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Chapter 2
A Stochastic Model for the Description
of Surface Reaction Systems

Abstract The most important concept for surface reactions is the adsorption site.
For simple crystal surfaces the adsorption sites form a lattice. Lattices form the basis
for the description of surface reactions in kinetic Monte Carlo. We give the defini-
tion of a lattice and discuss related concepts like translational symmetry, primitive
vectors, unit cells, sublattices, and simple and composite lattices. Labels are intro-
duced to describe the occupation of the adsorption sites. This leads to lattice-gas
models. We show how these labels can be used to describe reactions and other sur-
faces processes and we make a start with showing how they can also be used to
model surfaces that are much more complicated than simple crystal surfaces. Ki-
netic Monte Carlo simulates how the occupation of the sites changes over time. We
derive a master equation that gives us probability distributions for what processes
can occur and when these processes occur. The derivation is from first principles.
Some general mathematical properties of the master equation are discussed and we
show how a lattice-gas model simplifies the master equation so that it becomes fea-
sible to use it as a basis for kinetic Monte Carlo simulations.

2.1 The Lattice Gas

We start the discussion of the way how we will model surface reactions by spec-
ifying how we will describe our systems. We want an atomic scale description of
our systems and relate this to the macroscopic kinetics: i.e., we want to be able to
talk about individual atoms and molecules reacting on a surface, and then link this
to global changes and reaction rates of the layer of adsorbates. It turns out that the
proper way to described a system is related to the different time scales with which
things change on the atomic and on the macroscopic scale. We will see that we need
to do some coarse-graining on the atomic length scale to bridge the gap in time
scales.

If we regard the evolution of a layer of atoms and molecules adsorbed on a sur-
face on an atomic scale, we will notice that there is a huge difference in time scale
of the motion of individual atoms and molecules on the one and of the macroscopic
properties on the other hand. For most systems of interest in catalysis, for example,
the latter typically vary over a period of seconds or even longer. Motions of atoms
occur typically on a time scale of femtoseconds. This enormous gap in time scales
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14 2 A Stochastic Model for the Description of Surface Reaction Systems

poses a large problem if we want to predict or even explain the kinetics (i.e., reaction
rates) in terms of the processes that take place on the atomic scale.

The conventional method to simulate the motions of atoms and molecules is
Molecular Dynamics (MD) [1–3]. This method generally discretizes time in inter-
vals of equal lengths. The size of this so-called time step, and with it the compu-
tational costs, is determined by the fast vibrations of chemical bonds [1]. A stretch
vibration of a C-H bond has a typical frequency of around 3000 cm−1. This cor-
responds to a period of about 10 fs. If one wants to study the kinetics of surface
reactions, then one needs a method that does away with these fast motions.

The kinetic Monte Carlo (kMC) method that we present here does this by us-
ing the concept of sites. The forces working on an atom or a molecule that adsorbs
on a surface move it to well-defined positions on the surface [4, 5]. These posi-
tions are called sites. They correspond to minima on the potential-energy surface
(PES) for the adsorbate. Most of the time adsorbates stay very close to these min-
ima. If we would take a snapshot of a layer of adsorbates at normal temperatures,
only about 1 in 1013 of them would not be near a minimum at normal reaction
conditions. Only when they diffuse from one site to another or during a reaction
they will not be near such a minima, but only for a very short time. Now instead
of specifying the precise positions, orientations, configurations, and motions of the
adsorbates we will only specify for each sites its occupation. A reaction and a diffu-
sion from one site to another will be modeled as a sudden change in the occupation
of the sites. These changes are the elementary events in a kMC simulation. The
vibrations of the adsorbates do not change the occupations of the sites. So they
are not simulated in kMC, and hence they do not determine the time scale of a
kMC simulation. Reactions and diffusion take place on a much longer time scale.
Thus by taking a slightly larger length scale, we can simulate a much longer time
scale.

If the surface has two-dimensional translational symmetry, or when it can be
modeled as such, the sites form a regular grid or a lattice. Our model is then a so-
called lattice-gas model. This chapter shows how this model can be used to describe
a large variety of problems in the kinetics of surface reactions.

2.1.1 Lattices, Sublattices, and Unit Cells

If the surface has two-dimensional translational symmetry then there are two lin-
early independent vectors, a1 and a2, with the property that when the surface is
translated over any of these vectors the result is indistinguishable from the situation
before the translation. It is said that the system is invariant under translation over
these vectors. In fact the surface is then invariant under translations for any vector
of the form

n1a1 + n2a2 (2.1)

where n1 and n2 are integers. If all translations that leave the surface invariant can
be written as (2.1), then a1 and a2 are so-called primitive vectors or primitive trans-
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lations, and the vectors of the form (2.1) are the lattice vectors. Primitive vectors are
not uniquely defined. For example a (111) surface of a fcc metal is translationally
invariant for a1 = a(1,0) and a2 = a(1/2,

√
3/2), where a is the lattice spacing.

But one can just as well choose a1 = a(1,0) and a2 = a(−1/2,
√

3/2). The area
defined by

x1a1 + x2a2 (2.2)

with x1, x2 ∈ [0,1〉 is called the unit cell. The whole system is obtained by tiling the
plane with the contents of a unit cell.

Expression (2.1) defines a simple lattice, Bravais lattice, or net. Simple lattices
have just one lattice point, or grid point, per unit cell. It is also possible to have more
than one lattice point per unit cell. The lattice is then given by all points

s(i) + n1a1 + n2a2 (2.3)

with i = 0,1, . . . ,Nsub − 1 and Nsub the number of lattice points in the unit cell.
Each s(i) is a different vector in the unit cell. The set s(i) + n1a1 + n2a2 for a par-
ticular vector i forms a sublattice, which is itself a simple lattice. There are Nsub
sublattices, and they are all equivalent: they are only translated with respect to each
other. (For more information on lattices, also for a discussion of their symmetry, see
for example references [4] and [6].) All points of the form (2.3) from a composite
lattice.

