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Chapter 2
Terahertz Optics

J Anthony Murphy and Créidhe O’Sullivan

Abstract This chapter covers the basic principles of terahertz (THz) optics, begin-
ning with a review of Gaussian beam propagation and including a section on the
design of quasi-optical systems. We review the range of optical components and
subsystems typically encountered, and discuss the limitations of practical systems.
A section on higher precision modelling is also included that summarises techniques
for the analysis of aberration, truncation and cross-polarisation effects.

2.1 Introduction—Optics at THz Frequencies

In this chapter we will look in particular at THz optics, design and modelling.
Sandwiched between the optical and microwave regimes, the THz portion of the
electromagnetic spectrum with frequencies in the range 300 GHz–3 THz (wavelength
1 mm–100µm, sometimes up to 10 THz) is a challenging one in which to work and so
technologies and analysis techniques are often borrowed from other bands. The lack
of readily available THz sources and detectors has led to this relatively unexplored
region of the electromagnetic spectrum being termed the “THz gap” [1]. Most of
the radiation emitted in the universe since the Big Bang is in this range but at these
frequencies the Earth’s atmosphere is a strong absorber, mainly due to the presence
of water vapour.

Although radiation is typically propagated and analysed as free-space beams,
unlike traditional optics, beams may be only a few wavelengths in diameter and
diffraction effects can become important [2, 3]. Modelling such beams requires a
different approach to geometrical optics, commonly used in the visible where wave-
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lengths are assumed to be negligible when compared with component and beam
sizes. On the other hand, the physical optics techniques used for radio and microwave
systems [4], although very accurate, can be computationally slow and inefficient in
the design and analysis process of multi-element systems. A Gaussian beam mode
analysis, the basis for most of the discussion on optical design and analysis in this
chapter, is a useful compromise between the two. The technique, originally devel-
oped for dealing with laser beam propagation, is based on a modal description of
electromagnetic field propagation [5] and is appropriate for the description of com-
pact optical systems in which diffraction effects are inevitably important (so called
“quasi-optical systems”) [3, 6–8].

2.2 Gaussian Beam Propagation in Ideal Optical Systems

2.2.1 Propagation Properties of a Simple Gaussian Beam Mode

In general, Gaussian beam modes are solutions to the paraxial wave equation such that
the form of the mode (i.e. intensity distribution) does not change with propagation.
They constitute a very convenient basis set of fields with which to simulate the
behaviour of propagating beams in quasi-optical systems. The theory of Gaussian
beam mode propagation for long-wavelength systems has been elaborated on by a
number of authors [1, 3, 6–10] and is the basis for the discussion here.

We begin by assuming quasi-collimated propagation of a monochromatic and
spatially coherent beam. Such a paraxial beam travels in a well-defined direction
and is by definition of finite transverse extent (and not an infinite plane wave, for
example). Thus, for a component E of the complex electric field that satisfies the
time-independent wave equation (i.e. the Helmholtz Equation: ∇2 E + k2 E = 0
where k = ω/c = 2π/λ ), we search only for paraxial solutions travelling in the
z-direction, where the amplitude of the electric field varies gradually over a num-
ber of wavelengths in the x- and y-directions and the z-direction variation is still
dominated by a term of the form exp(− jkz). Then re-writing the electric field as
E(x, y, z) ≡ u(x, y, z)exp(− jkz) we can re-express the Helmholtz equation as
∇2u − 2 jk∂u/∂z = 0. For paraxial behaviour u(x, y, z) can only change slowly
with z over many wavelengths implying: |∂2u/∂z2| � |k∂u/∂z|, thus yielding the
so-called paraxial wave equation: ∂2u/∂x2 + ∂2u/∂ y2 − 2 jk∂u/∂z = 0, which
relates how u varies with z in the longitudinal direction to how it varies with x and
y in the transverse directions.

It is easy to show that a simple solution for u can be written down in the form

u(x, y, z) = u0

(q0 + z)
exp

(
− j

k(x2 + y2)

2(q0 + z)

)
, (2.1)

where u0 and q0 are constants. Clearly at z = 0 we obtain a Gaussian-shaped
beam if we choose q0 = jkW 2

0 /2 (i.e. q0 is pure imaginary so that u(x, y, z) ∝
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Fig. 2.1 Characteristic para-
meters of a Gaussian beam

exp
(−(x2 + y2)/W 2

0

)
, a Gaussian-shaped intensity pattern with a 1/e in amplitude

beam radius of W0 and a planar phase front. On propagating away from z = 0
the exponent in the expression for u(x, y, z) has both real and imaginary terms in
(x2 + y2), the off-axis transverse distance squared. The imaginary part corresponds
to a parabolic phase front on the axis. This has the usual quadratic variation in x and
y that one gets in paraxial approximations to a spherical wave front. Re-expressed
in the more familiar form

EG(x, y, z) =
√

2

πW 2(z)
exp

[
− (x2 + y2)

W 2(z)
− jk

(
z + (x2 + y2)

2R(z)

)
+ jφ0(z)

]
,

(2.2)
where the field has been normalised so that

∫ ∞
0

∫ ∞
0 |E(x, y)|2dxdy = 1.

Setting zc = kW 2
0 /2, the 1/e beam width parameter W (z) obeys the relationship

W 2(z) = W 2
0

(
1 + (z/zc)

2
)

while for the phase radius of curvature R(z) = z +
z2

c/z. The phase-slippage term φ0(z) can be re-expressed as φ0(z) = tan−1(z/zc),
(so called as it represents the phase slippage with respect to a plane wave E =
E0exp(− jkz) travelling in the z-direction). This may be important in interferometers,
for example, in which split beams are recombined after travelling different path
lengths so that the phase slippage term is not the same for the two paths.

The beam has a beam waist radius, W0, at z = 0, where by definition it is of
minimum extent and also has an infinite radius of curvature (i.e. has a plane wave
front). The wave remains quasi-collimated (i.e. W (z) only increases by a factor of
less than

√
2) for values of −zc < z < zc, known as the confocal distance (or

Rayleigh range, see Fig. 2.1). This also represents the “depth of focus” of the beam
in some sense although the term focus here does not imply an image. The phase
slippage varies only gradually with z between the beam waist and the far field (at
which point it settles down to π/2). The paraxial wave equation thus forces the
simplest Gaussian beam solution to have certain characteristic parameters: W (z),
R(z), φ(z), which vary with z in a particular way and thus determine its propagation
properties.

If we regard E (complex) as representing the electric field, then the power
flux I = 〈

E × H∗〉 = |E |2/2μ0c (i.e. power per unit area). For convenience we
drop the 2μ0c and normalise the mode so that the so-called “generalised” power
given by: P = ∫

S(|E |2/2μ0c)d S is unity, where S is a transverse plane surface.
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Because of the scalar nature of the treatment here, E cannot in reality represent
the electric field fully. Instead one can think of it as representing the dominant (for
example, the co-polar) component. In fact each component of E satisfies the wave
equation separately and we can use Maxwell’s equations to derive all the components
of E and H if we know two of the components (as the case with waveguide modes
[11]). Thus, for cases where detailed information about the polarisation properties of
a beam is of interest a vector approach is necessary. It is also possible to carry out a
Gaussian beam mode analysis for both transverse components Ex and Ey indepen-
dently and thus include polarisation at the level of approximation of paraxial optics,
although in this case Maxwell’s equations are not strictly satisfied [7, 12].

