
2

NODE-BASED QOS

IMPROVEMENT MECHANISMS

Quality of Service (QoS) mechanisms in a network can be broadly
divided into two categories: QoS improvement and QoS provision-
ing mechanisms. A QoS improvement mechanism can be defined as
any mechanism that improves the general performance of the net-
work. Although less obvious than QoS provisioning mechanisms,
QoS improvement mechanisms are very important in enabling the
network to provide satisfactory service to end users. They allow
the network to accommodate more users and reduce the cost of
data transmission.

This chapter focuses on QoS improvement mechanisms located
at a node in an OBS network. A survey of the current state-of-the-
art, including optical buffering, deflection routing, burst segmen-
tation, wavelength conversion and channel scheduling is presented.
Then two channel scheduling algorithms that take advantage of the
offset times, a unique feature of OBS, to give good performance
are presented in detail.

2.1 Contention Resolution Approaches

Since a wavelength channel may be shared by many connections
in OBS networks, there exists the possibility that bursts may con-
tend with one another at intermediate nodes. Contention occurs
when multiple bursts from different input ports are destined for
the same output port simultaneously. The general solution to burst
contention is to move all but one burst “out of the way”. An OBS

24 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

node has three possible dimensions to move contending bursts,
namely, time, space and wavelength. The corresponding contention
resolution approaches are optical buffering, deflection routing and
wavelength conversion, respectively. In addition, there is another
approach unique to OBS called burst segmentation.

2.1.1 Optical buffering

Typically, contention resolution in traditional electronic packet
switching networks is implemented by storing excess packets in
Random Access Memory (RAM) buffers. However, RAM-like op-
tical buffers are not yet available. Currently, optical buffers are
constructed from Fibre Delay Lines (FDLs) [1, 2, 3]. An FDL is
simply a length of fibre and hence offers a fixed delay. Once a
packet/burst has entered it, it must emerge after a fixed length of
time later. It is impossible to either remove the packet/burst from
the FDL earlier or hold it in the FDL longer. The fundamental dif-
ficulty facing the designer of an optical packet/burst switch is to
implement variable-length buffers from these fixed-length FDLs.

Current optical buffers may be categorised in different ways.
They can be classified as either single-stage, i.e., having only one
block of parallel delay lines, or multi-stage, which have several
blocks of delay lines cascaded together. Single-stage optical buffers
are easier to control, but multi-stage implementations may lead to
more savings on the amount of hardware used. Optical buffers can
also be classified as having feed-forward or feedback configurations.
In a feed-forward configuration, delay lines connect the output of
a switching stage to the input of the next switching stage. In a
feedback configuration, delay lines connect the output of a switch-
ing stage back to the input of the same stage. Long holding time
and certain degrees of variable delays can be easily implemented
with a feedback configuration by varying the number of loops a
packet/burst undergoes. However, each loop causes some loss in
signal power. Therefore, a packet/burst cannot be stored indefi-
nitely in a feedback architecture. In a feed-forward configuration,
delay lines with different lengths must be used to achieve vari-
able delays. This architecture attenuates all signals almost equally

2.1 Contention Resolution Approaches 25

because every packet/burst passes through the same number of
switches. Hybrid combinations of feedforward and feedback archi-
tectures are also possible [4].

Based on the position of buffers, packet switches fall into one
of three major categories: input buffering, output buffering and
shared buffering. In input-buffered switches, a set of buffers is as-
signed for each input port. This configuration has poor perfor-
mance due to the head-of-line blocking problem. Consequently, it
is never proposed for purely optical implementation. In output-
buffered switches, a set of buffers is assigned to each output
port. Most optical switches emulate output buffering since the
delay in each output optical buffer can be determined before the
packet/burst enters it. Shared buffering is similar to output buffer-
ing except that all output ports share a common pool of buffers.

Due to their hardware-saving characteristics, multi-stage and/or
shared-buffered architectures are predominant in optical switch
proposals. Figure 2.1 shows two single-stage, shared-buffered switch
architectures [5] with feedforward and feedback configurations
where N and B are the number of input ports and the number
of FDLs, respectively. They both contain an FDL pool that is
shared among all output ports. In the feedforward configuration,
packets/bursts may be delayed only once, whereas the feedback
configuration allows them to be delayed multiple times. Since the
FDLs are optical fiber themselves, it is possible for them to hold
multiple packets/bursts of different wavelengths simultaneously
[6]. However, this comes at the expense of increased complexity
in scheduling algorithms. Compared to single-stage buffer archi-
tectures, multi-stage counterparts [7, 8, 9] are much more com-
plex. They contain several primitive switching elements connected
together by FDLs, usually in a feedforward configuration. Multi-
stage buffers can achieve buffer depth of several thousands.

Recently, optical buffers based on slow-light delay lines have re-
ceived considerable interest [10]. In slow-light delay lines, light is
slowed down using a variety of techniques such as electromagnet-
ically induced transparency (EIT), population oscillations (POs)
and microresonator-based photonic-crystal (PC) filter. In princi-
ple, these techniques can make the group velocity approach zero.

26 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

(a) Feedback shared-buffered architecture

(b) Feedforward shared-buffered architecture

Fig. 2.1. Single-stage optical buffer architectures. [2006] IEEE.

However, very slow group velocity always comes at the cost of very
low bandwidth or throughput. Therefore, slow-light delay lines are
still not practical in optical switches that have to handle very high
data rates.

In summary, despite the considerable research efforts on FDL-
based optical buffers, there remain some hurdles that limit their
effectiveness. Firstly, by their nature, they can only offer discrete

2.1 Contention Resolution Approaches 27

delays. The use of recirculating delay lines can give finer delay
granularity but it also degrades optical signal quality. Secondly,
the size of FDL buffers is severely limited not only by signal quality
concerns but also by physical space limitations. A delay of 1 ms
requires over 200 km of fibre. Due to the size limitations of buffers,
optical buffering alone as a means of contention resolution may not
be effective under high load or bursty traffic conditions.

2.1.2 Deflection routing

Deflection routing is a contention resolution approach ideally
suited for photonic networks that have little buffering capacity at
each node. If no buffer is present, deflection routing is also known
as hot-potato routing. In this approach, if the intended output port
is busy, a burst/packet is routed (or deflected) to another output
port instead of being dropped. The next node that receives the
deflected burst/packet will try to route it towards the destination.
The performance of slotted deflection routing has been extensively
evaluated for regular topologies such as ShuffleNet, hypercube and
Manhattan Street Network [11, 12, 13]. It is found that deflection
routing generally performs poorly compared to store-and-forward
routing unless the topology in use is very well connected. Nev-
ertheless, its performance can be significantly improved with a
small amount of buffers. Between slotted and unslotted networks,
deflection routing usually performs better in the former since the
networks can make use of the synchronous arrival of the packets
to a router to minimise locally the number of deflections. Nev-
ertheless, such deflection minimisation can also be done to some
extent in unslotted networks using heuristics [14]. This brings the
performance of deflection routing in unslotted networks close to
that in slotted networks.