The sites of a simple crystal surface form a lattice. The description so far sug-
gests that the different lattice points in a unit cell, corresponding to sites, are all in the
some plane, but that does not need to be the case. As we will see in Sect. 4.6.3, that
different lattice points may also correspond to positions for adsorbates in different
layers that are stacked on top of each other. Lattices can also be used to model sur-
faces that are much more complicated than simple crystal surfaces (see Sects. 5.5.2
and 5.5.3). In fact, we will see that sometimes lattice points do not correspond to
physical adsorption sites at all (see Sect. 5.5.4).

2.1.2 Examples of Lattices

Figure 2.1 shows top and hollow sites of the (100) surface of an fcc metal. Such a
surface has a1 = a(1,0) and a2 = a(0,1) as primitive translations with a the dis-
tance between the surface atoms. CO for example prefers the top sites on such sur-
face if the metal is rhodium [7–10]. We have Nsub = 1 if we would only include
these top sites. We can choose the origin of our reference frame any way we want
so we take s(0) = (0,0) for simplicity. If we would want to include the hollow sites
as well then Nsub = 2 and s(1) = a(1/2,1/2).

Figure 2.2 shows bridge sites of the same surface. Some CO moves to these
bridge sites at high coverages [7–10]. If we would include the top and bridge sites
to describe all adsorption sites for CO/Rh(100), then we would have Nsub = 3 and
s(0) = (0,0), s(1) = a(1/2,0), and s(2) = a(0,1/2) for the top and the two types of
bridge site, respectively.
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Fig. 2.1 The large white
circles with gray edges depict
the atoms of the top layer of a
(100) surface of an fcc metal.
The black circles indicate the
positions of the top sites, and
the gray circles with black
edges the positions of the
hollow sites. The top sites
form a simple lattice as do the
hollow sites. In the top-left
corner the unit cell and the
primitive translations of the
surface are shown

Figure 2.3 shows a (111) surface of an fcc metal. CO on Pt prefers to adsorb on
this surface on the top sites [4]. We can therefore model CO on this surface with a
simple lattice with the lattice points corresponding to the top sites. We have a1 =
a(1,0) and a2 = a(1/2,

√
3/2). As Nsub = 1 we choose the origin of our reference

frame so that s(0) = (0,0) for simplicity. Each lattice point corresponds to a site that
is either vacant or occupied by CO.

NO on Rh(111) forms a (2 × 2)-3NO structure in which equal numbers of NO
molecules occupy top, fcc hollow, and hcp hollow sites [11, 12]. Figure 2.3 shows
all the sites that are involved. We now have three sublattices with s(0) = (0,0) (top

Fig. 2.2 The large white circles with gray edges depict the atoms of the top layer of a (100) surface
of an fcc metal. The black circles and the gray circles with black edges indicate the positions of
the bridge sites. Although all bridge sites have the same adsorption properties, together they do not
form a simple lattice, but a composite lattice. This is because the relative positions of the surface
atoms with respect to the “black” bridge sites is different from those of the “gray” bridge sites.
However, if we ignore the surface atoms, then all bridge sites together from a square simple lattice.
In the top-left corner the unit cell and the primitive translations of the surface are shown
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Fig. 2.3 The large white circles with gray edges depict the atoms of the top layer of a (111) surface
of an fcc metal. The black circles indicate the positions of the top sites, and the gray circles with
black edges the positions of one type of hollow site, say fcc, and the small white circle with black
edges the positions of the other type, say hcp, of hollow site. The top sites form a simple lattice as
do the fcc sites and the hcp sites separately. The top and hollow sites together also form a simple
lattice if we disregard the different adsorption properties of the sites and the different positions
with respect to the surface atoms. Otherwise they form a composite lattice with three sublattices.
In the top-left corner the unit cell and the primitive translations of the surface are shown

Fig. 2.4 The large white
circles with gray edges depict
the atoms of the top layer of a
(111) surface of an fcc metal.
The black circles, the gray
circles with black edges, and
the small white circle with
black edges indicate the
positions of the bridge sites.
Together they form a
composite lattice even though
they have the same adsorption
properties. In the top-left
corner the unit cell and the
primitive translations of the
surface are shown

sites), s(1) = a(1/2,
√

3/6) (fcc hollow sites), and s(2) = a(1,
√

3/3) (hcp hollow
sites).

At high coverages the repulsion between the CO molecules on Pt(111) forces
some of them again to bridge sites [13]. Figure 2.4 shows the bridge sites. We have
now four sublattices with s(0) = (0,0), s(1) = a(1/2,0), s(2) = a(1/4,

√
3/4), s(3) =

a(3/4,
√

3/4). The first one is for the top sites (not shown in the figure, but see
Fig. 2.3). The others are for the three sublattices of bridge sites. The four sublattices
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together form a simple lattice, but only when we do not distinguish between top and
bridge sites.

The examples here are of simple single crystal surfaces. It would be wrong how-
ever to assume that a lattice-gas model can only be used for such surfaces. The unit
cell can be much larger and with many more sites. This makes it possible to model
a surface with steps. But it is even possible to model systems with no translational
symmetry at all with a lattice-gas model. It is possible to model steps at variable
distances, point defects, bimetallic surfaces, and many more systems through the
use of labels as explained in Sect. 2.1.3.

2.1.3 Labels and Configurations

The sites are the positions where the adsorbates are found on the surface, but for
each site we need something to indicate if it is occupied or not, and if it is occupied
with which adsorbate. We use labels for this.

We assign a label to each lattice point. The lattice points correspond to the sites,
and the labels specify properties of the sites. A particular labeling of all lattice points
together we call a configuration. The most common property that one wants to de-
scribe with the label is the occupation of the site. We use the short-hand notation
(n1, n2/s : A) to mean that the site at position s(s) + n1a1 + n2a2 is occupied by an
adsorbate A.

The labels are also used to specify reaction. A reaction can be regarded as nothing
but a change in the labels. An extension of the short-hand notation (n1, n2/s : A →
B) indicates that during a reaction the occupation of the site at s(s) + n1a1 + n2a2
changes from A to B. If more than one site is involved in a reaction then the spec-
ification will consist of a set changes of the form (n1, n2/s : A → B). Not only re-
actions can be specified in this way. Also other processes can be described like this.
For example, a diffusion of an adsorbate A might be specified by {(0,0/0 : A →
∗), (1,0/0 :∗ → A)}. Here ∗ stands for a vacant site, and the diffusion is from site
s(0) to s(0) + a1. We will also write this as (0,0/0), (1,0/0) : A∗ → ∗A.

