
Chapter 2
Nonlinear Schroedinger Equation

The main aim of this thesis is the study of the interaction between nonlinearity
and disorder, the pivotal processes underlying the localization of light. Knowing
how the manipulation of an optical system by modifying the mutual competition
between disorder and nonlinearity can result in localized wave-forms is an intrigu-
ing challenge and a significant target of modern optics. In this section, we discuss the
Nonlinear Schroedinger equation (NLS), a paradigmatic universal nonlinear model
that describes several physical phenomena in the framework of several disciplines,
from the nonlinear optics to the quantum condensate. In a simple way, this equa-
tion allows to understand how the nonresonant nonlinearity (specifically the Kerr
effect) can promote the formation of localized wave-forms through the balance of
two opposite effects: wave dispersion and nonlinear response. The NLS represents
the starting point to study the complex interplay between nonlinearity and disorder.

2.1 Introduction

We start by the Maxwell’s Equations. They describe the propagation of an electro-
magnetic wave in a medium with refractive index n. In the time domain they read as,

∇ × E = −μ0∂t H

∇ × H = ε0n2∂t E,
(2.1)

where x, y, z are the spatial coordinates while t is the temporal variable. The vectors
E and H are respectively the electric and the magnetic fields. The relative electric
permittivity is εr and the relative magnetic permeability is μr . The refractive index
is n = √

εrμr , and depends by the relative values of the considered material; ε0 is
the electric constant and μ0 is the magnetic constant. We study the propagation of
an electromagnetic field into a dielectric medium in which no current and no charges
are present. From Eq. (2.1), we obtain the wave equation for the electric field:
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∇ × ∇ × E = −μ0ε0n2∂2
t E. (2.2)

We write the monochromatic solution of Eq. (2.2) as:

E(x, y, z, t) = Re[E(x, y, z)e−iωt ] (2.3)

and by using the paraxial approximation (we are considering a z-collimated laser
beam) for which it is possible to approximate ∇×∇×E = ∇(∇·E)−∇2E ≈ −∇2E,
we write the Helmholtz equation for the electric field:

∇2E + ω2

c2 n2E = 0. (2.4)

In an homogeneous medium with n(r) = n0, the simplest solution of Eq. (2.4)
in one-dimensional case is the plane wave E(z) = Eeikz x̂, for which the Helmholtz
equation gives the wave vector k = ω

c n0. We want to treat the interaction of light in
a nonlinear medium, in which the permittivity and the permeability depend on the
electromagnetic field. In this specific case, for sake of simplicity, we consider the
case in which μr = 1 while the electric permittivity is a function of the electric field
ε = ε(E).1 If the medium is nonlinear, we can write n(r) = n0 +�n(r).We let the
general solution amplitude to be space-dependent because nonlinearity can spatially
modulate the propagating field:

E(x, y, z) = E(x, y, z)eikz x̂. (2.5)

By inserting Eq. (2.5) in Eq. (2.4) and within the paraxial approximation, for
which the longitudinal variation is slow enough and ∂2

z E ≈ 0,we write the amplitude
equation:

2ik∂z E + ∇2⊥E + 2k2�n

n0
E = 0 (2.6)

where we have neglected the higher order term in�n and we have used the relation
k = ω

c n0. The Eq. (2.6) represents the propagation of a laser beam, collimated along
ẑ (paraxial approximation), in the presence of an index modulation �n induced by
the nonlinear effects. The power flux is related to the z-component of the Poynting
vector, Pz = nE2

2Z0
= I, where Z0 = √

μ0/ε0 is the impedance of the vacuum. We

hence define an optical field A for which the optical intensity is I = |A|2, in this
way the complex envelope is related to E by A = √

n/2Z0 E . The equation for A is
simply obtained from which for E:

2ik∂z A + ∇2⊥ A + 2k2�n

n0
A = 0. (2.7)

In the following, we put particular attention to the one-dimensional case (that
corresponds to take ∇2⊥ = ∂2

x ), in order to simplify the successive analysis of the
interplay between nonlinearity and disorder.