For an arbitrary topology, the choice of which output links to
use for deflected bursts/packets is critical to the performance of the
network. The existing deflection routing protocols can be divided
into three categories: fixed alternate routing, dynamic traffic aware
and random routing. Fixed alternate routing is the most popular
approach. In this method, the alternate path is either defined on a

28 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

hop-by-hop basis [15] or by storing at each node both the complete
primary path and the complete alternate path from itself to every
possible destination node in the network [16]. Fixed alternate rout-
ing can yield good performance on small topologies. However, se-
lecting a good alternate path becomes difficult on large topologies
due to the tight coupling between subsequent burst loss probabili-
ties, traffic matrices and network topology. Traffic aware deflection
routing takes into consideration the transient traffic condition in
selecting the output links for deflected bursts/packets [17, 18]. It
becomes similar to load balancing, which we will address in Chap-
ter 5. Random deflection routing [19] appears to strike the right
balance between simplicity of implementation, robustness and per-
formance. In this approach, bursts/packets carry in their header
a priority field. Every time a burst/packet is deflected, its prior-
ity is decreased by one. Normal bursts/packets on their primary
paths can preempt those low priority ones. Thus, the worst-case
burst/packet loss probability of this method is upper-bounded by
that in standard networks.

To apply deflection routing to OBS networks, the problem of
insufficient offset time must be overcome. This problem is caused
by a burst traversing more hops than originally intended as a result
of being deflected. Since the offset time between the burst and its
header decreases after each hop, the burst may overtake the header
packet. Various solutions have been proposed [16], such as setting
extra offset time or delaying bursts at some nodes on the path. It
is found that delaying a burst at the next hop after it is deflected
is the most promising option.

Deflection routing may be regarded as “emergency” or un-
planned multipath routing. It might cause deflected bursts to fol-
low a longer path than other bursts in the same flow. This leads
to various problems such as increased delay, degradation of signal
quality, increased network resource consumption and out-of-order
burst arrivals. A better method to reduce congestion and burst
loss is probably planned multipath routing, or load-balancing. The
topic of load balancing will be discussed in chapter 5.

2.1 Contention Resolution Approaches 29

2.1.3 Burst segmentation

Burst segmentation [20, 21] is a contention resolution approach
unique to OBS networks. It takes advantage of the fact that a
burst is composed of multiple IP packets, or segments. Therefore,
in a contention between two overlapping bursts, only the overlap-
ping segments of a burst need to be dropped instead of the entire
burst. Network throughput is improved as a result. Two currently
proposed variants of burst segmentation are shown in Figure 2.2.
In the head-dropping variant [20], the overlapping segments of the
later arriving burst, or the head segments, are dropped. On the
other hand, the tail-dropping variant [21] drops the overlapping
segments of the preceding burst, or the tail segments. A number
of strategies to combine burst segmentation with deflection rout-
ing have also been discussed. Comparing the two variants, the
tail-dropping approach results in a better chance of in-sequence
delivery of packets at the destination. Burst segmentation is later
integrated with void-filling scheduling algorithms in [22, 23]. A
performance analysis of burst segmentation is presented in [24].

2.1.4 Wavelength conversion

Wavelength conversion is the process of converting the wavelength
of an incoming signal to another wavelength for transmission on
an outgoing channel. In WDM, each fibre has several wavelengths,
each of which functions as a separate transmission channel. When
contention for the same output wavelength happens between some
bursts, the node equipped with wavelength converters can convert
all except one burst to other free wavelengths. Wavelength con-
version enables an output wavelength to be used by bursts from
several input wavelengths, thereby increasing the degree of statis-
tical multiplexing and the burst loss performance. As the number
of wavelengths that can be coupled into a fibre continues to grow,
this approach becomes increasingly attractive. For example, with
32 wavelengths per link, the burst loss probability at a loading of
0.8 is about 4 × 10−2. With 256 wavelengths per link, the burst
loss probability drops to less than 10−4.

30 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

(a) Segment structure of a burst

(b) Head dropping

(c) Tail dropping

Fig. 2.2. Burst segmentation approaches

Although optical wavelength conversion has been demonstrated
in the laboratory environment, the technology remains expensive
and immature. Therefore, to be cost-effective, an optical network
may be designed with some limitations on its wavelength conver-
sion capability. Following are the different categories of wavelength
conversion:

Full conversion: Any incoming wavelength can be converted to
any outgoing wavelength at every core node in the network.
This is assumed by most current OPS and OBS proposals. It

2.2 Traditional Channel Scheduling Algorithms 31

is the best performing and also the most expensive type of
wavelength conversion.
Sharing of converters at a node: Converter sharing [25, 26, 27]
is proposed for OPS/OBS networks. It allows savings on the
number of converters needed. However, the drawbacks are the
enlargement of the switching matrix and additional attenuation
of the optical signal.
Sparse location of converters in the network: Only some nodes
in the network are equipped with wavelength converters. Al-
though this category is well-studied for wavelength-routed net-
works, it has not been widely considered for OPS and OBS
networks due to the poor loss performance at nodes without
wavelength conversion capability.
Limited-range conversion: An incoming wavelength can only be
converted to some of the outgoing wavelengths. Various types of
limited-range converters for OPS networks have been examined
[28, 29, 30]. It is shown that nodes with limited-range wave-
length converters can achieve loss performance close to those
with full conversion capability.

2.2 Traditional Channel Scheduling Algorithms

Since the large number of wavelengths per link in WDM offers
excellent statistical multiplexing performance, wavelength conver-
sion is the primary contention resolution approach in OBS. In this
approach, every OBS core node is assumed to have full wavelength
conversion capability. When a header packet arrives at a node, the
node invokes a channel scheduling algorithm to determine an ap-
propriate outgoing channel to assign to the burst. Channel schedul-
ing plays a crucial role in improving the burst loss performance of
an OBS switch. A good scheduling algorithm can achieve several
orders of magnitude performance improvement over a first-fit al-
gorithm. Because of its importance, channel scheduling in OBS
has been the subject of intense research in the last few years.

In the JET OBS architecture, each burst occupies a fixed time
interval, which is characterised by the start time and the end time
carried in the header packet. Therefore, channel scheduling can be

32 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

Fig. 2.3. Illustration of the channel fragmentation problem

regarded as a packing problem wherein the primary objective is
to pack as many incoming bursts onto the outgoing channels as
possible. This problem is complicated by the fact that the order of
the header packet arrivals is not the same as the arrival order of
the bursts themselves. Thus, bursts with long offset times are able
to reserve a channel before those with shorter offset times. Their
reservations fragment a channel’s free time and produce gaps or
voids among them that degrade the schedulability of bursts with
shorter offset times. This is illustrated in Figure 2.3 where the
numbers inside the bursts indicate their header arrival order. Al-
though all six bursts can theoretically be accommodated, burst 6
cannot be scheduled because of the channel fragmentation caused
by the other bursts. Many channel scheduling algorithms have
been proposed to deal with this problem. In this section, a sur-
vey of some traditional channel scheduling algorithms is given.