There are many other uses for labels as will be discussed in Sect. 2.1.4 and
Chaps. 5, 6, and 7. Most kMC programs are special-purpose codes with hard cod-
ing of the processes. Labels play only a minor role in these programs. Labels are
however an important and very versatile tool in general-purpose kMC codes. They
allow great flexibility in creating models for reaction systems, and a clever use of
them can greatly enhance the speed of simulations.

2.1.4 Examples of Using Labels

Desorption of CO from Pt(111) can be written as (0,0 : CO → ∗) when we use a
model of the top sites shown in Fig. 2.3. We have left out the index of the sublattice,
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Fig. 2.5 The change of labels for CO desorption from a Pt(111) surface. The encircled CO
molecule on the left desorbs and the label becomes ∗ indicating a vacant site. The lines are guides
for the eyes

because, as there is only one, it is clear on which sublattice the reaction takes place
(see Fig. 2.5). Desorption on other sites can be obtained by translations over lattice
vectors: i.e., (0,0 : CO → ∗) is really representative for (n1, n2 : CO → ∗) with n1
and n2 arbitrary integers. Diffusion of CO can be modeled as hops from one site
to a neighboring site. We can write that as {(0,0 : CO → ∗), (1,0 :∗ → CO)} or
(0,0), (1,0) : CO∗ → ∗CO. Hops on other sites can again be obtained from these
descriptions by translations over lattice vectors, but also by rotations that leave the
surface is invariant.

Specifying adsorbates is the most obvious and most frequent use of labels, but
other properties can be modeled by labels to great effect. Note that in the case
of NO on Rh(111) (Fig. 2.3) the lattice is a composite one, but if we ignore the
difference between the sites we get a simple lattice with a1 = a(1/2,

√
3/6) and

a2 = a(
√

3/3,0). It is possible to use the simple lattice and at the same time retain
the difference between the sites. The trick is to use labels not just for the occupa-
tion, but also for indicating the type of site. So instead of labels NO and ∗ indicating
the occupation, we use NOt, NOf, NOh, ∗t, ∗f, and ∗h. The last letter indicates the
type of site (t stands for top, f for fcc hollow, and h for hcp hollow) and the rest
for the occupation. Instead of (0,0/0 : NO) and (0,0/1 :∗) we have (0,0 : NOt) and
(1,0 :∗f), respectively. It depends very much on the processes that we want to sim-
ulate which way of describing the system is more convenient and computationally
more efficient.

Because a lattice is used to represent the adsorption sites, one might think that
only systems with translational symmetry can be modeled. That is not the case how-
ever. Figure 2.6 shows how to model a step [14, 15]. The difference in the top sites
can be modeled with different labels just as for the NO/Rh(111) example above. If
the terraces are small then it might also be possible to work with a unit cell spanning
the width of a terrace, but when the terraces become large this will be inconvenient
as there will be many sublattices. If the width of the terraces varies this is even im-
possible. In a similar way as in Fig. 2.6 bimetallic surfaces can be modeled [16].
Notice that some distances between the sites on the left in Fig. 2.6 are different
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Fig. 2.6 A Ru(0001) surface with a step with the top sites indicated on the left. On the right is
shown the lattice. The large open circles are the atoms. The small open circles indicate top sites on
the terraces, the small black circles top sites at the bottom of the step, and the small gray circles
top sites at the top of the step. Notice the difference in distance between the top sites at the step on
the left and on the right

from those on the right. The distance between the sites on the top and bottom of a
step is smaller on the left than on the right. On the right this distance is increased
so that the sites form a lattice. Such a distortion of the system is quite acceptable in
kMC simulations. The elementary events (reactions, diffusion, and possibly other
processes) are described in terms of changes of the labels of sites. We only need to
know which sites and how the labels change. Distances between sites are not part of
the description of events.

Site properties like the sublattice of which the site is part of and if it is a step
site or not are static properties. The occupation of a site is a dynamic property.
There are also other properties of sites that are dynamic. Bare Pt(100) reconstructs
into a quasi-hexagonal structure [17]. CO oxidation on Pt(100) is substantially in-
fluenced by this reconstruction because oxygen adsorbs much less readily on the
reconstructed surfaces than on the unreconstructed one. This can lead to oscilla-
tions, chaos, and pattern formation [17, 18]. It is possible to model the effect of
the reconstruction on the CO oxidation by using a label that specifies whether the
surface is locally reconstructed or not [19–21].

Chapters 5, 6, and 7 will show more esoteric uses of labels. Labels can be used
as flags or as counters as well. Very often this use is combined with fictitious pro-
cesses and fictitious sites, which can either be a way of modeling actual physical
and chemical processes, or a way to get kinetic information.

2.1.5 Shortcomings of Lattice-Gas Models

The lattice-gas model is simple yet very powerful, as it allows us to model a large
variety of systems and phenomena. Still, not everything can be modeled with it.
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Let’s look again at CO oxidation on Pt(100). As stated above this system shows
reconstruction which can be modeled with a label indicating that the surface is re-
constructed or not. This way of modeling has shown to be very successful [19–21],
but it does neglect some aspects of the reconstruction. The reconstructed and the un-
reconstructed surface have very different unit cells, and the adsorption sites are also
different [22, 23]. In fact, the unit cell of the reconstructed surface is very large, and
there are a large number of adsorption sites with slightly different properties. These
aspects have been neglected in the kinetic simulations so far. As these simulations
have been quite successful, it seems that these aspects are not very relevant in this
case, but that need not always be so. Another example would be catalytic partial
oxidation (CPO), which takes place at high temperatures at which the surface is so
dynamic that all translational symmetry is lost. In this case using a lattice to model
the kinetics seems inappropriate.