It is worth noting that the same approximations are valid for Gaussian beam mode
propagation as for the Fresnel diffraction approximation [7, 9]. In fact we can model
both the Fresnel and Fraunhofer regions conveniently with a Gaussian beam mode
analysis [13]. Often a simple Gaussian mode is a good approximation both to the
radiated beam produced by a typical THz source and to the reception pattern of a
typical detector feed, as discussed later. This allows one to readily design optical
systems to guide and re-collimate the propagating beam as required for a compact
and efficient design [6].

2.2.2 Focussing Gaussian Beams: Simple Optical Systems

A Gaussian beam can be re-collimated using a re-focussing element such as a simple
thin lens or curved mirror acting as a phase transformer operating on the spherical
incident wavefront of the beam [3, 10]. The correct approach is to regard the effect
of an ideal thin lens placed in the path of a Gaussian beam as transforming the radius
of curvature Rin of the incident wavefront to Rout for the transmitted wavefront
according to the relationship 1/Rout = 1/Rin − 1/ f , where f is the focal length of
the focussing component. In this formalism, we regard Rout as negative if the centre
of curvature lies at a more positive value of z than the plane of interest [6]. Clearly,
once the power of the thin lens is high enough, we can re-collimate or re-focus a
beam. Thus, by appropriate combination of phase curvature transformations we can
maintain a quasi-collimated beam over a long distance using a series of re-focussing
thin lenses to form a so-called beam guide.

For Gaussian beams, however, the phase radius of curvature R is generally not
equal to the distance back to the beam waist or “focus”, which complicates optical
system design when dealing with Gaussian beams. Clearly, therefore, the usual for-
mulas for imaging in geometrical optics cannot be used in long-wavelength systems
to predict the position of the beam waists. At short wavelengths a focussing thin lens
of sufficient power will form an image of a point source (a distance u from the thin
lens) at a distance v = u f/(u − f ) from the thin lens, whereas at long wavelengths
Rin 	= din and Rout 	= dout, where din and dout are the respective distances back to the
respective beam waists. In fact it is important to make a distinction between forming
a beam waist (beam at its narrowest extent) and re-imaging the amplitude pattern of a
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Fig. 2.2 The focussing of a
Gaussian beam

single beam with a complex structure, or indeed even re-imaging an array of beams.
A complex field pattern at some plane, even if at a beam waist, will not generally be
re-imaged at another beam waist, except for very specialised optical systems such
as Gaussian beam telescopes to be discussed below in this section. In general for
single-beam systems in which a simple Gaussian beam propagates, imaging issues
do not have to be considered.

Given that the width of the transmitted beam at an ideal thin lens (i.e. a planar
phase transformation) must match that of the incident beam allows us to derive some
useful relationships for the position and width of the beam waist on the output side
W0,out (see Fig. 2.2), where in terms of the incident beam width parameter W0,in and
the focal length of the thin lens (as given in [3, 6] for example)

W 2
0,out = W 2

0,in(
1 − din

f

)2 +
(

kW 2
0,in

2 f

)2 and dout = f + din − f(
1 − din

f

)2 +
(

kW 2
0,in

2 f

)2 .

(2.3)
On considering these, an interesting solution arises if din = f , as then also dout = f
(independent of input beam parameters or wavelength!) and both beam waists are
on the focal planes of the focussing thin lens and satisfy W0,outW0,in = (2 f/k) =
(λ f )/π . This behaviour is in marked contrast to geometrical optics and illustrates
typical pitfalls in long-wave optics if a geometricl optics design is assumed adequate.

A very convenient optical system is obtained if we arrange a pair of thin lenses
separated by the sum of their focal lengths f1 + f2 with the input beam waist at
the focal plane of the first thin lens (of focal length f1). In this case the output
beam waist at thin lens 2 (of focal length f2), the output focal plane of the system,
becomes independent of frequency. The system has the optical configutation of a
perfect classical optical telescope where dout = f2 and W0,out = ( f2/ f1)W0,in! In
fact this arrangement is known as a Gaussian beam telescope.These have very impor-
tant applications in long-wave optical systems particularly where wide-bandwidth
behaviour is required. In a multi-element thin lens system we can build up a beam
guide by cascading Gaussian beam telescopes thus producing a broadband arrange-
ment that is independent of frequency and has constant magnification if all focal
lengths are equal.
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Fig. 2.3 Input and output
ray trajectories defined by
(rin, θin) and (rout, θout)

2.2.3 ABCD Matrices and Propagation in General Optical Systems

For multi-element optical systems we can use the convenient ABCD ray transfer
matrix formalism commonly used in geometrical optics [3, 5, 10]. In this case the
ABCD transfer matrix M operates on a vector made up of r , the distance from the
optical axis to a point on the ray trajectory and the angle θ it makes with the axis
(see Fig. 2.3), transforming (rin, θin) at the input reference plane into (rout, θout) at
the output reference plane according to the matrix equation

[
rout
θout

]
= M ·

[
rin
θin

]
=

[
A B
C D

]
·
[

rin
θin

]
=

[
Arin + Bθin
Crin + Dθin

]
. (2.4)

For a multi-element system made up of a series of thin lenses and other optical
components, the full ABCD matrix is given by a simple matrix product of the corre-
sponding ABCD matrix for the individual components but taking care to include any
distance propagated in free space or in a medium between components.

The connection with a Gaussian beam is made through the effect of an optical
system on the phase curvature of the beam [5]. At short wavelengths a spherical wave
emanating from a point source on the optical axis of the system can be modelled as
a fan of rays impinging on the input plane where for each ray rin/θin = Rin is a
constant which corresponds to the radius of curvature of the phase front and is equal
to the distance back to the point source. Thus, the relationship between the input
plane and output plane phase curvatures can readily be derived, Rout = rout/θout =
(ARin + B)/(C Rin + D). The ABCD matrix formalism for tracing rays thus allows
one calculate how the radius of curvature for this beam varies with propagation
through the optical system.

Analogously a Gaussian beam can be treated as a complex point source with
complex radius of curvature q(z) = q0 +z on re-expressing the equation for a simple
Gaussian as u(x, y, z) ∝ exp

(− jk(x2 + y2)/2q(z)
)
, consistent with Eq. 2.1. The

same relationship can be applied in this case to the complex phase radius of curvature
term qin on propagation of a Gaussian beam from the input to the output plane of
some component, qout = (Aqin + B)/(Cqin + D), where qout is the complex radius
of curvature at the output plane. We can then recover (Wout, Rout, φout) at the output
plane for a given (Win, Rin, φin) at the input plane, where 1/qin = 1/Rin − jλ/πW 2

in.
The recovered beam parameters at the ouput plane are



2 Terahertz Optics 35

Table 2.1 Examples of ABCD matrices

ABCD Matrix M

Propagation a distance L in free space (or a medium of
constant refractive index)

[
1 L
0 1

]

Transformation at a thin lens of focal length f

[
1 0
−1/ f 1

]

Transformation for a Gaussian beam telescope with thin
lenses of focal lengths f1 and f2

[ − f2/ f1 0
0 − f1/ f2

]

Refraction at a curved interface of radius of curvature R
(where n1 is the initial refractive index, n2 is the final
refractive index, R < 0 for convex (centre of curvature
after interface))

[
1 0
−(n1 − n2)/Rn2 n1/n2

]

Rout =
(

Re

[
C + D/qin

A + B/qin

])−1

Wout =
√

−λ

π

(
Im

[
C + D/qin

A + B/qin

])−1

φ0,out = φ0,in − Arg [A + B(1/qin)] . (2.5)

The ABCD matrices for a number of important examples are given in Table 2.1.
If a beam propagates through several optical elements (and we include diffraction
effects over the path lengths between the componenets) a single ABCD matrix may be
computed for the system, which is the matrix product of all the individual matrices.
The first optical element must be on the right-hand side of that product.