2.2.1 Non-void filling algorithm

Non-void filling algorithm is the simplest type of channel schedul-
ing algorithms. It is named Horizon [31] and Latest Available
Unscheduled Channel (LAUC) [32] by two independent research
groups. In order to maximise processing speed, it does not utilise
voids caused by previously scheduled bursts to schedule new
bursts. Instead, it only keeps track of the unscheduled time, which
is the end time of the last scheduled burst, for each channel. When
a header arrives, it assigns to the burst the channel with the un-
scheduled time being closest but not exceeding its start time. The
idea is to minimise the void produced before it. This is illus-

2.2 Traditional Channel Scheduling Algorithms 33

(a)

(b)

Fig. 2.4. Examples of channel assignment using: (a) non-void filling algorithm (Hori-
zon or LAUC), and (b) void filling algorithm (LAUC-VF)

trated in Figure 2.4(a) where t1, t2 and t3 are the unscheduled
times. Channel C3 is selected to schedule the new burst because
t− t3 < t− t2. By storing the unscheduled times in a binary search
tree, the two algorithms can be executed in O(logW) time, where
W is the number of wavelengths per link.

2.2.2 Algorithms with void filling

Void-filling algorithms [32, 33] utilise voids to schedule new bursts
to improve burst loss performance. They keep track of every void
on the outgoing channels and check all of them as well as unsched-
uled channels when an incoming burst needs to be scheduled. Lat-
est Available Unused Channel with Void Filling (LAUC-VF) [32]
is perhaps the most popular OBS channel scheduling algorithm to
date. When an incoming burst needs to be scheduled, LAUC-VF

34 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

(a)

(b)

Fig. 2.5. Comparison of LAUC-VF and its variants: (a) LAUC-VF, and (b) LAUC-
VF variants

calculates the unused time of each available channel, which is the
end time of the burst preceding the incoming one. The channel
with the unused time closest to the start of the incoming burst is
selected. This is illustrated in Figure 2.4(b) where t1, t2 and t3 are
the unused times. Channel C1 is selected to schedule the new burst
because t1 is closest to t. Since the unused times for each burst
are different, LAUC-VF has to recalculate all of them for each
new burst. Using a binary search tree structure, each unused time
calculation takes O(logNb), where Nb is the average number of
scheduled bursts per channel. Thus, LAUC-VF takes O(WlogNb)
to execute.

A drawback of the basic LAUC-VF algorithm is that it may
select an unscheduled channel to schedule a new burst even though
suitable voids are available because it bases its decision only on the
unused times. This problem is illustrated in Figure 2.5(a) where

2.3 Burst-Ordered Channel Scheduling Approach 35

LAUC-VF selects channel 2 for the new burst because t − t2 is
smaller than both t − t1 and t − t3. This creates more voids and
degrades performance. An LAUC-VF variant [34] that solves the
problem is to give priority to channels with voids, thus minimising
the number of voids generated. A further refinement of LAUC-VF
[35] is to compare all the voids that would be generated and choose
the channel that will give minimum voids. In the illustration in
Figure 2.5(b), the first variant will schedule the new burst on either
channel 1 or channel 3 while the second variant will only choose
channel 1 since t−t1 < t−t3 and t4−t′ < t5−t′. Parallel processing
and associative memory can be used to implement LAUC-VF and
its variants to reduce the time complexity [36].

Another implementation of LAUC-VF [37] is called Minimum
Starting Void (Min-SV). Min-SV has the same scheduling criteria
as LAUC-VF. However, it uses an augmented balanced binary
search tree as the data structure to store the scheduled bursts.
This enables Min-SV to achieve processing time as low as that of
Horizon without requiring special hardware or parallel processing.

2.3 Burst-Ordered Channel Scheduling
Approach

A common characteristic of the traditional channel scheduling al-
gorithms is that they schedule incoming bursts in the order of
their header packet arrivals. Therefore, the bursts with long offset
times are able to reserve a channel before those with shorter offset
times. Their reservations fragment a channel’s free time and pro-
duce voids among them that degrade the schedulability of bursts
with shorter offset times. To address the root of this problem, it
is required that a node schedules incoming bursts in the order of
their actual arrivals. In that case, the voids will have no negative
effect on burst scheduling because by the time a void is generated,
all the bursts in that region have already been scheduled.

The most popular method to implement the burst-ordered
scheduling approach is to delay the processing of headers that
arrive early (bursts with long offset times) in order to collect in-
formation from the headers that arrive later (bursts with short

36 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

offset times). In the batch scheduling variant [38, 39], a node col-
lects multiple burst headers and makes scheduling decisions for
all of them at one go. In the delayed scheduling variant [40, 41],
the node delays burst headers for a certain period and sorts them
according to their burst arrivals. However, in both variants, the
inherent conflict between the need to delay headers and the need
to forward headers early to give downstream nodes sufficient pro-
cessing times prevents the burst-ordered scheduling concept from
being fully realised.

Dual-header OBS (DOBS) [42] is another method to implement
the burst-ordered scheduling concept. In this method, information
about each burst is carried in two separate headers: the service
request packet (SRP) header and the resources allocated packet
(RAP) header. The SRP header originates from the ingress node
and carries service requirement information such as offset time
and burst length, which allows intermediate nodes to calculate the
time interval that the incoming burst will occupy. Upon receiving
an SRP header, a node records the information contained within
the header and passes it onto the next downstream node. Later,
just before the corresponding data burst arrives, the node makes a
scheduling decision for the burst and sends the scheduled channel
information to the next node in an RAP header. This method
resolves the conflict in the batch scheduling and delayed scheduling
methods and fully realises the burst-ordered scheduling concept.
However, it has the problem of phantom reservations since a SRP
header is sent to the next node before the scheduling decision
is made. Therefore, it is possible that the burst is dropped at
that node while the SRP header continues to make reservations at
downstream nodes. Those phantom reservations caused by bursts
dropped at an upstream node lock up resources at downstream
nodes, which could be used for other bursts.

2.4 Burst Rescheduling 37

C 1

C 2

1

2

3

4

New Burst

Time

(a) LAUC-VF fails to schedule the new burst

C 1

C 2

1

24

Time

3

New Burst

(b) Burst 3 is rescheduled to accommodate the new burst

Fig. 2.6. Illustration of the benefits of burst rescheduling

2.4 Burst Rescheduling

Burst rescheduling1 [43, 44] attempts to approximate the burst-
ordered scheduling concept. It helps to improve the burst loss per-
formance and at the same time achieve low computational com-
plexity. The key idea of burst rescheduling is to reschedule an
existing scheduled burst to another wavelength to accommodate
an incoming burst. This is possible as requests arrive dynamically
and a header packet reserves wavelengths well before the arrival
of its corresponding data burst. The benefit of burst reschedul-
ing is illustrated in Figure 2.6. In this scenario, the new burst,
which cannot be scheduled by LAUC-VF, can be scheduled after

1 Reprinted from (S. K. Tan, G. Mohan, and K. C. Chua, “Algorithms for Burst
Rescheduling in WDM Optical Burst Switching Networks,” Computer Networks,
vol. 41, no. 1, pp. 41–55), [2003], with permission from Elsevier.