The example of CO on Pt(111) has shown that at high coverage the position at
which the molecules adsorb change. The reason for this is that these positions are
not only determined by the interactions between the adsorbates and the substrate,
but also by the interactions between the adsorbates themselves. At low coverages
the former dominate, but at high coverages the latter may be more important. This
may lead to adlayer structures that are incommensurate with the substrate [4]. Ex-
amples are formed by the nobles gases. These are weakly physisorbed, whereas
at high coverages the packing onto the substrate is determined by the steric re-
pulsion between them. At low and high coverages different lattices are needed to
describe the positions of the adsorbates, but a single lattice describing both the
low and the high coverage sites is not possible. Simulations in which the cov-
erages change in such a way from low to high coverage and/or vice versa then
cannot be based on a lattice-gas model except by making substantial approxima-
tions.

Although not all systems can be modeled well by a lattice gas, it is a much more
flexible model than might initially appear. Figure 2.6 already shows some of this
flexibility. Note that the sites in the system in the figure have only translational
symmetry in the direction parallel to the step, whereas in the corresponding lattice-
gas model there is the usual two-dimensional periodicity. This is accomplished by
displacing the sites at the step somewhat from their real positions. As has been
explained above, this is perfectly acceptable. Similarly, it is possible to describe
with a lattice-gas model a layer of adsorbates that have been displaced from their
normal site positions by the interactions between them, and that have formed an
adlayer with a structure that is incommensurate with that of the preferred adsorp-
tion sites. The reason for this flexibility is the labels that we attach to each lattice
point. It will be shown in Chaps. 5, 6, and 7 that these labels make it possible to
model a very large variety of systems with a lattice gas. Whether or not a sys-
tem can be described by a lattice-gas model depends very much on one’s ingenu-
ity.
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2.1.6 Boundary Conditions

The surface of a real catalyst will very often contain many more sites than we can
include in a kMC simulation. In fact, such a surface is generally regarded as infinite
in two directions. In a kMC simulation we need to restrict ourselves to a much more
limited number of sites. It is possible to do kMC simulations with all sites in a small
part of the catalyst’s surface. This gives an acceptable description except for the sites
at the edge. It is more customary to use periodic boundary conditions. In that case
all sites s(i) +n1a1 +n2a2 with n1 = 0,1, . . . ,N1 − 1 and n2 = 0,1, . . . ,N2 − 1 are
explicitly included in the simulation. Sites with values of n1 and/or n2 outside this
range are thought to have the same label as those of n1 modN1 and n2 modN2. The
system can be thought as if being rolled up on a torus. The values of N1 and N2 in
real simulations vary. Sometimes they can be smaller than 100, but simulations with
N1 = N2 = 8192 have been reported as well [24].

2.2 The Master Equation

2.2.1 The Definition and Some Properties of the Master Equation

The derivation of the algorithms and a large part of the interpretation of the results
of kMC simulations are based on a master equation

dPα

dt
=

∑

β

[WαβPβ − WβαPα]. (2.4)

In this equation t is time, α and β are configurations of the adlayer (i.e., different
ways in which adsorbates are distributed over the sites, or more generally ways in
which labels can be assigned to lattice points), Pα and Pβ are their probabilities,
and Wαβ and Wβα are so-called transition probabilities per unit time that specify the
rate with which the adlayer changes due to reactions and other processes. The mas-
ter equation is the single most important equation in kMC. It relates everything that
we do in kinetics to each other as will be shown below. Here we start with looking
at some of its mathematical properties. The master equation is a loss-gain equa-
tion. The first term on the right stands for increases in Pα because of processes that
change other configurations into α. The second term stands for decreases because
of processes in α. From

d

dt

∑

α

Pα =
∑

α

dPα

dt
=

∑

αβ

[WαβPβ − WβαPα] = 0 (2.5)

we see that the total probability is conserved. (The last equality can be seen by
swapping the summation indices in one of the terms.)

The master equation can be derived from first principles as will be shown below,
and hence forms a solid basis for all subsequent work. There are other advantages
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Fig. 2.7 Scheme showing the central position of the master equation for kinetics. Quantum chem-
ical calculations yield the rate constants of the master equation, and kMC, rate equations, and other
kinetic theories, methods, and approaches can be regarded as ways to solve the master equation

as well. First, the derivation of the master equation yields expressions for the transi-
tion probabilities that can be computed with quantum chemical methods [25]. This
makes ab-initio kinetics for catalytic processes possible. Such calculations gener-
ally use the term rate constants instead of transition probabilities and we will use
that term for the W ’s in the master equation as well. We will show however that
these rate constants are generally not the same as the rate constants in macroscopic
rate equations (see Sect. 4.6). Second, there are many different algorithms for kMC
simulations. Those that are derived from the master equation all give necessarily
results that are statistically identical. Those that cannot be derived from the mas-
ter equation conflict with first principles. Third, kMC is a way to solve the master
equation, but it is not the only one. The master equation can, for example, be used
to derive the normal macroscopic rate equation (see Sect. 4.6), although this gener-
ally involves the introduction of approximations. In general, it forms a good basis to
compare different theories of kinetics quantitatively, and also to compare these the-
ories with simulations. Figure 2.7 shows that the master equation can be regarded as
the central equation of the kinetics of surface reactions and that it relates the quan-
tum chemical calculation of rate constants, kMC, and other kinetic theories to each
other.

There is an extensive mathematical literature on the master equation. This litera-
ture also often talks about continuous-time Markov chains. If a system is in configu-
ration αn then the master equation gives the probabilities that the system will move



24 2 A Stochastic Model for the Description of Surface Reaction Systems

to another configuration αn+1. These probabilities do not depend on the configura-
tions that the system was in before αn. This makes αn → αn+1 a Markov process
[26, 27]. Continuing the transitions from one configuration to another gives a series
αn → αn+1 → αn+2 → . . . that is called a Markov chain.

We discuss here only a few basic properties [26, 27]. The reader should be aware
however that even these properties have only a limited use in relation to kMC sim-
ulations and should not be overinterpreted. For example, the Ziff–Gulari–Barshad
(ZGB) model of CO oxidation has been extensively studied with kMC simulations
(see Sect. 7.4.3). The physics literature mentions three states. Two of these states
correspond to CO poisoning and oxygen poisoning of the surface. The third corre-
sponds to a reactive state. The point here is that strictly speaking this reactive state
is not stable. This means that it can not represent a steady state. The ZGB model
might therefore seem a rather useless model for CO oxidation. However, the time it
takes for the reactive state to turn into one of the poisoning states is so enormously
long, even for small system sizes, that it can effectively be regarded as a stable state.
This is what is actually done in the literature.