Mtotal = MN · MN−1 · . . . · M2 · M1 =
[

A B
C D

]
total

. (2.6)

This turns out to be a very powerful technique in designing quasi-optical systems.
In the next section we consider the practical issues that arise with re-imaging beams
using both focussing mirrors and thick lenses, as well as other optical devices which
can be used for developing sophisticated quasi-optical “circuits”.

2.3 Optical Components and Subsystems

2.3.1 Coupling Beams and Focussing Elements

In general when coupling a source to a detector we have to ensure that the source beam
is well matched to the reception beam of the detector feed antenna. Any mismatches
will give rise to power losses and partial reflections with a reduction in performance.
To a reasonable level of accuracy we can design a system with acceptable optical
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performance if we can assume that a simple Gaussian beam approximation is valid
and that the focussing elements to re-collimate and re-focus the beam are ideal.

In practical applications both re-focussing mirrors as well as lenses tend to be
used as phase curvature transformers. Lenses can be easily manufactured from vari-
ous plastic materials with convenient indices of refraction for the purpose, along with
other dielectric and semiconductor materials such a quartz, fused silica, saphire and
silicon [1]. However, some potentially useful materials have non-ideal properties such
as non-negligible loss tangents. Also, unless anti-reflection coated, the air–dielectric
interface can give rise to partial reflections, especially for materials with high refrac-
tive indices such as silicon. Furthermore, any nonuniformities in such materials will
introduce extra aberrations and possible cross-polarisation effects which are difficult
to model. Useful discussions and reviews are to be found in [3]. Also the recent
development of artifical materials including metamaterials at THz frequencies holds
out the promise of high resolution imaging [1].

Off-axis focussing mirrors are often preferred for re-collimating the beams
because the optical behaviour of the lenses are so affected by the material prop-
erties. Although such mirrors do introduce some distortion and cross-polarisation
effects, such effects can be precisely modelled and the resulting non-ideal effects
predicted [14, 15]. Off-axis mirrors are also easy to manufacture from inexpen-
sive materials, and because the mirror deflects a beam, they lend themselves to
compact folded optical systems. For high-sensitivity applications it is possible to
cryogenically cool mirrors.

As well as guiding waves using beam guides based on focussing optical
components, waveguides and optical fibres (including bare metal wires as effective
waveguides) may also be employed depending on the application [16].

Other imaging modalities based on holographic techniques are reported for exam-
ple in [17, 18]. Such an approach can be used to recover THz images of an actively
illuminated object, including phase information. The technique relies on the interef-
erence of the object beam with a reference beam, both derived from the same coherent
source.

2.3.2 Off-Axis Focussing Mirrors

Off-axis ellipsoidal and parabolic mirrors are often used for re-focussing beams.
An ellipsoid of revolution provides the ideal phase transformer for matching an
input and output spherical wavefront. Projection effects may give rise to some slight
asymmetric distortion of the amplitude which can usually be neglected [14, 15].
The centres of curvature of these spherical phase surfaces should coincide with the
corresponding foci of the ellipsoid (see Fig. 2.4) [3]. If we wish to re-focus and
deflect the beam, and the phase radii of curvature at the point where the deflected
beam axis interesects the mirror surface are given by Rin = R1 and Rout = −R2,
then the semi-major axis of the appropriate ellipsoid is given by a = (R1 + R2)/2,
while the semi-minor axis is b = √

R1 R2 cos θi , where θi is the angle of incidence
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Fig. 2.4 Ellipsoid with foci at F1 and F2

(half the deflection angle) and the usual equation for an ellipse applies: x2/a2 +
y2/b2 = 1, with the actual mirror surface part of a surface of revolution around the
x- axis as shown in the figure. The focal length of an ellipsoidal mirror is given by
1/ f = 1/R1 + 1/R2 so that the mirror effectively behaves as a thin lens. Note of
course that the beam waists do not coincide with the geometrical foci of the ellipse
F1 or F2 (see Fig. 2.4). Instead, the distance back to the input beam waist is given
by: din = Rin/[1 + (λRin/πW 2

m)2] < R1, where Wm is the beam width parameter
at the mirror.

If the input or output beam waist is at the mirror itself then the appropriate mirror
reduces to an off-axis parabolic mirror (i.e. the limit for an ellipsoid when R1 or
R2 is very large). The mirror produces a perfect phase transformation between a
spherical and a plane wave front, although projection effects again give rise to some
asymmetric distortion on reflection [15]. A parabolic (or more strictly paraboloidal)
mirror is the correct conic reflecting surface for a large beam waist at the mirror (plane
wavefront) imaged to narrower beam waist near the geometrical focus of parabola
(typical in astronomical telescopes etc.). Given R1 and the angle of incidence θi

we can determine the correct paraboloidal surface (paraboloid of revolution around
x-axis where y2 = 4px , see Fig. 2.5) with p = R1 cos2 θi . Parabolic mirrors are
often used as good substitutes for ellipsoidal mirrors if R2 
 R1, or vice versa (e.g.
if the mirror is in far field of a source or detector, for example).

When dealing with multi-beam systems, off-axis mirrors do introduce significant
aberrations and distortion effects across the field of view (region over which beams
are spread), especially away from the optical axis of the system. In that case very
careful optical design is necessary to reduce the phase aberrations across the field
of beams while at the same time properly accounting for the dominant diffraction
effects. This is solved using an approach which couples design-technique principles
from both optical engineering (and normally applied at short wavelengths) along
with long-wave optics leading to compensated systems, e.g. the Planck satellite
focal plane [19]. Also, for example, in specialised systems cross-polar effects can
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Fig. 2.5 Paraboloid with
focus at F

be minimised using so-called Dragone-Mitzsugushi configurations [20]. However,
these effects are not generally a significant issue for single beam systems where a
small amount of beam squint can be tolerated [15]. There is further discussion on
these points in the section on the design of optical systems, particularly for broadband
THz spectroscopy systems, where the use of parabolic mirrors is popular.

2.3.3 Thick Lenses

There will be some diffraction effects associated with the transmission of a beam
through a thick lens. We can derive the ABCD transformation matrix Mthick lens for
a thick lens with spherical surfaces in a general form. If R1 and R2 are the radii of
curvatures of the surfaces on the input and output sides, respectively, then this can be
written (where d is the lens thickness, n2 is the refractive index of the lens material
and n1 and n3 are the refractive indices of the media on the input and output sides,
respectively) as:

Mthick-lens =
⎡
⎢⎣

n2 R1−(n1−n2)d
n2 R1

n1
n2

d

n3−n2
n3 R2

− n1−n2
n3 R1

+ (n3−n2)(n2−n1)n1d
n2n3 R1 R2

n1(n2 R2−(n2−n3)d)
n2n3 R2

⎤
⎥⎦ . (2.7)

For the case where n1 = n3 = 1 and n2 = n, the refractive index of the lens material,
this yields:
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Mthick-lens =
⎡
⎢⎣

1 + (n−1)d
n R1

d
n

(n − 1)
(

1
R1

− 1
R2

− (n−1)
n

d
R1 R2

)
1 − (n−1)d

n R2

⎤
⎥⎦ . (2.8)

Short focal length lenses may require the surface to be shaped to deal with non-
paraxial rays in order to reduce aberrations (this is discussed in [3], for example). This
would be appropriate when a lens is used at the aperture of a horn antenna. Goldsmith
[3] also discusses other refracting focussing elements such as zoned (Fresnel) lenses.
Antireflection coatings have been developed particularly for lenses made of high
refractive index matrials, e.g. [1, 21, 22].