1 Once the disorder is added to the system, the permittivity, and hence the refractive index, will
become explicitly dependent on the spatial coordinate, ε = ε(r, E).
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2.2 Local Case

In this section, we consider the simplest example of nonlinear system, the Kerr
medium. In this kind of material, only the cubic nonlinearity in the paraxial approx-
imation is retained. The refractive index linearly increases with the beam intensity.
The refractive index perturbation depends only on the intensity in a given point
�n(r) = n2 I (r), and:

n(r) = n0 + n2 I (r). (2.8)

Equation (2.7) becomes:

2ik∂z A + ∂2
x A + 2k2 n2

n0
|A|2 A = 0. (2.9)

This is the well-known nonlinear Schroedinger equation (NLS), a universal non-
linear equation describing several nonlinear phenomena, including the Bose-Einstein
condensation when it is expressed in the adimensional form, by rescaling the coor-

dinates z → 2kx2
0 z, x → x0x and the field amplitude A →

√
n0/(2k2x2

0 |n2|)ψ :

i∂zψ + ∂2
xψ ± |ψ |2ψ = 0, (2.10)

where the sign plus (minus) is associated to the self-focusing n2 > 0 (self-defocusing
n2 < 0) character of the medium.

2.2.1 Plane Wave Solution

Equation (2.10) admits a plane wave stationary solution for which the field is not
dependent on x. By writing ψ(z) = ψ0exp(iβz) and inserting this solution in (2.10),
we obtain that β = ψ2

0 such that

ψ(z) = ψ0exp(iC I z), (2.11)

where C is a constant and I is the dimensional intensity. This physically means that,
during its propagation in the nonlinear medium, the plane wave field has an intensity
dependent phase.

2.2.2 Modulation Instability

The plane wave solution is unstable when a small transverse perturbation is applied.
Let us analyze the stability properties of (2.11) and write it as:
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Fig. 2.1 Gain versus
wave-vector for various
plane-wave amplitudes
ψ0 = 1 (dotted line), ψ0 = 2
(dot-dashed line), ψ0 = 3
(continuous- bold line),
ψ0 = 4 (dashed line),
ψ0 = 5 (continuous-thin
line)
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ψ(z, x) = [ψ0 + p(z, x)]eiψ2
0 z, (2.12)

where p(z, x) = α+(z)eikx x + α∗−(z)e−ikx x . We put this solution in (2.10) and by
linearizing, we obtain an equation system for α±:

i α̇+ − k2
xα+ + ψ2

0 (α− + α+) = 0

−i α̇− − k2
xα− + ψ2

0 (α− + α+) = 0,
(2.13)

where kx is the wave-vector. We assume that α± = α̂±eλz and obtain the equation
for the gain λ:

λ2 = k2
x (2ψ

2
0 − k2

x ). (2.14)

When (for a specific range of kx ), the second term is positive, we have an unstable
growth of the introduced periodic perturbation, despite it can be chosen as small as
we want. The perturbation hence grows exponentially during the wave propagation.
The gain of the perturbation has a maximum growth rate for a fixed value of the wave
vector, kx = ψ0, as it can be seen in Fig. 2.1. There exists a value of the period of the
perturbation that grows more successfully than others. This leads to the formation of
a periodical pattern of field distribution for which there are alternating regions where
the field is much more intense.

In Fig. 2.2, we show the numerical simulations for a plane-wave solution of
the NLS equation when a small perturbation is added to the unperturbed solution.
We see that an initial homogeneous field distribution, describing the front wave of
the plane wave, breaks into a periodical pattern. It is important to stress that, as it can
be seen by Eq. (2.14), the modulation instability at which the light beam is subject,
is managed by the self-focusing nonlinearity (through the ψ2

0 intensity term) and the
diffraction, related to the wave-vector kx .
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Fig. 2.2 Numerical
simulations of the nonlinear
Schroedinger equation start
from a plane-wave perturbed
with 1% perturbation noise.
The figure shows that,
starting from an homogenous
field distribution, periodical
pattern emerges, eventually
developing into an ensemble
of localized waves (solitons)

Fig. 2.3 Propagation of a
one-dimensional Gaussian
beam by integrating the
nonlinear Schroedinger
equation through the beam
propagation method, in the
diffraction case (a) obtained
for a low power input, and in
the self-trapped case (b)
when the input beam is high

2.2.3 The Bound States

As we have seen in the previous section, the plane-wave solution is unstable
under transverse spatial perturbation. So, the NLS solution cannot be obtained by
applying small perturbations to the plane-wave solution. We must look for new sta-
tionary solutions. It can be shown that in nonlinear Kerr media, the nonlinear term in
Eq. (2.10) curves the wave phase-front in a way related to the sign of the nonlinear
term. We are considering attractive Kerr media for which the positive sign of the non-
linear term involves a convergent effect on the propagating wave. For a beam with a
finite transverse extent, we expect that a stable solution can be derived by balancing
the diffraction mechanism (a spreading of the propagating beam, a concave curva-
ture of the phase-front) with the nonlinear focusing mechanism. Figure 2.3 shows
this mechanism. In panel (a), we consider a low intensity beat. By Eq. (2.10), the
nonlinear term can be neglected and the diffraction causes the beam dispersion. In
panel (b), the input beam has higher intensity, the nonlinear compensation yields to
the formation of a self-trapped beam. The simplest localized solution for Eq. (2.10)
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Fig. 2.4 1D kerr soliton
shape for three different
amplitude values u0 = 2
(continuous-bold line),
u0 = 4 (dashed line), u0 = 6
(continuous-thin line)
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takes the form ψ(x, z) = u(x)eiβz, with