We start with a discussion of the class structure [27]. Suppose we mean by α → β

that there is a chain of processes that can convert configuration α into β . (Note
that we normally use this notation to indicate a change of configuration by a single
process.) We then define α ↔ β to mean α → β and β → α. This relation ↔ defines
an equivalence relation [28]. This means α ↔ α for all α, if α ↔ β then β ↔ α, and
if α ↔ β and β ↔ γ then α ↔ γ . Because of these properties we can partition all
configurations into equivalence classes: i.e., α and β belong to the same class if and
only if α ↔ β .

A class is closed if α is in the class and α → β implies that β is also in the same
class as α: i.e., β → α also holds. If the system ends up in a closed class, then it
will never leave it. Such a situation may for example arise when no reactions are
possible in a system anymore, and the adsorbates can only hop from one site to
another. A system in a closed class visits each of the configurations in the class an
infinite number of times. This does not hold for configurations in a class that is not
closed. If a closed class consists of a single configuration, then the configuration is
called an absorbing state. The poisoned states mentioned above for the ZGB model
are examples of such absorbing states.

If all configurations can be partitioned into two or more sets such that neither
α → β nor β → α holds if α and β are in different sets, then the system is said
to be reducible or decomposable. This terminology is related to the way in which
the master equation can be written in matrix-vector form. With the vector P with
components Pα = Pα , and the matrix W with components

Wαβ =
{

Wαβ, if α �= β, and
−∑

γ Wγβ, if α = β, (2.6)

we can write the master equation as

Ṗ = WP. (2.7)
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For a completely reducible or decomposable system the matrix W can be written in
the form

(
A 0
0 B

)
(2.8)

with A and B square matrices by appropriately ordering the configurations. The
configurations in the different sets can be treated completely independently from
each other. A system that is not reducible is called irreducible.

If there is a closed class, but the system is irreducible, then we can write W in
the form

(
A D
0 B

)
(2.9)

with D a non-zero matrix, A and B square matrices, and the rows and columns of
A indexed by the configurations in the closed class. Such a system is called (incom-
pletely) reducible. If there are two closed classes, then W can be written as

(A 0 D
0 B E
0 0 C

)
(2.10)

with A, B, and C square matrices, D and E non-zero matrices, and the rows and
columns of A and B being indexed by the configurations in the two closed classes.
Such a system is called splitting, because it ends up in one closed class or the other.

The definition of W immediately gives
∑

α

Wαβ = 0. (2.11)

Matrices with this property can be shown to have at least one right eigenvector with
eigenvalue equal to zero [26]. The components of such eigenvector are all non-
negative and by proper normalization can be identified with the probabilities to find
the system in a configuration when the system is in a steady state. It can also be
shown that the system will evolve toward such an eigenvector.

There are various ways to prove this [26]. One way is to write the solution of the
master equation as

P(t) = eWtP(0), (2.12)

where P(0) are the probabilities of the configurations at t = 0. If we can diagonalize
W and write

WU = UV, (2.13)

then this becomes

P(t) = UeVtU−1P(0). (2.14)

The matrix V is diagonal and all matrix elements on the diagonal are non-positive.
This means that for large t , all components of exp[Vt] vanish, except those with
zero on the diagonal of V. P evolves to the corresponding eigenvector in U.
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Note that an eigenvector with eigenvalue equal to zero does not exclude the exis-
tence of an oscillation. Suppose we have configurations α1, α2, . . . , αN with N ≥ 2
and the system always moves from αn directly to αn+1 for n = 1,2, . . . ,N − 1 and
from αN directly to α1. This means that we have a cycle. The eigenvector with zero
eigenvalue has Wαn+1αnPαn = Wα1αN

PN for n = 1,2, . . . ,N − 1. Although the sys-
tem has a cycle, this can still be regarded as a stationary state because the time it
takes the system to move through the cycle will not always be exactly the same. It
can be shown (see Sect. 3.7.3) that on average this will take a time equal to

T =
N−1∑

n=1

W−1
αn+1αn

+ W−1
α1αN

. (2.15)

If we would start the system in α1 at time t = 0 and follow the system, then after a
time T we would find it most likely again in α1, but also with some small probability
in αN and α2, with an even smaller probability in αN−1 and α3, et cetera. After an-
other period T the probability of finding the system in α1 would be reduced and the
probabilities for configurations before and after α1 would be increased. After many
periods T we would find the system in one of the configurations with a probability
corresponding to the one given by the eigenvector with zero eigenvalue.

2.2.2 The Derivation of the Master Equation

The master equation can be derived by looking at the surface and its adsorbates
in phase space.1 This is, of course, a classical mechanics concept, and one might
wonder if it is correct to look at the processes on an atomic scale and use classical
mechanics. The situation here is the same as for the derivation of the rate equations
for gas phase reactions. The usual derivations there also use classical mechanics
[29–33]. Although it is possible to give a completely quantum mechanical derivation
formalism [34–37], the mathematical complexity hides much of the important parts
of the chemistry. We therefore give only a classical derivation. It is possible at the
end to replace the classical expressions by quantum mechanical ones, in exactly the
same way as for gas phase reactions. The new expressions will depend on the type
of motion (vibration, rotation, et cetera). This will be shown in detail in Chap. 4.

The derivation of the master equation is usually based on the observation that
there is a separation between the time scale on which reactions take place and the
time scale of much faster motions like vibrations [38, 39]. The longer time scale of
reactions defines states, in which the system is localized in configuration space, and
the transitions between them can be described by a master equation. The rates of
the individual transitions can each be computed separately by one of the methods

1Parts of Sect. 2.2.2 have been reprinted with permission from X.Q. Zhang, A.P.J. Jansen, Ki-
netic Monte Carlo method for simulation reactions in solutions, Phys. Rev. E 82, 046704 (2010).
Copyright 2010, American Physical Society.
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of chemical kinetics: e.g., Transition-State Theory (TST) [38–40]. We present here
a different derivation that incorporates all process at the same time [41–43]. It is a
generalization of the derivation of Variational TST (VTST): i.e., we partition phase
space in many regions [29, 32, 33], and it is an alternative to the derivation using
projection operators [44, 45]. It has the advantage that the result is somewhat more
general. We will use this in Sects. 2.2.3 and 8.2. The derivation does not use the fact
that we are interested in surface reactions, and has a much more general validity. We
will show in Sect. 2.2.3 how the results simplify for surface reactions.