38 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

(a) No wavelength is available for new burst.

(b) Multi-level rescheduling to accommodate new burst.

Fig. 2.7. Illustration of multi-level rescheduling.

burst 3 is moved to another free wavelength. It is to be noted that
rescheduling does not affect any ongoing traffic. Rescheduling a
burst on a link requires changes in the control setting in both the
end nodes of the link. Therefore, whenever rescheduling is success-
ful, a special “NOTIFY” packet is sent to the next node to notify
it about the changes, for e.g., wavelength for that burst so that
the receiving node will do the necessary settings.

Rescheduling algorithms can be developed based on two ap-
proaches. These are single-level rescheduling and multi-level reschedul-
ing. Single-level rescheduling involves the rescheduling of only one

2.4 Burst Rescheduling 39

burst to another available wavelength to accommodate a new
burst. The example illustrated in Figure 2.6(b) falls under this cat-
egory. In multi-level burst rescheduling, several bursts are resched-
uled one by one in sequence to other available wavelengths in or-
der to accommodate a new burst. As shown in Figure 2.7(a), no
wavelength is available for the new burst if single-level reschedul-
ing is used. Multi-level rescheduling can reschedule burst 4 from
W2 to W3 followed by rescheduling burst 2 from W1 to W2 to
free wavelength W1 to accommodate the new burst, as shown in
Figure 2.7(b). Multi-level rescheduling is expected to provide bet-
ter performance than single-level rescheduling. However, from the
computational complexity point of view, multi-level rescheduling
is more complex than single-level rescheduling. This is because a
multi-level rescheduling algorithm needs to determine an appro-
priate order (among several possibilities) in which different bursts
are to be rescheduled in sequence. Since the objective is to achieve
low computational complexity, single-level rescheduling is gener-
ally preferred.

2.4.1 Burst rescheduling algorithms

On-Demand Burst Rescheduling (ODBR) algorithm

As the name suggests On-Demand Burst Rescheduling (ODBR)
algorithm considers rescheduling of an existing burst only when
a burst fails to be scheduled to any of the wavelengths. The al-
gorithm works in two phases. When a new burst arrives, phase
1 is executed to select a suitable free wavelength using LAUC.
If no wavelength is available, phase 2 is called to check if any of
the existing bursts can be moved to a new wavelength to enable
scheduling of the new burst. The algorithm examines the wave-
lengths one by one. For a given wavelength, it checks if the last
burst can be moved to any other wavelength and determines the
void created. After examining all the wavelengths, it chooses the
one which possibly creates the smallest void after migration.

The pseudo-code of the algorithm is given in Table 2.1. The
new burst is assumed to arrive at time t. The latest available time
of wavelength channel Wi is denoted by ti.

40 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

Table 2.1. ODBR algorithm

Phase 1
Use LAUC to find a suitable wavelength for the incoming burst. If no such
wavelength is found, call phase 2. Otherwise, exit.

Phase 2
Step 1: For every wavelength Wi and out-wavelength Vi, determine if

Vi is valid. Out-wavelength Vi is said to be valid if the last burst on Wi can
be moved to Vi and the new burst can be scheduled to Wi.

Step 2: If no valid out-wavelength Vi exists, the new burst is dropped.
Otherwise, choose wavelength Wp that has a valid out-wavelength Vp and is
the latest available wavelength after rescheduling among all the valid out-
wavelengths.

Step 3: Reschedule last burst on Wp to Vp. Assign new burst to Wp.
Step 4: Send a special NOTIFY header packet to notify the next node

about the change in wavelength of the rescheduled burst.

A simple example shown in Figure 2.8(a) and (b) helps to il-
lustrate how ODBR works. Phase 1 fails to assign any wavelength
to the new burst as shown in Figure 2.8(a) and phase 2 will there-
fore be invoked. Wavelength W1 and W3 both have a valid out-
wavelength W2. Therefore, rescheduling of the last burst from W1

or W3 to W2 would make a wavelength available for scheduling the
new burst. In order to optimize the performance, ODBR chooses
the best wavelength which has the latest available time. In this
case, the void formed by the new burst on W3 by rescheduling the
burst from W3 to W2 is the smallest compared to the void formed
at W1 by rescheduling the burst from W1 to W2. Therefore, W3 is
the best wavelength. The last burst on W3 is rescheduled to W2

and the new burst can be scheduled to W3 as shown in Figure
2.8(b).

The complexity of ODBR is as follows

Phase 1 - Scheduling: ODBR examines the information of one
burst on each wavelength. Phase 1 runs in O(W) time in the
worst case.
Phase 2 - Rescheduling: Phase 2 has the worst case complexity
of O(W 2) time since it examines the last burst on each wave-
length for rescheduling to one of the other wavelengths.

2.4 Burst Rescheduling 41

(a) The new burst cannot be scheduled.

(b) The last burst on W3 is moved to W2 to accommodate
the new burst on W3.

Fig. 2.8. Illustration of multi-level rescheduling.

Since the complexity of LAUC-VF is O(KW) with K being the
average number of scheduled bursts per wavelength, the complex-
ity of ODBR will be more than LAUC-VF if W > K. However,
since ODBR is called only when a burst is dropped (usually less
than 10%), the overall processing complexity remains better than
LAUC-VF. It therefore has the advantage of low complexity sim-
ilar to LAUC.

Aggressive Burst Rescheduling (ABR) algorithm

As shown in Table 2.2, the ABR algorithm also has two phases.
However, it is different from the ODBR algorithm in that phase 2

42 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

Table 2.2. ABR algorithm

Phase 1
Use LAUC to find a suitable wavelength Wp for the incoming burst. If no such
wavelength is found, drop the burst. Otherwise, assign wavelength Wp to the
new burst and call phase 2.

Phase 2
Step 1: For every wavelength Wi other than Wp determine if the last

burst can be rescheduled to Wp and also the void created at Wp after reschedul-
ing. If such rescheduling is possible for a wavelength, it is said to be a valid
in-wavelength for Wp. If no valid in-wavelength exists, exit phase 2.

Step 2: Choose a valid in-wavelength Wj which has the smallest void.
Step 3: Reschedule the last burst from Wj to Wp.
Step 4: Send a special NOTIFY header packet to notify the next node

about the change of wavelength of the rescheduled burst.

Fig. 2.9. LAUC, ODBR and LAUC-VF fail to schedule new burst 6.

is not invoked when phase 1 fails but when phase 1 is successful.
This algorithm is intended to prevent future data burst dropping
by invoking rescheduling every time a burst has been scheduled
successfully. In ABR, upon successful scheduling of a burst at Wp

in phase 1, rescheduling of one latest burst from some other wave-
length Wi to Wp takes place in phase 2 if such a burst exists.
Rescheduling is governed by the rule that the void formed when
the burst is rescheduled from Wi to Wp is minimum among all pos-
sible wavelengths. By doing so, the probability of dropping data
bursts that arrive later could be decreased.