u(x) = u0 sech(x/w0), (2.15)

where the width is w0 = u0√
2

and β = u2
0/2 is directly related to the amplitude of the

wave. It is important to observe that the balance of the nonlinearity with the diffraction
term results into a flat phase-front and that, in order to exist, the localized solution has
to satisfy a fixed relation between the width of the beam (associated to the diffraction)
and the beam amplitude u0, determining the strength of the nonlinearity. As shown
in Fig. 2.4, by increasing the amplitude (and hence the power P = ∫

dx |u|2) of the
input beam, the soliton width shrinks such that u0w0 = constant. This relationship
is known as the “existence curve” of the solitary waves.

2.3 Nonlocal Case

Over the years, the role of a nonlocal nonlinear response, with special emphasis on
the optical spatial solitons (OSS) [1], appeared with an increasing degree of impor-
tance [2–8]; on one hand because it must be taken into account for the quantitative
description of experiments and, on the other hand, because it is a leading mechanism
for stabilizing multidimensional solitons [9]. Nonlocality in nonlinear wave prop-
agation is found in those physical systems exhibiting long range correlations, like
nematic liquid crystals (LC) [3], photorefractive media (PR) [10], thermal [4, 11,
12] and thermo-diffusive [13] nonlinear susceptibilities, soft-colloidal matter (SM)
[14], BEC [15, 16], and plasma-physics [17, 18].

Let us consider a typical nonlocal nonlinear medium in which the change in the
refractive index is related to the intensity of the wave in a finite region, it is a nonlocal
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function of the wave field. This effect can be represented in general form, for the
focusing case, as

�n(x, I ) =
∫ +∞

−∞
dx ′K (x − x ′)I (x ′, z), (2.16)

where K (x−x ′) is the response function. Its form depends on the specific nonlinearity
under consideration and it is associated to a length-scale σ that measures the degree
of nonlocality. Thanks to the paraxial approximation, the nonlocal response along z
can be typically neglected. In a local system, σ tends to zero, the response is punctual
R(x −x ′) = δ(x −x ′) and the refractive index locally changes with the light intensity
(in Kerr media). In general, however, there always exists a degree of nonlocality in
the physical systems that support the wave propagation. The local approximation
can be done when the spatial correlations in the optical response are much smaller
of the wavelength (below 100 nm). By inserting Eq. (2.16) in (2.7) and repeating the
rescaling of the physical variables, we obtain the adimensional nonlocal nonlinear
Schroedinger equation:

i∂zψ + ∂2
xψ + ψK ∗ |ψ |2 = 0, (2.17)

where K ∗ |ψ |2 is the convolution integral that measures the correlation between the
optical field and the punctual response K of the nonlinear medium. In the Fourier
domain, the convolution integral becomes ρ̃ = S(kx )|ψ̃ |2 where the tilde denotes the
Fourier transform and S(kx ) is the “structure factor” (that is the Fourier transform of
K (x)). It is often useful to write Eq. (2.17) as a system of two differential equations:

i∂zψ + ∇2
xψ + ρψ = 0

G(ρ) = |ψ |2, (2.18)

where K is the Green function of the differential operator G.

2.3.1 Plane Wave Solution

Hereafter, we will consider the general nonlocal Kerr nonlinearity with a nonlocal
exponential response function:

K (x) = 1

2σ
exp

(
−|x |
σ

)
, (2.19)

where σ, as we have seen above, represents the degree of the nonlocality. The expres-
sion for the structure factor

S(kx ) = 1

1 + σ 2k2
x

(2.20)
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is obtained as the Fourier transform of the response function. In this case, we have
that the differential operator G acts on ρ as −σ 2ρxx + ρ. This corresponds, for
example, to the re-orientational nonlinearity of nematic liquid crystals or to the
thermal nonlinearity in lead-glasses [3, 4]. By calculating the corresponding Green

function, the solution for ρ takes the form ρ = ∫ e−|x−x ′|/σ
2σ |ψ |2(x ′)dx ′. As in the

local case, the plane wave

ψ(z) = ψ0eiβz

ρ = ρ0,
(2.21)

where ψ0 = constant, is a solution of the Eq. (2.22) if β = ρ0 and ρ0 = ψ2
0 .