A point in phase space completely specifies the positions and momenta of all
atoms in the system. In MD simulations one uses these positions and momenta at
some starting point to compute them at later times. One thus obtains a trajectory of
the system in phase space. We are not interested in that amount of detail, however.
In fact, as was stated before, too much detail is detrimental if one is interested in
simulating many processes. The time interval that one can simulate a system using
MD is typically of the order of nanoseconds. Reactions in catalysis have a charac-
teristic time scale that is many orders of magnitude longer. To overcome this large
difference we need an approach that removes the fast processes (vibrations) that de-
termine the time scale of MD, and leaves us with the slow processes (reactions).
This approach looks as follows.

Instead of the precise position of each atom, we only want to know how the dif-
ferent adsorbates are distributed over the sites of a surface. So our physical model
is a lattice. Each lattice point corresponds to one site, and has a label that specifies
which adsorbate is adsorbed. (A vacant site is simply a special label.) This gives us a
configuration. As each point in phase space is a precise specification of the position
of each atom, we also know which adsorbates are at which sites: i.e., we know the
corresponding configuration. Different points in phase space may, however, corre-
spond to the same configuration. These points differ only in slight variations of the
positions and momenta of the atoms. This means that we can partition phase space
in many regions, each of which corresponds to one configuration. The processes
are then nothing but the motion of the system in phase space from one region to
another.

More generally and in line with the idea of different time scales mentioned above,
we can start with identifying the regions in configuration space where the fast mo-
tions take place. Figure 2.8 shows a sketch of a PES of an arbitrary system. We
assume that only the electronic ground state is relevant, so that the PES is a single-
valued function of the positions of all the atoms in the system. The points in the
figure indicate the minima of the PES. Each minimum of the PES has a catchment
region. This is the set of all points that lead to the minimum if one follows the
gradient of the PES downhill [46].

We now partition phase space into these catchment regions and then extend each
catchment region with the momenta. Let’s call C the configuration space of a system
and P its phase space [47, 48]. The minima of the PES are points in configuration
space. We define Cα to be the catchment region of minimum α. This catchment
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Fig. 2.8 A sketch of a potential-energy surface of an arbitrary system and its corresponding graph.
The points are minima of the potential-energy surface. The edges in the graph connect minima that
have catchment regions that border on each other. They correspond to reactions or other activated
processes

region is a subspace of configuration space C, and all catchment regions form a
partitioning of the configuration space.

C =
⋃

α

Cα. (2.16)

(There is a small difficulty with those points of configuration space that do not
lead to minima, but to saddle points, and with maxima. These points are irrelevant
because the number of such points are vanishing small with respect to the other
points. They are found where two or more catchment regions meet, and we can
arbitrarily assign them to one of these catchment regions.) With q the set of all
coordinates and p the set of all conjugate momenta we can extend the catchment
region Cα to a corresponding region in phase space Rα as follows.

Rα = {
(q,p) ∈ P|q ∈ Cα

}
. (2.17)

We then have for phase space

P =
⋃

α

Rα. (2.18)

If we use the regions Rα , we can derive the master equation exactly as for the lattice-
gas model. This starting point based on the PES for the derivation of the master
equation is more general than the one that defines the regions in phase space in
terms of configurations of adlayers. It applies in principle to any molecular system.
However, for an adlayer both lead to the same partitioning of phase space.

The probability to find the system in region Rα is given by

Pα(t) =
∫

Rα

dqdp
hD

ρ(q,p, t), (2.19)
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where h is Planck’s constant, D is the number of degrees of freedom, and ρ is
the phase space density. The denominator hD is not needed for a purely classical
description of the kinetics. However, it makes the transition later on from a classical
to a quantum mechanical description easier [47].

The master equation tells us how these probabilities Pα change in time. Differ-
entiating Eq. (2.19) yields

dPα

dt
=

∫

Rα

dqdp
hD

∂ρ

∂t
(q,p, t). (2.20)

This can be transformed using the Liouville-equation [48]

∂ρ

∂t
= −

D∑

i=1

[
∂ρ

∂qi

∂H

∂pi

− ∂ρ

∂pi

∂H

∂qi

]
(2.21)

into

dPα

dt
=

∫

Rα

dqdp
hD

D∑

i=1

[
∂ρ

∂pi

∂H

∂qi

− ∂ρ

∂qi

∂H

∂pi

]
, (2.22)

where H is the system’s classical Hamiltonian. To simplify the mathematics, we
will assume that the coordinates are Cartesian and the Hamiltonian has the usual
form

H =
D∑

i=1

p2
i

2mi

+ V (q), (2.23)

where mi is the mass corresponding to coordinate i. The area Rα has been defined
above by coordinates only, and the limits of integration for the momenta are ±∞.
Although Rα can be defined more generally (we would like to mention reference
[49] for a more general derivation), the definition here allows us to go from phase
space to configuration space. The first term on the right-hand-side of Eq. (2.22) now
becomes

∫

Rα

dqdp
hD

D∑

i=1

∂ρ

∂pi

∂H

∂qi

=
D∑

i=1

∫

Rα

dq
∂V

∂qi

∫ ∞

−∞
dp
hD

∂ρ

∂pi

=
D∑

i=1

∫

Rα

dq
∂V

∂qi

∫ ∞

−∞
dp1 . . . dpi−1 dpi+1 . . . dpD

hD

× [
ρ(pi = ∞) − ρ(pi = −∞)

]

= 0, (2.24)

because ρ has to go to zero for any of its variables going to ±∞ to be integrable.
The second term becomes