Examples as shown in Figure 2.9 and Figure 2.10 are used to
illustrate this algorithm. Figure 2.9 shows two wavelengths and
bursts that are being considered. Burst 1, 2, 3, 4, and 5 arrive
at a node one by one in that order and are scheduled to W1 and
W2 at phase 1. When burst 6 arrives, it cannot be scheduled to

2.4 Burst Rescheduling 43

(a) New burst 4 is assigned to W2.

(b) Last burst from W1 is rescheduled to W2.

(c) Burst 5 is assigned to W2.

(d) Burst 6 will be able to be scheduled to W1.

Fig. 2.10. Illustration of working of ABR algorithm.

any wavelength by LAUC, LAUC-VF, or ODBR. For the same
burst arriving pattern, Figure 2.10(a) to (d) show that with ABR,
the new burst 6 which would otherwise have been dropped, can
be scheduled successfully. This demonstrates that prevention of
burst dropping is achieved by using ABR. As shown in Figure
2.10(a), when burst 4 is scheduled to wavelength W2, considera-
tion for rescheduling of one last burst from other wavelength to

44 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

current wavelength W2 takes place. Here, the last burst on wave-
length W1 is scheduled to wavelength W2 as it conforms to the rule
that the void formed after rescheduling is shorter, as shown in Fig-
ure 2.10(b). Figure 2.10(c) shows that when burst 5 arrives, it is
scheduled to wavelength W2 in phase 1 as it is the latest available
wavelength. Finally, burst 6 will be scheduled to W1 at time t of
its arrival as shown in Figure 2.10(d). If there are more than one
burst on different wavelengths that could be rescheduled to Wp,
the burst with the smallest void formed after being rescheduled to
Wp would be chosen. This is to make sure that the smallest void
would be formed every time a rescheduling takes place.

The complexity of ABR is as follows.

Phase 1 - Scheduling : ABR examines the information of one
burst on each wavelength. Phase 1 runs in O(W) time in the
worst case.
Phase 2 - Rescheduling : Phase 2 has the worst case complexity
of O(W) time as well since it examines only the last burst on
each wavelength for rescheduling.

The complexity of ABR is approximately two times that of
LAUC since it examines only the last burst on each wavelength
for rescheduling. Therefore, even for values of K ≥ 3, ABR is ex-
pected to run faster than LAUC-VF whose complexity is O(KW).
It therefore has the advantage of low complexity similar to LAUC.

2.4.2 Signalling overhead

Additional signalling is needed when rescheduling is successful by
using ODBR or ABR. This is to notify the next node about the
change of wavelength by sending a NOTIFY packet. However,
rescheduling does not incur significant signalling overhead for both
ODBR and ABR algorithms. The NOTIFY packet is much smaller
than the header packet as it needs to carry only the wavelength
change information. Also, no complex algorithm is executed upon
receiving the NOTIFY packet. Further, a successful reschedule
requires a NOTIFY packet to be sent on only one link. Alter-
natively, without sending extra signalling packet, the information

2.4 Burst Rescheduling 45

can be piggybacked to the header packet. It therefore does not
incur significant processing time and does not consume significant
control channel bandwidth when compared to the computational
complexity gain achieved over existing algorithms such as LAUC-
VF.

2.4.3 Performance study

The performance of the burst rescheduling techniques is studied
via simulation in [43]. A random topology with 32 nodes and 60
bidirectional links is considered. Each link has 8 wavelengths for
carrying data traffic. The transmission capacity of each wavelength
is approximately 10 Gbps. No FDL buffer is assumed in the net-
work. Network traffic consists of two classes, namely class 1 and
class 2. Class 2 traffic is given a higher priority over class 1 traffic
by assigning an extra offset time. The performance of ODBR and
ABR is evaluated under different traffic loading conditions. The
burst arrival rate is measured as the number of bursts arrived per
node per microsecond. The range for traffic load is chosen to be
from 0.3 to 0.6 so that the burst dropping probability is below
15%.

Figures 2.11, 2.12, and 2.13, indicate that ODBR and ABR
have better performance in terms of the overall burst dropping
probability and that for class 1, and class 2 traffic, respectively,
than LAUC. The dropping probability increases with increasing
traffic load as most of the wavelengths are heavily used at high
traffic load, therefore, it is less probable for a burst to find an
available wavelength. However, as shown in Figures 2.11 and 2.12,
the performances of ODBR and ABR are always in between LAUC
and LAUC-VF. Particularly, ODBR and ABR perform closer to
LAUC-VF at low arrival rates than at high arrival rates. This
is because more voids are created at high arrival rates and the
rescheduling algorithms consider only the last burst for reschedul-
ing and do not utilize the voids in between the burst as in LAUC-
VF.

Figure 2.13 shows that all algorithms have similar dropping
performance for class 2 high priority traffic. This is because class

46 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.3 0.35 0.4 0.45 0.5 0.55 0.6

dr
op

pi
ng

 p
ro

ba
bi

lit
y

arrival rate

LAUC-overall
ODBR-overall

ABR-overall
LAUC-VF-overall

Fig. 2.11. Performance of overall traffic under different traffic loading.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.3 0.35 0.4 0.45 0.5 0.55 0.6

dr
op

pi
ng

 p
ro

ba
bi

lit
y

arrival rate

LAUC-class1(low)
ODBR-class1(low)

ABR-class1(low)
LAUC-VF-class1(low)

Fig. 2.12. Performance of class 1 traffic under different traffic loading.

2.4 Burst Rescheduling 47

0.0001

0.001

0.01

0.3 0.35 0.4 0.45 0.5 0.55 0.6

dr
op

pi
ng

 p
ro

ba
bi

lit
y

arrival rate

LAUC-class2(high)
ODBR-class2(high)

ABR-class2(high)
LAUC-VF-class2(high)

Fig. 2.13. Performance of class 2 traffic under different traffic loading.

2 traffic have large initial offset time as compared to class 1 traffic,
which makes a class 2 burst highly likely to reserve wavelength at
the far end on the time line. Therefore, a high priority burst is
highly likely to be the last burst and hence not much improvement
is achieved by LAUC-VF and the rescheduling algorithms over
LAUC.

The simulation study in [43] has also observed the number of
header packets that correspond to successful bursts and the num-
ber of NOTIFY packets that correspond to successful rescheduling
on each of the links. The results show that about 2% and 20% of
signalling overhead is incurred by ODBR and ABR, respectively.

48 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

2.5 Ordered Scheduling

2.5.1 High-level description

Unlike other channel scheduling algorithms that are heuristic in
nature, Ordered Scheduling2 [45] is designed to optimise burst
scheduling in OBS. In this algorithm, the scheduling of a burst
consists of two phases. In the first phase, when a header packet
arrives at a node, an admission control test is carried out to de-
termine whether the burst can be scheduled. If the burst fails the
test, it is dropped. Otherwise, a reservation object that contains
the burst arrival time and duration is created and placed in an
electronic buffer while the header packet is passed on to the next
node. The buffer is in the form of a priority queue3 with higher
priority corresponding to earlier burst arrival time. The second
phase starts just before the burst arrival time. Because of the pri-
ority queue, the reservation object of the incoming burst should
be at the head of the queue. It is dequeued and a free wavelength
is assigned to the burst. A special NOTIFY packet is immediately
generated and sent to the next downstream node to inform it of
the wavelength that the burst will travel on.