2.3.2 Modulation Instability

The modulation instability theory can be developed through the same procedures
used in the local case. Let us start by considering the nonlocal nonlinear Schroedinger
equation for an exponential nonlocal response

i∂zψ + ∇2
xψ + ρψ = 0

−σ 2ρxx + ρ = |ψ |2, (2.22)

and add a small perturbation for the amplitude and the density of the form

ψ(z, x) = [ψ0 + p(z, x)]eiψ0z

ρ(x) = ρ0 + r(x),
(2.23)

where p(z, x) = α+(z)eikx x + α∗−(z)e−ikx x while r(x) = r+eikx x + r∗−e−ikx x . By
inserting the expression for ρ in the second equation of (2.22), one obtains:

r± = ψ0S(kx )(α+ + α−). (2.24)

By linearizing the first equation of (2.22), the dispersion relation give us the following
growth rate for the perturbation:

λ = |kx |
√

2ψ2
0 S(kx )− k2

x , (2.25)

it should be noted that the local limit result (2.14) returns for σ → 0, S(kx ) → 1.
In Fig. 2.5, we show the dependence of the growth rate of the transverse pertur-

bation by the wave-vector for the local case (σ = 0) and the nonlocal case (σ = 1).
As it can be seen, the nonlocality tends to shrink the bandwidth of the modulation
instability phenomenon and to reduce the maximum growth rate of the perturbation
[see Fig. 2.6]. This effect will be strongly taken into account in the next chapters
where we will study the interplay between nonlinearity and disorder and where the
nonlocality will help us to understand and analytically solve the physical involved
phenomena.
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Fig. 2.5 Gain versus
wave-vector for σ = 0, the
local case (dashed line) and
for σ = 1, the nonlocal case
(continuous line)
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Fig. 2.6 Maximum gain
versus the nonlocality degree
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2.3.3 The Bound States

Now, we focus on the stable solutions ψ(x, z) = u(x)eiβz of the nonlocal nonlinear
Schroedinger equation in the case of exponential response:

−βu + uxx + uρ = 0, (2.26)

where ρ(x) = ∫
dx ′K (x − x ′)u2(x ′) and, as seen above, K (x) = e−|x |/σ /2σ. The

exact solutions, at variance with what happens in the local case, cannot be found
analytically.

In Fig. 2.7, we show the numerically obtained profiles for u(x) and ρ(x). It can be
noticed that, as the nonlocality increases, the response ρ widens with respect to the
field profile. This leads to the possibilty of an analytical approach typically denoted
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Fig. 2.7 The field profile u(x) and the response function ρ(x) for different degrees of nonlocality,
for β = 1. Shown is the local case (blue line), σ = 3 (green line), σ = 7 (red line) and σ = 10
(cyan line)

as the highly nonlocal limit described in the following paragraph, where the response
function is approximated by a parabolic profile.

2.3.4 Highly Nonlocal Limit

In this section, we analyze the limit of a strongly nonlocal response. This is the case
in which the local response distribution, induced by the optical field, is much broader
than the spatial extension of the field itself (see Fig. 2.8. u(x) samples the response
function at x ′ ≈ 0 in the integral,

ρ(x) =
∫

dx ′K (x − x ′)u2(x ′) 
 K (x)P, (2.27)

where P = ∫
dx ′u2(x ′) is the power of the soliton. We can then expand the nonlocal

response K (x) (which is a bell shaped function) in Taylor series:

K (x) 
 K0 − 1

2
K2x2, (2.28)

where K0 and K2 are positive constants and the minus sign takes into account the
focusing solution. In the parabolic approximation, an analytical solution exists. The
equation for u(x) takes the following form:

−βu + uxx + P(K0 − K2

2
x2)u = 0. (2.29)



2.3 Nonlocal Case 19

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coordinate x

P
ro

fi
le

s 
(a

rb
it

ra
ry

 u
n

it
s)

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coordinate x

Fig. 2.8 The pulse profile (filled curve) and the response function profile (continuous line) for the
local case (left panel) and the highly nonlocal case (right panel)

Equation (2.29) admits a Gaussian solution,

u(x) = u0 exp(−x2/2x2
0 ) (2.30)

where u0 =
√

P
x0

√
π
. The spatial extension of the localized wave is related to the

soliton power by the relationship,

x4
0 P = 2

K2
= constant, (2.31)

that is also known as the “existence curve” of the nonlocal solitons.
The highly nonlocal limit will allow to solve the disordered version of this kind of

systems and the nonlocality, as we will see, play a crucial role in the management of
the localized light phenomena, acting as a filter between nonlinearity and disorder,
and averaging out several effects related to randomness.
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