−
∫

Rα

dqdp
hD

D∑

i=1

∂ρ

∂qi

∂H

∂pi

= −
∫

Rα

dqdp
hD

D∑

i=1

∂

∂qi

(
pi

mi

ρ

)
. (2.25)
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Fig. 2.9 Schematic drawing of the partitioning of configuration space into regions R, each of
which corresponds to some particular configuration of the adlayer or catchment region of a mini-
mum of the potential-energy surface. The process that changes α into β corresponds to a flow from
Rα to Rβ . The transition probability Wβα for this process equals the flux through the surface Sβα ,
separating Rα from Rβ , divided by the probability to find the system in Rα

This particular form suggests using the divergence theorem for the integration over
the coordinates [50]. The final result is then

dPα

dt
= −

∫

Sα

dS

∫ ∞

−∞
dp
hD

D∑

i=1

ni

pi

mi

ρ, (2.26)

where the first integration is a surface integral over the surface of Rα , and ni are
the components of the outward pointing normal of that surface. Both the area Rα

and the so-called dividing surface Sα are now regarded as parts of the configuration
space of the system [32, 33]. As pi/mi = q̇i , we see that the summation in the last
expression is the flux through Sα in the direction of the outward pointing normal
(see Fig. 2.9).

The final step is now to decompose this flux in two ways. First, we split the
dividing surface Sα into sections Sα = ⋃

β Sβα , where Sβα separates Rα from Rβ .
Second, we distinguish between an outward flux,

∑
i nipi/mi > 0, and an inward

flux,
∑

i nipi/mi < 0. Equation (2.26) can then be rewritten as

dPα

dt
=

∑

β

∫

Sαβ

dS

∫ ∞

−∞
dp
hD

(
D∑

i=1

ni

pi

mi

)
Θ

(
D∑

i=1

ni

pi

mi

)
ρ

−
∑

β

∫

Sβα

dS

∫ ∞

−∞
dp
hD

(
D∑

i=1

ni

pi

mi

)
Θ

(
D∑

i=1

ni

pi

mi

)
ρ, (2.27)
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where in the first term Sαβ (= Sβα) is regarded as part of the surface of Rβ , and
the ni are components of the outward pointing normal of Rβ . The function Θ is the
Heaviside step function [51]

Θ(x) =
{

1, if x ≥ 0, and
0, if x < 0,

(2.28)

Equation (2.27) can be cast in the form of the master equation

dPα

dt
=

∑

β

[WαβPβ − WβαPα], (2.29)

if we define the transition probabilities as

Wβα =
∫
Sβα

dS
∫ ∞
−∞ dp/hD(

∑D
i=1 nipi/mi)Θ(

∑D
i=1 nipi/mi)ρ

∫
Rα

dq
∫ ∞
−∞ dp/hDρ

. (2.30)

The expression for the transition probabilities can be cast in a more familiar form
by using a few additional assumptions. We assume that ρ can locally (i.e., in Rα and
on Sβα) be approximated by a Boltzmann-distribution

ρ = N exp

[
− H

kBT

]
, (2.31)

where T is the temperature, kB is the Boltzmann-constant, and N is a normalizing
constant. We also assume that we can define Sβα and the coordinates in such a way
that ni = 0, except for one coordinate i, called the reaction coordinate, for which
ni = 1. The integral of the momentum corresponding to the reaction coordinate can
then be done and the result is

Wβα = kBT

h

Q‡

Q
, (2.32)

with

Q‡ =
∫

Sβα

dS

∫ ∞

−∞
dp1 . . . dpi−1 dpi+1 . . . dpD

hD−1
exp

[
− H

kBT

]
, (2.33)

Q =
∫

Rα

dq
∫ ∞

−∞
dp
hD

exp

[
− H

kBT

]
. (2.34)

We see that this is an expression that is formally identical to the TST expression for
rate constants [52]. There are differences in the definition of the partition functions
Q and Q‡, but they can generally be neglected. For example, it is quite common that
the PES has a well-defined minimum in Rα and on Sβα , and that it can be replaced
by a quadratic form in the integrals above. The borders of the integrals can then be
extended to infinity and the normal partition functions for vibrations are obtained.
This is sometimes called harmonic TST (see Chap. 4) [53]. The dividing surface
Sβα is then chosen so that it contains the transition state of the process, which is
then also where the PES has its minimum on Sβα .

The W ’s indicate how fast the system moves from (the catchment region of) one
minimum to another. We will often call them therefore rate constants. The system
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can only move from minimum α to minimum β if the catchment region of these
minima border on each other. Only in such a case we have Wβα �= 0. The right-hand-
side of Fig. 2.8 shows the minima of the PES as points. Two minima are connected
if their catchment regions border on each other, and the system can move from one
to the other without having to go through a third catchment region. The result is the
graph in Fig. 2.8. The vertices of the graph are the minima of the PES and the edges
indicate how the system can move from one minimum to another.

Although we have presented the partitioning of phase space based on the catch-
ment regions of the PES, this is actually not required. In fact, we have not used
this particular partitioning in the derivation up to Eq. (2.30) anywhere. One can in
principle partition phase space in any way one likes and derive a master equation. It
is the partitioning that defines the processes that the master equation describes. Of
course, most partitionings lead to processes that are hard to interpret physically, but
there are variations in the partitioning above that are useful.

The dividing surface Sβα was split to distinguish fluxes in opposite directions. If
there is a trajectory of the system that crosses the surface and then recrosses it, then
effectively no process has occurred, but both crossings contribute to the rate con-
stants of α → β and β → α. For surface reactions such a recrossing is well known
for adsorption and leads to the definition of a sticking coefficient (see Sect. 4.4.3).
The idea of VTST is to move Sβα to remove recrossings and to minimize the rate
constants [29, 32, 33, 40]. It can be shown that when we have a canonical ensem-
ble, this is equivalent to locating Sβα at a maximum of the Gibbs energy along the
reaction coordinate [54, 55]. The transition state need then not be on Sβα . The tran-
sition state need then generally not be on Sβα . As our derivation is a generalization
of VTST, it has the same limitations and possible ways to deal with them. We refer
to Chap. 4 of [40] for a fuller discussion.

2.2.3 The Master Equation for Lattice-Gas Models

In the derivation of the master equation above the subscripts α and β refer to min-
ima of the PES. We want however a master equation with subscripts referring to
configurations. We have already stated that using configurations to derive the mas-
ter equation gives the same result, but there are some subtleties. So we take a closer
look at how minima of the PES and configurations relate to each other. As the co-
ordinates of all atoms have well-defined values for a minimum of a PES, we also
know which adsorbate is at each site: i.e., we know the corresponding configuration.
So it is easy to go from the minima of the PES to the configurations. The reverse is
not true in general.