2.3.4 Beam Splitters, Polarising Grids, Roof Mirrors,
Interferometers and Filters

Useful components have also been developed which function as optical devices in
so-called quasi-optical circuits, mimicking waveguide devices and circuitry. Both
frequency-selective devices (e.g. filter plates) and frequency-independent devices
(e.g. roof-mirrors) are widely utilised in both frequency-dependent and frequency-
independent applications. There is an extensive review of the operation and appli-
cation of such components in [1, 3], for example. Clearly, as well as their basic
function, various aspects of Gaussian beam propagation through such devices need
to be considered, such as beam spreading, truncation levels and phase slippage. For
example, as a rule of thumb the component should not truncate the beam at a radius of
less than 2 beam width parameters, W , otherwise undesired diffraction of the beam
as well as loss in transmitted power will occur.

One example of a very useful but simple optical device is the roof mirror, which
rotates the direction of polarisation of an incident wave by an angle of 2α, if the
angle between the incident polarisation and the axis of the roof mirror is α (see
Fig. 2.6). The roof mirror produces the rotation as the field component parallel to
the flat surfaces is not affected while the component normal to surface has its direc-
tion reversed in the double reflection. When combined with a polarising grid, roof
mirrors can be configured as path-length modulators for a single beam [3] or as the
polarisation rotation mirrors in a Michelson polarising interferometer (see Fig. 2.6)
[23]. In both these applications a polarising grid is present which reflects polari-
sation parallel to the polarising grid wires and transmits, without significant loss,
polarisation perpendicular to the grid wires. Path-length modulators are useful for
introducing propagation delays, while polarising Michelson interferometers can be
utilised as low-loss beam combiners for two beams closely spaced in frequency (local
oscillator injection in heterodyne systems) or as single-sideband filters, e.g. [24] as
well as in Fourier transform spectroscopy. Alternatively, a wire-grid attenuator or
power divider that is free of reflections back into the incident beam can be designed
by using wire grids as beam splitters.



40 J. A. Murphy and C. O’Sullivan

Fig. 2.6 a Roof mirror rotating the input polarisation direction and b polarisation-rotating inter-
ferometer (90◦ polarisation rotation when d1 − d2 = λ/2)

Polarisation transducers are useful quasi-optical devices that produce an arbitrary
differential phase shift between two orthogonal electric-field polarisation directions.
For example, a half-wave plate provides a differential phase shift of π between two
orthogonal electric field polarisation directions while a quarter-wave plate trans-
forms linear to circular polarisation. Wave plates have artificially generated (through
mechanical milling) fast and slow axes (the names refer to the speed of a wave along
the axis) [25]. A quasi-optical polariser based on self-complementary subwavelength
hole arrays are reported in [26].

It is also possible to make anisotropic materials from one that is naturally isotropic
by altering its geometry, thus simulating a birefringent dielectric, for example [27].
Dielectric strips of alternating permitivities can be combined to form composite
dielectrics with the required dielectric constant, provided the wavelength is much
longer than the strip thickness. Such strips can also be used as filters, mirrors, etc.
[28].

Extremely useful high- and low-pass filters can also be made with inductive and
capacitative grids, respectively, [29] while resonant grids can be used for band-pass
filtering and a perforated plate filter as a high-pass filter with a sharp cutoff, even
with profile shaping for lensing [25]. A transmission line matrix method can be used
as a convenient way of calculating the frequency response of systems composed of
cascaded elements [27].

2.3.5 Diffractive Elements and Phase Gratings

Diffractive optic elements are optical components that redirect segments of a wave-
front through the use of interference and/or phase control [30]. They can be used
to transform the intensity distribution of a coherent beam of light at one plane into
another intensity pattern at a second plane (the far field, for example) by imposing a
phase distribution on the field. Examples include the Fresnel phase plate, Dammann
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Gratings and Fourier Gratings [31–33] that can be used to generate multiple images
of a single input beam. Such devices are useful for quasi-optically multiplexing a
local oscillator source with an array of detectors in a heterodyne system. There are
a number of dielectric materials whose mechanical and optical properties in the far
infrared make them ideal candidates for use in transmission phase gratings [1, 3].

In designing phase gratings, no analytical solution exists for finding the phase
profile required to transform a given arbitrary input field to a given arbitrary output
field, and in fact an exact transform may not even be possible [34]. Optimisation
techniques, such as simulated annealing or genetic algorithms, and phase-retrieval
techniques such as the Gerchberg-Saxton algorithm have all been applied to find
optimal phase solutions [35, 36].

Another useful example of beam-shaping is in the production of “diffraction-free
beams”, in which the amplitude does not change in form or scale while propagating
[37]. These beams have an amplitude cross-section of a Bessel function and, ideally,
are infinite in extent. Pseudo-Bessel beams (having finite extent and power) have
been generated using dielectric conical-shaped lenses called axicons [38, 39].

2.4 Beam Coupling Issues

2.4.1 Coupling to Radiating Elements

Many different kinds of radiating elements are used as feed systems for launching
and detecting THz waves. These systems ideally produce quasi-Gaussian beams so
that the sidelobe content is not very significant and a simple Gaussian beam can be
used as a good approximation in designing optical systems and beam guides. For
higher levels of accuracy a multi-moded description of the beam can be applied as
discussed below (Sect. 2.5.1).

One of the most predictable feed types, in terms of producing a well-controlled
and understood beam, is the horn antenna.The field at a horn aperture can be
predicted from wave-guide theory, and this is an ideal plane at which to determine
the decomposition into higher order modes for a multi-mode analysis. To a good
approximation the field at the aperture has a well-defined phase radius of curvature
R with the centre of curvature located at the apex of the horn flare. This is true for
both the typical conical and pyramidal shapes encountered (i.e. R = Laxial, the axial
slant length of the horn). Note that in terms of fitting a Gaussian beam to the field,
the spherical phase variation off-axis can be expressed using the usual quadratic
approximation for paraxial beams, and we choose a value for beam width parameter,
W , that optimises coupling to the fundamental, E(x, y) ≈ A0 EG(x, y), where A0 is
the fundamental mode coefficient and EG(x, y) is a simple Gaussian (fundamental
mode).

For a corrugated horn antenna the beam width at the aperture (radius a) can be
set to Wap = 0.6435a, and the phase curvature is given by the horn axial length as
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Table 2.2 Gaussian
approximation to horn beams

Horn type Beam width W

Corrugated conical 0.643a (radius) [40]
Smooth walled conical 0.765a (radius) [12]
Rectangular 0.35a × 0.51b (width × height) [42]
Diagonal 0.42a (sidelength) [43]

above [40, 41]. This approximate Gaussian fit can be used to represent the actual
corrugated horn antenna beam in designing any optical beam guides required. It is
worth noting that although the Gaussian is a good fit (with 98 % fractional power
coupling) to the beam from a corrugated horn, it cannot represent the side-lobe struc-
ture (typically below the −20 dB level). In fact it only poorly predicts the intensity
on axis, and only if one calculates the integrated power (inside radius r ) is much
better agreement obtained between the Gaussian and horn fields. Of course this is
what is essentially optimised in finding the “best-fit” Gaussian. In Table 2.2 we list
the best-fit Gaussian parameters for typical horn antennas.