A simple example shown in Figure 2.14 helps to illustrate the
main concept of Ordered Scheduling. The left section of the figure
shows the order of the incoming bursts and the order of the header
packets in the control channel. The middle section shows that the
reservation objects are placed in the priority queue in the order
of burst arrivals. Finally, the scheduled bursts are shown in the
right section of the figure. The node simply dequeues a reserva-
tion object from the priority queue and assigns a free wavelength
to it. Since the priority queue sorts the reservations according their
burst arrival times, all unscheduled reservations will be to the left
of the newly dequeued reservation. Therefore, any void it produces
on the right has no effect on the schedulability of non-scheduled

2 Reprinted from (M. H. Phung, K. C. Chua, G. Mohan, M. Motani, T. C. Wong,
and P. Y. Kong, “On Ordered Scheduling for Optical Burst Switching,” Computer
Networks, vol. 48, no. 6, pp. 891–909), (2005), with permission from Elsevier.

3 A priority queue is a data structure that always has the highest priority element
at the head of the queue.

2.5 Ordered Scheduling 49

Fig. 2.14. The main concept of Ordered Scheduling

reservations. Thus, any free wavelength can be assigned to the
newly dequeued reservation. In the example, a round robin as-
signment is used because it is the easiest way to implement.

The admission control test for an output link without an FDL
buffer is given below.

A burst requesting reservation for the time interval [t0, t1] can
be scheduled on an output link with M wavelengths if ∀t ∈ (t0, t1),
the number of existing reservations containing t is no more than
M − 1.

(Note: A reservation for interval [t0, t1] is said to contain t if
t0 < t < t1)

When an output link is equipped with an FDL buffer, which
can be thought of as a collection of fibres (or FDLs) with different
lengths, a node has the option of delaying a burst by routing it
through one of the FDLs. In this case, the above admission control
test is extended as follows. If a burst fails to reserve an output
wavelength at its original arrival time t0, the node searches through
the FDLs in order of increasing length. Let the length of the FDL

50 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

in consideration be DFDL. The node first checks if the FDL is
free during the interval [t0, t1]. If the FDL already has another
reservation overlapping that interval, the node simply proceeds to
the next FDL. Otherwise, it reserves the FDL for that interval.
The node then executes the admission control test for the new
reservation interval [t0 + DFDL, t1 + DFDL]. If the test succeeds,
the burst is admitted and the search stops. Otherwise, the node
undoes the reservation on the FDL and proceeds to the next FDL.
If all the FDLs have been searched, the burst is dropped.

It should be noted that passing the admission control test is
necessary but not sufficient for a burst to be scheduled. The test
guarantees that at any infinitesimal time slot δt within the reser-
vation interval [t0, t1] of a burst, there exists a free wavelength.
However, it does not guarantee that those free time slots are lo-
cated on the same wavelength for the entire reservation interval,
which is required for them to be usable by the new burst. The
key to ensure that they are on the same wavelength is to schedule
bursts in the order of their arrival times as is done in the second
phase using the priority queue.

It can be seen that Ordered Scheduling is similar to Dual-header
OBS described in section 2.3. The primary difference between the
two schemes is the admisison control test. The admission con-
trol test is important because it prevents resource wastage due
to over-admitting bursts, also known as phantom reservations in
Dual-header OBS. In both schemes, header packets are passed on
to the next node before scheduling takes place. Thus, without the
admission control test, an incorrectly admitted burst will have its
header packet forwarded to downstream nodes to make further
reservations. However, the node that makes the incorrect admis-
sion will not be able to schedule the burst. Without having the
optical switch configured for it, the burst will be lost upon arrival
and resources reserved at downstream nodes will be wasted.

Ordered Scheduling is optimal in the sense that given some
previously admitted burst reservations, if an incoming burst reser-
vation cannot be admitted by Ordered Scheduling, it cannot be
scheduled by any other scheduling algorithm. This is because by
definition, if a new burst reservation fails the admission control

2.5 Ordered Scheduling 51

test, there exists a time slot within its reservation interval in which
all the data wavelengths are occupied. Therefore, the only way to
schedule the new burst is to preempt some existing reservations.

2.5.2 Admission control test realisation

The admission control test in section 2.5.1 is presented in con-
tinuous form, which may not be practical or feasible to realise.
A simple solution would be to divide the time axis into slots. A
burst that reserves any portion of a time slot, however small, will
be considered as occupying the whole time slot. The admission
control routine simply needs to keep track of the number of ad-
mitted bursts Noccupied that occupy each time slot and compare
it to the total number of data wavelengths M . A new burst will
be admitted only if Noccupied < M for all the slots it will occupy.
This version is referred to in [45] as Basic Ordered Scheduling. It
is suitable if the optical switches in the network also operate in a
slotted fashion as mentioned in [32]. In that case, the time slots
chosen by Ordered Scheduling should simply be set to be the same
as the time slots of the underlying optical switches.

The basic slotted approach, however, may degrade the system
performance if the underlying optical switches can operate in a
truly asynchronous fashion. Due to its discrete nature, it does not
consider the case where two bursts can occupy the same wave-
length in a slot and thus may lead to unnecessary burst loss. This
may be alleviated by having the slot size much smaller than the
average burst size. However, that will increase the processing time
and/or hardware complexity.

An enhanced version of the above slotted approach is called
Enhanced Ordered Scheduling in [45]. Instead of a single number to
indicate the number of bursts occupying a time slot, the admission
control routine keeps the following three data entities for each time
slot:

1. Ntotal is the total number of bursts that occupy the slot,
whether wholly or partly;

52 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

Fig. 2.15. Example of the bookkeeping for a typical time slot.

2. heads is the list of the start times of the bursts that have the
start of their reservation periods fall within the slot, sorted in
increasing order; and

3. ends is the list of the end times of the bursts that have the
end of their reservation periods fall within the slot, sorted in
increasing order.

The bookkeeping of the two versions is illustrated in Figure
2.15. In the figure, the slot sizes are exaggerated and the bursts not
shown occupy the entire slot. For the basic version, Noccupied = 16.
For the enhanced version, Ntotal = 16 and there are two entries in
each of heads and ends.

When a header packet arrives at a node to request a reservation,
the admission control routine pretends that the burst has passed
the test and updates the database of all the time slots involved, i.e.,
the time slots of the burst corresponding to the arriving header
packet. Ntotal is incremented by one for each of the time slots.
In addition, for the time slots containing the start or the end
of the burst, an entry is added to heads or ends, respectively.
The admission control routine then checks all the involved time
slots. For a particular slot, if Ntotal is larger than the number of
wavelengths M , entries in the heads list will be matched to those

2.5 Ordered Scheduling 53

in the ends list to reduce the number of occupied wavelengths.
A pair of bursts are considered matched for a given slot if the
start time of the one in the heads list is no greater than the end
time of the other in the ends list. The actual number of occupied
wavelengths is Ntotal minus the number of matched pairs. If this
number is smaller than M for all the involved slots, the new burst is
schedulable and admitted. Otherwise, its header packet is dropped
and its information previously inserted in the time slots’ database
is removed.