The first problem is that not all configurations need to correspond to a minimum
of the PES. For example, suppose that we have an adsorbate that is so large that there
is a very high repulsion when another adsorbate is at a neighboring site. A config-
uration with two adsorbates at such relative positions may then not correspond to a
minimum. The forces between them may push them farther apart and to other sites.
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This however does not prevent us from identifying the subscripts in the master equa-
tion with configurations. We only need to make sure that the rate constant Wαβ for
the process β → α equals zero when the configuration α can not be identified with
a minimum of the PES.

The other problem is that there may be more than one minimum of the PES
that leads to the same configuration. This is the case when an adsorbate has differ-
ent (meta)stable structures or adsorption modes. For example, an NO molecule on
Rh(100) may be adsorbed perpendicular to the surface with the N end down or it
may be adsorbed parallel to the surface [56, 57]. In this case we have a choice. We
may regard the different geometries as different adsorbates. This solves the problem,
because we then do get a 1-to-1 correspondence between configurations and min-
ima of the PES. Alternatively we may ignore these differences in geometry. We can
deal with this by redefining the areas Rα in the partitioning of configuration space.
Instead of the catchment region of one minimum, we define them as the union of
the catchment regions of all the minima leading to the same configuration. We can
also first regard the different geometries as different adsorbates as before and then
do a coarse-graining as explained in Sect. 8.2. The result is the same. The advan-
tage of disregarding these differences is that it leads to a simpler model and faster
kMC simulations. We need to point out however that disregarding the difference in
geometry may constitute an approximation that needs to be justified.

Now that we have established that the master equation can be regarded in terms
of configurations of lattice-gas models, we can discuss the advantage this gives us.
The number of rate constants Wαβ is enormous even if we use only a small model.
Suppose that we do a simulation with a modest 100 × 100 lattice. Also suppose
that we have only one type of adsorbate so that each site can either be occupied
or vacant. This gives us 2100×100 different configurations and 22×100×100 ≈ 106000

rate constants Wαβ . In general, if we have a number of sites S and each site can be
occupied in A ways then the number of configurations equals AS and the number of
rate constants is A2S . A lattice model allows us to reduce this number by the same
order of magnitude, because what matters is only the number of different non-zero
values that the rate constants can have.

First we note that Wαβ = 0 unless the change β → α corresponds to an actual
physical or chemical process like a reaction or diffusion of an adsorbate. This means
that for a configuration β the number of configurations α with values Wαβ �= 0 does
not equal the number of possible configurations, but only the number of processes
that can actually take place in β . This number is only proportional to the number
of sites, and not to an exponential function of the number of sites. So the number
of rate constants is thereby reduced to cSAS with c a constant depending on the
number of types of process but not on S.

This is still a huge number of values for the rate constants. Using translational
symmetry only reduces this number by a factor S. Point-group symmetry only re-
duces it by a factor of the order of unity. To reduce it to a workable number of rate
constants, we need to make some assumptions. Fortunately, such assumptions are
almost always valid and easy to find. The reason why the number of values for the
rate constants depends exponentially on the number of sites is that so far we have
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assumed that the occupation of each and every site in the system can affect these
values. This will often be unlikely however. If we have a process involving one site
or a pair of neighboring sites, then the occupation of a site well away from this site
or these sites will not be relevant. The extreme case is where we only need to look
at the sites that change occupation, and which define the process, to determine the
rate constant. This means that we have just one value for a desorption of a particular
adsorbate, one value for the reaction of two adsorbates, et cetera. Adsorbates that do
not desorb, react, et cetera do not affect the value of the rate constant. In such a case
the number of different values of the rate constants reduces to c, the proportionality
constant introduced above. A large majority of kMC simulations done so far have
assumed that this case is valid.

Suppose that the occupation of Senv sites in the environment of a process does
not change but does affect the value of the rate constant because of interactions
with the adsorbates that change in the process. These interactions are called lateral
interactions. The number of values of the rate constants is then cASenv . This number
need not be large. Suppose we look at CO desorption from a Rh(100) surface. At
low coverage we can model this with a square lattice representing the top sites which
CO prefers [10]. We also assume that only interactions between CO molecules at
nearest-neighbor positions need to be included. We then have A = 2. For desorption
we have Senv = 4 so that there are at most 24 = 16 possibly different values for the
rate constants for desorption. For diffusion modeled as a CO hopping from one site
to a neighboring one we have Senv = 6 and 26 = 64 possibly different values. We
can use point-group symmetry to reduce the number of values further.

This example shows that there are situations in which the number of values of
rate constants is relatively small even with lateral interactions, but the exponential
dependence on Senv will often necessitate another approach. We want to reduce the
number of values for the rate constants, because these values are generally hard to
determine as will be shown in Chap. 4. For a lattice-gas model it is often possible to
split the effect of the lateral interactions from the determination of a rate constants
without lateral interactions. The determination of rate constants even without lateral
interactions is difficult, but need only be done for a few processes. The determination
of lateral interactions is also difficult, but here too often only few values need to be
determined. It is the large number of combinations of lateral interactions that leads
to a very large number of possible values for rate constants with lateral interactions.
These combinations can however often be determined quite easily. This is shown
explicitly in Chap. 4 and in particular Sect. 4.5. However, the number of values of
the rate constants does also determine which kMC algorithm is the most efficient.
If the number of values is small, faster algorithms can be used than when we have a
large number of values of the rate constants even if these values can be determined
easily and fast. See Chap. 3.

To summarize. The reason why kMC simulations of surface reactions can be
done much more efficiently than simulations of systems without translational sym-
metry has to do with the number of rate constants. For surface reactions this number
is either very limited when there are no lateral interactions, or can often be com-
puted easily from a limited set of parameters when there are lateral interactions. In
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both cases only a relatively small number of values need to be determined, although
they require costly calculations or time-consuming experiments (see Chap. 4). This
can however be done before and separately from the kMC simulations. This is not
the case for simulations of other systems.
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