The fractional coupling of the lowest order one-dimensional Gaussian mode to
a truncated uniform field (of width a) has its maximum value when W = 0.51a
and to a simple cosine tapered field when W = 0.35a. The fractional coupling of
a square TE10 waveguide field to the lowest order two-dimensional fundamental
Gaussian mode EG(x, y), with the beam waists in the x and y coordinates equal,
has its maximum value when W = 0.43a, where a is the sidelength of the square
waveguide (the same as for a diagonal horn). In the latter case, 84 % of the power is
contained in the fundamental mode, which compares with 98 % for the HE11 mode
of a corrugated horn antenna.

Clearly one needs to include higher order Gaussian beam modes for a more accu-
rate description of real fields (non-Gaussian effects) in order to simulate how the
beam pattern of a horn antenna evolves and develops sidelobe structure for example.
These so-called sidelobes are equivalent to subsiduary maxima in classical wave
optics, of course, as normally simulated using Fresnel and Fraunhofer diffraction
integrals.

Horn antennas become difficult to manufacture at frequencies around 1 THz and
above, and other structures including planar lens antenna schemes are often employed
[3]. Generally the beams produced by these other structures are not as well behaved,
nor indeed as well understood, as the horn antenna feeds and the power coupling to
a fundamental Gaussian (the Gaussicity of the beam) will be somewhat lower with
higher sidelobe levels. These issues are discussed further in Sect. 2.6.3.

2.4.2 Mismatched Gaussian Beams and Defocussing Effects

In designing quasi-optical systems and analysing potential losses in non-ideal
systems, the coupling of beams together becomes an issue (such as how a source
beam is matched to a detector, for example). Generally two situations arise: (i) the
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coupling of an incident beam from a source to a beam that characterises a component
such as a detector or the recombination of a pair of beams in an interferometer such
as a Michelson for example, or (ii) the imperfect coupling that occurs because of
mechanical misalignment, defocusing or other tolerancing effects in a quasi-optical
beam guide.

A beam coupling efficiency analysis requires the calculation of the fraction of
power coupled from an incident beam to the beam of the component of interest,
as a function of some mismatch between the parameters (Wa, Ra) and (Wb, Rb)

of the two beams a and b, respectively. The power coupling coefficient between
two fields Ea and Eb over a transverse plane S is defined by the overlap inte-
gral Cab = ∣∣∫ ∫

S E∗
a (x, y; Wa, Ra).Eb(x, y; Wb, Rb)dxdy

∣∣2. Since a scalar field
has been assumed, one must be careful with polarisation effects and normalisation
(as the true field coupling is a vector equation). Here therefore it is assumed that both
fields are polarised in the same sense (since we are using a scalar approximation).
A number of interesting common cases arise for different kinds of mismatched beams.
We will assume that for these cases Gaussian beam approximations are adequate
descriptions of the beams, particularly as it is often the order of magnitude of the
fractional power coupling loss due to mismatch that is required.

We first consider a defocussed system which occurs when the two beams are
axially aligned (optical axes aligned) but the beam waists do not coincide as they
should for maximum power coupling (for example the detector feed phase centre is
not quite on the focal plane in a telescope system). Thus, there will be a mismatch
in the beam width W and phase curvature R at some arbitrary plane. It may also be
that the beams have mismatched beam waist sizes (such as a detector feed antenna
with the wrong parameters to match the incident source field). For the general case,
therefore, neither beam waists coincide nor are the beam waist radii W0,a and W0,b

equal. The on-axis phase slippages will be different in general as well, φ0,a 	= φ0,b,
which could be an issue for an interferometer or delay line, for example. For such a
mismatched and defocussed system the fractional power coupling can be shown to
be expressible in terms of the beam waist parameters and the distance between the
beam waist positions as

Caxial
ab = 4(

W0,b
W0,a

+ W0,a
W0,b

)2 +
(

λ	z
πW0,a W0,b

)2 , (2.9)

where 	z is the shift of the beam waist [3]. Even if the beams are otherwise well
matched in terms of their optical parameters, mechanical mismatches may still occur
(due to realistic tolerancing errors, for example) which cause the optical axes of the
two beams to be misaligned [44]. We can analyse these tolerencing errors in terms
of lateral shifts and tilts. Figure 2.7 illustrates defocusing as well as tilt and offset
mismatched beams.

In the case of tilts, a mismatch gives rise to a phase slope in one of the fields
relative to the other across the plane where their optical axes intersect. For Gaussian
beams which have the same beam parameters (no other mismatches other than tilt)
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Fig. 2.7 Gaussian beam misalignment: a defocus, b defocus and tilt, and c defocus and off-offset

it can be shown [3] that the fractional power coupling between the beams is given by

C tilt
ab = exp

[
−

(
θ

θW

)2
]

, (2.10)

where θW = λ
πW and where the tilt occurs at the beam waist. For lateral offsets if we

assume a beam displacement of 	x in the x direction, (but otherwise beam widths
and waist locations are the same), the fractional power coupling including the loss
due to offset can be shown to be given by

Coffset
ab = exp

[
−

(
	x

W0

)2
]

, (2.11)
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a similar dependency to that for tilt misalignments. In general more than one type
of mismatch may be present particularly when tolerencing errors are large and thus
may affect system performance (see Fig. 2.7).

Often for system design or a basic analysis of tolerencing, a simple Gaussian
beam mode approach is an excellent compromise in terms of speed of computation
particularly for optimisation. When a more precise analysis of loss in a system is
required however a full modal description of a beam also including the higher order
modes in the analysis may be necessary, as will be discussed in the next section.

2.5 Detailed Modelling

2.5.1 Higher Order Gaussian Beam Modes

A Gaussian beam is the simplest solution to the paraxial wave equation and suffices in
many cases to describe beam propagation in an optical system. There are situations,
however, when we need to model more complex field distributions and in these
cases we can use higher order beam mode solutions (see e.g. [3]). These higher
order Gaussian modes are characterised by the same beam radius W (z) and phase
radius of curvature R(z) as the fundamental mode, only the phase slippage, (with
respect to a plane wave) differs. The most appropriate mode-set to use depends on
the symmetry of the system being modelled. In cylindrical coordinates (r, ϕ, z) we
can use Gaussian–Laguerre modes

Epm(r, ϕ, z) =
[

2p!
π(p + m)!