The matching operation is facilitated by the fact that heads and
ends are kept in increasing order. The algorithm simultaneously
goes from the beginning to the end on both lists, checking their
entries against each other. Let i and j be the current indices on
heads and ends. If heads[i] ≤ ends[j] then a match is recorded and
i and j are incremented by one. Otherwise, only j is incremented
to point to the next larger entry in ends. The process is repeated
until either i or j passes the end of the list.

The formal description of the algorithm is presented in Table
2.3. Denote [t0, t1] as the requested reservation interval; slot as the
object representing a particular time slot and s0 and s1 as the slots
that contain t0 and t1, respectively. Also, let slot.insert head(t)
and slot.insert end(t) be the functions that insert t into the sorted
lists heads and ends of slot, respectively. The main test procedure
uses three sub-functions insert(t0, t1), match() and remove(t0, t1).
The first two sub-functions are presented below the main test
procedure while the last one is omitted because it is similar to
insert(t0, t1).

In terms of loss performance, Enhanced Ordered Scheduling
is optimal since it fully implements the test in continuous form.
Its outperformance compared to the basic version is illustrated in
Figure 2.15 where the basic version reports that 16 wavelengths
are occupied for the time slot while the enhanced version reports
only 15 occupied wavelengths. The disadvantage of the enhanced
version is that it is more complex. This will be explored in the
next section.

54 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

Table 2.3. Admission control test

MAIN()
accept ← true
for slot = s0 to s1

slot.insert(t0, t1)
if slot.Ntotal − slot.match() > M

accept ← false
if accept = false

for slot = s0 to s1

slot.remove(t0, t1)

INSERT(t0, t1)
Ntotal ← Ntotal + 1
if slot contains t0 then insert head(t0)
if slot contains t1 then insert head(t1)

MATCH()
i ← 0
j ← 0
matched ← 0
while Neither i nor j have passed the end of heads and ends, respectively

if heads[i] ≤ ends[j]
matched ← matched + 1
i ← i + 1

j ← j + 1
return matched

2.5.3 Complexity analysis

Admission control test

The slotted structure of the two admission control implementa-
tions is particularly suitable for parallel processing since each slot
of a burst is processed independently. Let S be the maximum num-
ber of slots in the scheduling window. A simple parallel solution is
to have S processing elements in the admission control unit with
each processing element responsible for one slot. When a header
packet arrives, the processing elements corresponding to the slots
covered by the burst will compute the admission control test si-
multaneously.

The time complexity analysis for the basic and enhanced ver-
sions of the admission control test is as follows. For Basic Ordered
Scheduling, a processing element needs to perform at most one

2.5 Ordered Scheduling 55

comparison and one update of Noccupied per burst. Therefore, the
required processing time is constant and takes less than 1 ns as-
suming a processing speed in the order of 109 operations per sec-
ond. For Enhanced Ordered Scheduling, the processing element
also needs to perform one comparison and one update. In addi-
tion, it needs to do the matching operation when necessary. As-
suming that the slot size is smaller than the minimum burst size,
the number of elements in heads and ends is M in the worst case.
So the worst case complexity of the matching operation is O(M).
Also, the update of heads and ends at the two slots at the two
ends of a burst takes O(logM). Therefore, the overall worst case
time complexity is O(1)+O(M)+O(logM) = O(M). In a normal
case, however, the size of heads and ends is about M/K where K
is the average number of slots per burst. Hence, the average com-
plexity is O(M/K) per matching operation. The overall average
complexity is O(1) + O(M/K) + O(logM) = O(M/K + logM).
As an example, let M = 256 and K = 16; heads and ends will
have about 16 elements on average. A worst case estimate of the
processing time is 50 ns, which includes the execution of match()
and remove(t0, t1). The average processing time is much smaller
as match() and remove(t0, t1) are only executed in heavy loading
conditions.

The required number of processing elements is inversely pro-
portional to the slot size, or proportional to the average number
of slots per burst K. Therefore, although Basic Ordered Schedul-
ing has the advantage of fast processing compared to the enhanced
version, its drawback is that it requires a much larger number of
processing elements to ensure good burst dropping performance.
For Enhanced Ordered Scheduling, there is a tradeoff between pro-
cessing speed and hardware complexity. A small value of K will
reduce the required number of processing elements but will lead
to longer execution time and vice versa.

For comparison, it is possible to perform a parallel search across
the wavelengths to find all the unused wavelengths for LAUC-
VF. Then the search results are compared to each other to find
the latest available one. These operations can be performed in
O(logM) time, which is better than Enhanced Ordered Scheduling

56 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

and worse than Basic Ordered Scheduling. In terms of hardware
complexity, LAUC-VF requires one processing element for each
wavelength with each processing element being fairly complex. If
the number of wavelengths per link is large, which is usually the
case, the hardware requirement for LAUC-VF will be larger than
that for Ordered Scheduling.

Priority queue

The queueing operations on the priority queue are common to
both versions of Ordered Scheduling. Its complexity depends on
the specific implementation of the underlying priority queue. Some
efficient implementations of priority queues using pipelined heap
are reported in the literature [46, 47]. They have O(1) time com-
plexity with regard to queue size. Implemented on conservative
technologies such as 0.35-micron and 0.18-micron CMOS, they
can achieve up to 200 million queueing operations per second for
queues with up to 217 entries. The queue size depends on the size of
the scheduling window, which in turn depends on offset times and
FDL buffer depth, and the burst arrival rate. Note that the above
priority queue implementations can accommodate any queue size
of practical interest. The queue size only affects the amount of
required memory.

Overall time complexity

The computational work in admission control and priority queue
operations can be pipelined. That is, as soon as the admission
control routine finishes with a header packet and passes it to the
priority queue, it can handle the next header packet while the first
header packet is being enqueued. Therefore, the overall complex-
ity is the maximum of the two parts. With parallel processing,
the time complexity for Basic Ordered Scheduling is O(1). The
worst case and average time complexities for Enhanced Ordered
Scheduling are O(M) and O(M/K + logM), respectively.

2.5.4 Performance study

In [45], a simulation model is used to evaluate the performance
of the Ordered Scheduling algorithms. Both versions of Ordered

2.5 Ordered Scheduling 57

Scheduling are investigated. The slot sizes are 1 µs and 0.1 µs
for the enhanced and basic versions, respectively, unless otherwise
stated. The reason for the difference in the chosen slot sizes is
because the performance of Basic Ordered Scheduling critically
depends on the slot size while the performance of Enhanced Or-
dered Scheduling does not. LAUC-VF operating under the same
condition is used for comparison.

