit-Hartenberg
method, the attachment of local coordinate frames to the links is precisely speci-
fied and relative to these frames a minimum number of translational and rotational
parameters which describe the relative pose of two neighboring links are defined.
In this method the transformation matrices between the coordinate frames have
a generic form, requiring fewer algebraic operations in developing the kinematic
equations of motion The disadvantage of the approach is in the forced placements
of the coordinate frames on the links, placements which may seem irregular or un-
natural. The origins of these frames are often at points which are distant from the
corresponding joint centers or links. In many cases the configuration of a robot
mechanism corresponding to when the joint variables are zero is unnatural and be-
cause of physical constraints may be inaccessible.

The method of Vector Parameters uses link and joint vectors to describe the ge-
ometry of a link and the variables at the joints. It is important in this method to select
an appropriate reference position of the mechanism where all the coordinate frames
are parallel to the reference coordinate frame and the translational and rotational
joint variables are zero. As the reference position of a mechanism is a free choice,
we can select the most appropriate reference position from the point of view of clar-
ity of the approach, requirements of the robot task, or the number of mathematical
operations included in the transformation matrices. In general the matrix describ-
ing the rotation about an arbitrary axis must be used in the transformation matrices.
However, when selecting the reference position in such a way that particular joint
axes are parallel to one of the axes of the reference frame, the rotational matrices
are simplified and the number of required arithmetic operations is not higher than
with the Denavit-Hartenberg method.
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