]0.5 1

W (z)

[ √
2r

W (z)

]m

Lm
p

(
2r2

W 2(z)

)

× exp

[ −r2

W 2(z)
− jkz − jπr2

λR(z)
+ j (2p + m + 1)φ0(z)

]

× exp( jmϕ), (2.12)

where Lm
p (s) are generalised Laguerre polynomials, and in Cartesian coordinates

(x, y, z) Gaussian–Hermite modes

Emn(x, y, z) =
(

1

π W 2(z) 2m+n−1 m! n!
)0.5

Hm

( √
2x

W (z)

)
Hn

( √
2y

W (z)

)

× exp

[
− x2 + y2

W 2(z)
− jkz − jπ(x2 + y2)

λR(z)
+ j (n + m + 1)φ0(z)

]
,

(2.13)

where Hm(t) are Hermite polynomials and the modes are normalised so that the gen-
eralised power is unity (orthonormal mode sets). φ0 is the usual phase slippage of
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the fundamental mode. These higher order solutions consist of polynomials super-
imposed on the fundamental Gaussian mode and constitute complete orthonomal
sets of modes that are each solutions to the paraxial wave equation. Any paraxial
beam E(x, y, z) can therefore be expressed as a superposition of Gaussian modes
(for example in the case of Cartesian coordinates),

E(x, y, z) =
∑

i

Ai Ei (x, y, z), (2.14)

where Ai are the mode coefficients and i represents the pair of indices (m, n) for
the mode. If the field is known over the surface S then the mode coefficients are
determined by calculating the overlap integrals

Ai =
∫ ∫

S

Ei (x, y, z)∗E(x, y, z)ds (2.15)

(see [13] for examples). This higher order mode decomposition of a field is the
computationally intensive step but it only has to be carried out once if there is no
scattering of power between modes (if mirrors and lenses are treated as perfect
phase transformers with no truncation). Optical elements can, however, introduce
a significant amount of power scattering between modes as described in the next
section.

The choice of the optimum beam mode set (in terms of the parameters W and R) is
crucial to the efficiency of the Gaussian beam mode approach and several approaches
can be taken. Very often a source field can be represented to a high accuracy by the sum
of only a few modes and the mode set that maximises the power in the fundamental is
chosen. In some cases, however, this can cause the power in the higher order modes,
although small, to be spread essentially over a large number of modes with the result
that they are all required to accurately model the field. The choice of W might more
usefully take into account the ability of the highest order mode to model the edge
of the field. If we consider Gaussian–Hermite modes, for example, the final zero
crossing of the nth mode is approximately given by

√
0.75n/W . Matching this to the

extent of the field to be decomposed gives a value for W [45, 46]. R can be chosen
to match the phase curvature of the field. Once the mode coefficients are known, it is
straightforward to model the propagation of a beam by simply keeping track of the
evolution of the beam width, the phase radius of curvature and the phase slippage
between modes (using, for example, ABCD matrices).

2.5.2 Aberrations, Truncation, Beam Distortion

If the beam guide or optical coupling system is not perfect then there may be trunca-
tion and aberration effects which distort the field [46–50]. It is also possible to have
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a mismatched or defocussed beam as discussed above (Sect. 2.4.2). A propagating
beam in an non-ideal quasi-optical system can be analysed in terms of what happens
to its component modes and the non-ideal propagation can be viewed as resulting
in the mode coefficients for the beam varying with propagation, a process we call
scattering. There may also be some partial reflections present resulting in power
travelling both in the forward and reverse directions through the optical system. For
the case where we are concerned with the coupling of beams not well described by
a Gaussian we can readily include higher order modes, which of course complicates
the description but provides a higher level of accuracy in the analysis.

Cab =
∣∣∣∣∣
∫ ∫ ∑

i

A∗
i E∗

i (x, y; Wa, Ra)
∑

i ′
Bi Ei ′(x, y; Wb, Rb)dxdy

∣∣∣∣∣
2

=
∣∣∣∣∣
∑
i i ′

A∗
i Bi ′ Iii ′

∣∣∣∣∣
2

(2.16)

where Iii ′ = ∫ ∫
E∗

i (x, y; Wa, Ra)Ei ′(x, y; Wb, Rb)dxdy, [51, 52].
When designing a millimetre or THz quasi-optical system it is important, partic-

ularly in terms of truncation and vignetting, to know at what radius the propagating
beam can be truncated without losing power (by a stop, edge of a mirror, lens, etc.).
If the stop is in the far field of a source (such as a horn antenna feed) this can be
straightforward as we can integrate the far-field beam pattern over the region defined
by the stop. However, if the beam has been re-focussed and re-collimated a number
of times, the beam pattern is no longer immediately obvious particularly in terms
of its sidelobe structure at that plane. This can be very conveniently analysed using
higher order Gaussian beam modes [53, 54]. The azimuthally symmetric Gaussian–
Laguerre modes above (Sect. 2.5.1) are useful, for example, if the stop has circular
symmetry and the propagating beam can be expressed efficiently in terms of the same
modes.

Such effects can also be described by a scattering matrix S for the optical system
which expresses how the component modes Ei are scattered by the optical system
so that on a transverse output plane: E sc

j = ∑
i Si j Ei . Any incident beam can be

expressed as a coherent sum of such modes Ein = ∑
j A j E j , so that the scattering

matrix then acts on the mode coefficients, with the transmitted field mode coefficients
given by: Bi = Si j A j . Thus, the transmitted field is expressed in terms of a different
set of mode coefficients for non-ideal propagation Eout = E sc

in = ∑
m Bi Ei . We

can express the evolution of the modes coefficients from Ai to Bi in matrix notation
as B = S.A. In certain cases a quasi-analytical approach can be taken. Thus, for
example, if the beam is symmetrically truncated for a cylindrically symmetric system
useful recursion relationships can be derived [54]. In the case of aberrating systems
plotting mode amplitudes allows the Gaussicity (the pure simple Gaussian mode
content in power) and higher order structure to be investigated.
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A Gaussian beam mode analysis can be applied to any quasi-optical system in
which there are partial reflections by also including the backward travelling modes
(z and R(z), change sign in Eq. (2.2)). Such reflections have the potential to set up
standing waves in the system [55]. A full scattering matrix formulation can incorpo-
rate backward-going waves by considering a quasi-optical component as a two-port
device with incident fields on port 1 and 2 described by sets of mode coefficients
A and C, respectively, then the corresponding reflected fields are given by sets of
coefficients B and D [

B
D

]
=

[
S11 S12
S21 S22

] [
A
C

]
. (2.17)

and the individual scattering matrices are calculated from the overlap integrals of the
appropriate transmitted and reflected fields.

We calculate the scattering matrix for the overall system by cascading the scatter-
ing components appropriately. Thus, we get the total transmission to the output port
and reflection back at the input port for the system as a whole. Furthermore, in horn
antenna fed systems it is straightforward to combine a scattering matrix description
of a horn antenna using waveguide modes with that for a quasi-optical system based
on Gaussian beam modes, and we can model the standing waves between two horn
antennas as discussed in [56].

Alternatively, the scattering matrix can be re-cast in terms of transmitted fields as

[
D
C

]
=

[
T11 T12
T21 T22

] [
A
B

]
=

[
S21 − S22 [S12]−1 S11 S22 [S12]−1

− [S12]−1 S11 [S12]−1

] [
A
B

]
,

(2.18)
and sequential matrices can again be multiplied directly to model a system with
multiple components. (Singular value decomposition can be used, if necessary, to
invert the S12 scattering matrix, using the singular values to keep only the modes that
are not truncated [45, 46]).

One of the limitations of Gaussian beam mode analysis is that polarisation effects
in particular are not strictly speaking included in the theory which is a paraxial
scalar theory. It is possible to include polarisation effects approximately, however,
by defining two sets of orthogonally polarised modes (as discussed in [7, 12] for
example and utilised in several papers on the Gaussian Beam Mode Analysis of
horn antennas, e.g. [43]). It should be noted however that the scattering between
co-polar and cross-polar fields cannot be rigorously included in the theory. In the case
where more accurate polarisation behaviour is required therefore, other modelling
techniques have to be applied as discussed in the next section.

2.5.3 Other Modelling Techniques

Optical modelling is concerned with the problem of calculating an electromagnetic
field over a surface in an optical system when the field, or currents, over some other
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surface is known. Techniques such as the Method of Moments [57] attempt to calcu-
late the current distribution over a surface precisely but the full solution to Maxwell’s
equations is usually extremely difficult to find and in practice approximations have
to be made. In the physical optics (PO) approximation made by the software package
GRASP [58], for example, when a field is incident upon an aperture it is assumed
that the field over the opaque region is zero and the field over the transparent region
is the same as if no aperture were there. This is a reasonable approximation to make
when the radius of curvature of the reflector is many wavelengths, but is not valid
at an edge. The geometrical theory of diffraction (GTD), therefore, is often used in
addition to geometrical optics (GO) to estimate the effect of aperture edges on the
sidelobes. The PO technique is extremely powerful and is standard for analysing
antennas and reflectors in radio and submillimetre systems.

The electromagnetic field over an input surface is a vector field but in some cases
considering only one component of the field leads to relatively simple scalar solu-
tions. For THz systems the question of whether a vector or a scalar solution is required
is intrinsically related to whether the field is of a paraxial or wide-angle nature. In
practice, when considering narrow-angle paraxial beams, it is sufficient to consider
the components of the vector field separately. Propagation of the field onto the next
optical component (solving the wave equation) requires diffraction integrals to be
calculated for each field point. Kirchhoff’s approximation is the arithmetic average
of the rigorous solutions when there is ambiguity over which vector quantity (E or
H) is being analysed. The averaging process appears in the form of the well-known
(1 + cos θ)/2 obliquity term. Rather than evaluating diffraction integrals directly, it
is possible to decompose an assumed source field into modes, each a solution of the
wave equation. Propagation to the next optical surface is usually straightforward and
simply involves recombining scaled modes with an appropriate mode-dependent
phase slippage term included. Commonly used mode sets include Gaussian beam
modes as discussed here, Gabor modes [59] (used by the commercial software pack-
age ASAP [60], for example) and plane waves (used by the software packages Zemax
[61], GLAD [62]). A plane wave analysis has the significant advantage that it is does
not have to be limited to paraxial fields.

At optical wavelengths, away from boundary shadows and abrupt changes in
intensity distribution, energy can be considered to be transported along curves, or
light rays, obeying certain geometrical laws. For system design at visible wavelengths
this technique is widely used and ray-tracing packages, such as CODE V [63] and
Zemax have proved to be very successful. Ray-tracing can also be accurate for
systems that are highly over moded. In the submillimetre and THz regimes, however,
the wavelength is typically an appreciable fraction of component sizes and so cannot
be neglected. Systems tend to be at most few-moded and often have a compact
optical layout. In this regime diffraction effects are important and the approach of
geometrical optics is inadequate.
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2.5.4 Partial Coherence and Multi-Moded Systems

In a multi-moded quasi-optical system the radiation field will be partially spatially
coherent. Each true component mode of propagation, although having no fixed phase
relationship with other modes, will of course propagate according to the laws of
diffraction and the total field intensity at any point will be given by the sum of the
intensities of these component modes (fields add in quadrature). Geometrical optics
can be employed in highly over-moded systems as an efficient accurate approach.
However, in the long-wavelength limit systems tend to be at most few moded and an
approach incorporating diffraction techniques is necessary. When this is applied to a
modal approach, for example, propagation can be very elegantly described in terms
of coherence matrices. These track the evolution of the mutual coherence function
[64, 65]. Over moded horn antennas can be used to couple to such beams [66–68].

2.6 Design of Optical Systems

2.6.1 Choice of Mirror/Lens Parameters

In many cases we wish to design a quasi-optical system that couples one beam
(such as that produced by a feed horn antenna) to another (determined by a receiver
system, for example). If the desired input and output beam waists are W0,out and W0,in,
respectively, then the magnification of the system is given by M = W0,out/W0,in. If
the separation of the beam waists is a free parameter then the distances din and dout
of the input and output waists, respectively, are given by

din = f ± M−1
[

f 2 − f 2
0

]0.5
and dout = f ± M

[
f 2 − f 2

0

]0.5
, (2.19)

where

f0 = φW0,inW0,out

λ
. (2.20)

We are free to choose the focal length of the system but it must have a minumum
value of f = f0. The choice of f determines the input and output distances and in the
case where f = f0, din = dout = f (independent of wavelength). Often, however,
the distances between the beam waists, d = din + dout, is fixed and therefore is the
focal length. For M 	= 1

f = ± [
(M − M−1)2 f 2

0 + d2
]0.5

(M + M−1) − 2d

(M − M−1)2 , (2.21)

while for M = 1
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f = d

4
+ f 2

0

d
. (2.22)

These and other examples of Gaussian beam transformations are discussed in
Goldsmith [3]. Once the component focal lengths and separations have been fixed
a simple ABCD matrix analysis of an equivalent on-axis system (approximating the
focussing elements by thin lenses of focal length f ) can be performed in order to
determine the beam waist, W , and radii of curvature, Rin and Rout at each optical
component. The component sizes required depend on the level of beam truncation
that can be tolerated but component diameters of 4W (giving −35 dB edge taper)
are typical. If an off-axis geometry is required then the angle-of-throw needed at
each component and the radii of curvature can be used together with the equations in
Sect. 2.3.2 to define the reflecting surface. Although a geometrical optics design and
analysis software packages can help with the initial layout of systems, a diffraction
analysis (such as Gaussian beam modes) must be used to check minimum component
sizes. If the optical system is to be used over a wide bandwidth then the beam-mode
analysis should be carried out at a few wavelengths across the band as only in certain
cases are beamwidths, etc., independent of wavelength.

Gaussian beam modes can be used to assess an optical design in terms of its beam
Gaussicity (fractional power coupling to a given beam radius and phase curvature).
Once designed, a more rigorous PO analysis should be used to verify the system
performance in terms of other parameters such as loss and polarisation behaviour.

2.6.2 Layout of Systems

Once a Gaussian beam-mode analysis of an equivalent on-axis system has been
used to determine component parameters and sizes, the layout of the system can be
chosen depending on more specific performance requirements. For on-axis systems
truncation (Sect. 2.5), standing waves and blockage may be issues while for off-axis
systems stray light, beam distortion (Sect. 2.5), cross-polarisation and shadowing
may be of more concern.

An important consideration is the introduction by optical components of polari-
sation effects (again, Gaussian beam modes are typically assumed to describe one
linear polarisation). The cross-coupling of orthogonal polarisations is known as cross-
polarisation and it can be introduced into a beam after reflection from a curved
focussing element. In certain circumstances (an axially symmetric reflector viewed
on-axis) the cross-polar component can cancel but this is generally not the case when
using off-axis mirrors, for example. Such cross-polarisation has been investigated by
Gans [69] and Murphy [15] and for quadratic reflector surfaces the fraction of the
power in an incident beam that is reflected into the cross-polar component is

Pxp = W 2
m

4 f 2 tan2θi , (2.23)
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where Wm is the incident beam radius at the mirror, θi is its angle of incidence
and f is the focal length of the mirror (twice that lost due to beam distortion).
Instrumental polarisation effects arise even in lens-based on-axis systems. At each
vacuum/dielectric interface (or in fact any surface with finite conductivity) there is
a difference in transmission for radiation polarised perpendicular or parallel to the
plane of incidence (given by the Fresnel coefficients) and this difference increases
with increasing angle of incidence. The result is that an unpolarised source may be
detected as being polarised after transmission through the optical system. This may
be true even for anti-reflection coated lenses if the optics are used at high angles of
incidence or for signals of large bandwidth.

Partial reflections and standing waves are also issues for quasi-optical systems,
in particular those with on-axis components (lenses, dielectric cryostat windows,
central blockages, etc.). Partial reflections from interfaces can give rise to return
loss and standing waves [55, 56]. These standing waves are particularly troublesome
in spectrometers where they can appear as a baseline ripple in spectra. In addition,
truncation and aberration effects in real optical components can be expected to scatter
power between modes and modal resonances can occur when even a small amount
of power is scattered into a higher order mode and that mode becomes trapped [70].

2.6.3 Issues for Imaging in THz Spectroscopy Systems

Most standard time-domain spectroscopy systems used in the laboratory operate in
transmission and collimate or re-focus the THz beam using off-axis parabolic mirrors
[71]. Reflection of the diverging beam from a source by a single parabolic mirror
gives rise to distortion of the beam amplitude pattern, with beam squint because of
projection effects [15]. For a pure Gaussian source the reduced Gaussicity of the
distorted beam (fractional power coupling to a pure Gaussian) is given by

PG = 1 − W 2
m

8 f 2 tan2θi , (2.24)

where Wm is again the beam width parameter at the mirror, f is the focal length of
the mirror and θi is the angle of incidence.

However, if a focussed beam is required, then by an appropriate compensating
Gaussian beam telescope arrangement of two identical parabolic mirrors it is possible
to eliminate this distortion [48]. The focal length of the mirrors should be long enough
that a collimated beam (with width parameter Wm) is formed between the parabolic
mirrors (with Wm 
 W0, the waist size at the source). At THz frequencies this is not
difficult to achieve for typical source beams. The two parabolic surfaces provide the
required phase transformations, while the correct relative orientations, as shown in
Fig. 2.8, result in cancellation of the amplitude distortions. Then if the phase centre of
the source antenna is located at the input focal plane of the first mirror, an essentially
undistorted image of this field with a planar wave front (i.e. a waist) is produced at the
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Fig. 2.8 Compensated
arrangement of parabolic
mirrors

output focal plane of the second mirror to illuminate the sample to be investigated, for
example. A second similar compensated arrangement of a pair of parabolic mirrors
can be used to produce an image of the sample at the detector plane by raster scanning
(e.g. [71, 72]). However, the alignment of off-axis parabolic mirrors in these set ups
is highly sensitive to the generation of unexpected aberrations. A similar set up can
be arranged for reflection measurement systems [73].

For a broadband pulse the width of the illuminating spot (waist) at the sample will
be frequency dependent, this clearly being determined by the frequency dependence
of the source antenna scheme. Generally for the source and detector, photoconductive
planar lens antennas are employed. The beams produced by these structures are not
as well behaved nor indeed as well understood as the horn antenna feeds referred
to above in Sect. 2.4.1. Useful discussions are given in Jepsen [74] and Rudd [75].
However, it is clear from these studies that there is a strong wavelength dependence
of the beam source waist size [1, 74]. Thus, the illuminating beam at the sample in
a Gaussian beam telescope arrangement will also be strongly frequency dependent.

If the sample is thick then diffraction in the sample may be significant and the
optical path length through the sample needs to be taken into account in any optical
design. The distance to the next focussing element can be adjusted accordingly to
ensure that the phase centre of the beam scattered by the sample is positioned at
the input focal plane of the second pair of parabolic mirrors so that an image of
the sample is still formed at the detector plane. The ABCD matrix for propagation
through the sample including the effects of refraction at the air-medium interfaces
is given by ((1, t/n), (0, 1)), where n is the refractive index and t is the thickness
of the sample. Thus, the distance to the first parabolic mirror should be adjusted by
t (1 − 1/n).

2.7 Summary and Conclusions

The THz portion of the electromagnetic spectrum is a challenging one in which
to work, as although radiation is typically propagated and analysed as free-space
beams, unlike traditional optics, beams may be only a few wavelengths in diameter
and diffraction effects are important. The Gaussian beam mode analysis described
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here is a useful compromise between the vector physical optics analyses that are
feasible at radio wavelengths and the ray-tracing techniques that have proven so
successful at visible wavelengths.

Often a simple Gaussian amplitude distribution is a good approximation both to
the radiated beam produced by a typical THz source and to the reception pattern
of a typical detector feed. A Gaussian mode, since it is a solution to the paraxial
wave equation, retains its amplitude distribution as it propagates and simply scales
in beam width and phase-front radius of curvature. For multi-element optical systems
we can use the convenient ABCD ray-transfer matrix formalism from geometrical
optics to keep track of the beam parameters and to design compact and efficient
optical systems. There are situations when we need to model more complex field
distributions and in these cases we can use higher order beam-mode solutions, again
for a paraxial regime. These higher order Gaussian modes are characterised by the
same beam radius and phase radius of curvature as the fundamental mode, but slip in
phase with respect to it as they propagate. This phase slippage can also be calculated
from the ABCD matrix of an optical component. Indeed since Gaussian beam modes
are the natural modes with which to describe propagation of quasi-collimated long-
wavelength beams, only a small number of modes are required for many practical
applications.

Gaussian beams can be re-collimated in a beam guide using re-focussing elements
such as simple thin lenses or mirrors. Care must be taken, however, as the usual for-
mulas for imaging in geometrical optics cannot be used in long-wavelength systems
to predict the position of beam waists. Again ABCD matrices can be very useful in this
regard. We have described focussing elements and some other optical components
commonly used in long-wave optics such as polarising grids, roof mirrors and phase
gratings. If a beam guide or optical coupling system is not perfect then there may
be truncation and aberration effects which distort the field. Off-axis ellipsoidal and
paraboloidal mirrors in particular are often used and these can introduce significant
aberrations and extra diffraction effects across the beam; thus, very careful optical
design is crucial for good performance.

A propagating beam in a non-ideal quasi-optical system can be analysed in terms
of what happens to its constituent modes. Then non-ideal propagation can be viewed
as resulting from power being scattered between these modes. There may also be
some partial reflections present in a system resulting in power travelling both in the
forward and reverse directions. We have discussed how both partial reflections and the
scattering of power between modes can be described using Gaussian mode scattering
matrices. Furthermore, Gaussian beam mode techniques can also be extended to
model incoherent and partially coherent fields.

One of the limitations of Gaussian beam mode analysis is that polarisation effects
such as the scattering between co-polar and cross-polar fields cannot be rigorously
included in what is a paraxial scalar theory. In the case where the accurate polarisation
behaviour is required other modelling techniques, such as physical optics, should be
used.

In conclusion, in this chapter we have discussed the design and analysis of THz
beam guides and optical coupling systems, including an overview of the large range
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of typical quasi-optical components. A powerful and efficient approach to modelling
propagation based on Gaussian beam mode analysis has been developed which has
proved invaluable for the reliable design and optimisation of the performance of the
unique optical systems encountered in the THz band.
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