The burst assembly algorithm is a simple time-based algorithm
with a time limit Tlimit. There are separate assembly queues for
each ingress node and incoming IP packets choose a queue with
equal probability. When the first IP packet that forms a burst
arrives at an assembly queue, a timer is started from zero. Sub-
sequent IP packets are appended to the assembly queue. A burst
will be created when the timer exceeds Tlimit. In the experiments,
Tlimit is set such that the maximum burst duration is 2.5 µs. So
the average number of slots per burst are approximately 2 and 20
for Enhanced and Basic Ordered Scheduling, respectively.

The simulation study consists of three sets of experiments. The
first two sets are carried out for a topology with a single core node.
They aim to investigate the effects of traffic conditions and hard-
ware configurations on the performance of the algorithms, respec-
tively. The final experiment set is carried out for an entire network
to investigate the effect of network topology on the performance
trend among the algorithms.

The simulation topology for the first two sets of experiments is
shown in Figure 2.16. There are four ingress nodes and four burst
sinks connected to the core node. The burst sinks represent egress
nodes in a real network. No burst dropping is assumed on the links
between the ingress nodes and the core node. It only occurs on the
output links of the core node.

Effects of traffic conditions

In this set of experiments, the configuration is as follows. The links
connecting the OBS nodes are made up of a single optical fibre per
link. Each optical fibre has 8 data wavelengths. The core node has
an FDL buffer with 6 FDLs of lengths 5 µs, 10 µs,. . . , 30 µs.

58 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

Fig. 2.16. Topology for simulation study of a single core node

Firstly, the effect of varying the offered load to the core node is
examined. For this experiment, two offset-based QoS classes with
equal loading are used. Class 2 is given higher priority than class 1
by assigning an extra offset of 3 µs. This offset difference is larger
than the maximum burst size so that full isolation between the
two classes is achieved. The arrival rate ranges from 3.3 bursts per
µs to 4.15 bursts per µs, or from 0.74 to 0.92 in terms of offered
load. Offered loads lower than 0.74 are not considered because they
would make the loss probability of class 2 too small to measure
through simulation. On the other hand, offered loads larger than
0.92 would make the loss probability of class 1 too large to be of
practical interest.

The simulation results are plotted in Figure 2.17. They show
that the burst dropping probabilities increase with increasing of-
fered load, which is expected. Among the algorithms, Enhanced
Ordered Scheduling has the best burst dropping performance fol-
lowed by Basic Ordered Scheduling and then LAUC-VF. This or-
der of burst dropping performance among the algorithms is as
expected based on the discussion in the previous sections. The
order of performance is the same in virtually all of the following
experiments. Note that the differences in performance are greater
at lower load. This is because at low load, there are more free wave-
lengths to choose from to assign to an incoming burst reservation
and LAUC-VF is more likely to make suboptimal wavelength as-

2.5 Ordered Scheduling 59

3.4 3.5 3.6 3.7 3.8 3.9 4 4.1
10

7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Arrival rate (bursts / us)

D
ro

pp
in

g
pr

ob
ab

ili
ty

Class 1

Class 2

LAUC VF

Basic OS
Enhanced OS

Fig. 2.17. Burst loss probability versus traffic loading

signment decisions due to incomplete knowledge of other burst
reservations. Between the two classes, it is observed that the per-
formance improvement of Ordered Scheduling over LAUC-VF is
greater for class 2 than it is for class 1. The reason for this is also
related to loading. Since full isolation is achieved between the two
classes, the effective loading for class 2 traffic is only half of that
for class 1 traffic. So as the above reasoning goes, the improvement
for class 2 is larger.

The effect of traffic class composition is considered next. The
same traffic parameters as above are used except that the overall
offered load is fixed at 0.9 and the offered load of each class is
varied. As the proportion of class 1 traffic varies from 0 to 1, Figure
2.18(a) shows that the overall traffic loss rate follows a bell-shaped
curve, which is slightly tilted towards the left. The burst dropping
probabilities peak when the burst rates from the two classes are
comparable and are at the lowest at the two extremities where
traffic from only one class is present. This effect can be explained
from the queueing model point of view. As the traffic composition

60 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

becomes more balanced, more class 1 bursts are preempted by
those from class 2. When burst B1 from class 1 is preempted by
burst B2 from class 2, the effective size of B2 is its actual size plus
the portion already served of B1. If the burst size distribution is
not exponential, that will increase the effective burst size and the
burst loss rates. This negative effect of burst preemption is present
in all the algorithms, unlike the fragmentation of the scheduling
window that only affects LAUC-VF. Note that at the two extremes
when there is only one traffic class, FDL buffers in the core node
can still delay bursts and create fragmentation in the scheduling
window. Therefore, there are performance differences among the
algorithms even when there is only one traffic class.

The loss rates of individual classes are shown in Figure 2.18(b).
It is seen that as the proportion of low priority traffic increases,
the loss rates of both classes drop. For class 1, preemption by
class 2 bursts make up a large part of its burst loss. Therefore,
when there is less class 2 traffic, preemption occurs less frequently,
which leads to the drop in class 1 burst loss. For class 2, the only
cause for burst loss is intra-class contention since it is fully isolated
from class 1. Thus, when its traffic rate decreases, contention rate
rapidly decreases and so does the burst loss. This result implies
that very low burst dropping probability can be achieved for high
priority traffic even though the overall utilisation is high.

The final traffic parameter to be investigated is the number of
QoS classes. In this experiment, the overall offered load is 0.8 and
all traffic classes have equal loading. The overall burst dropping
probabilities are plotted in Figure 2.19. It shows that the over-
all burst dropping probability increases as the number of classes
increases. This is as expected because as the number of classes
increases, the scheduling window is more fragmented, which re-
sults in increasing loss probability. A notable aspect is the large
increase in loss probabilities moving from one to two classes. This
is caused by the large increase in the degree of fragmentation in
the scheduling window when moving from one class to two classes.

2.5 Ordered Scheduling 61

0 0.2 0.4 0.6 0.8 1
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Proportion of class 1 traffic in total traffic

D
ro

pp
in

g
pr

ob
ab

ili
ty

LAUC VF

Basic OS
Enhanced OS

(a) Overall performance

0 0.2 0.4 0.6 0.8 1
10

7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Proportion of class 1 traffic in total traffic

D
ro

pp
in

g
pr

ob
ab

ili
ty

Class 1

Class 2

LAUC VF

Basic OS

Enhanced OS

(b) Performance of individual traffic classes

Fig. 2.18. Effect of traffic composition on burst loss probability

62 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

1 2 3 4 5 6

10
3

10
2

10
1

Number of QoS classes

D
ro

pp
in

g
pr

ob
ab

ili
ty

LAUC VF

Basic OS
Enhanced OS

Fig. 2.19. Overall burst loss probability versus number of traffic classes

Effects of hardware configuration

In the first experiment, the impact of FDL buffer depth on the
performance of the algorithms is studied. Two kinds of data traffic
are considered: one with a single QoS class and the other with
two offset-based QoS classes. This is because the effects on burst
dropping performance are slightly different between having one
and two QoS classes. The offered loads for both cases are set at
0.8. The FDL buffer in use consists of a number of FDLs according
to the buffer depth. The lengths of the FDLs are regularly spaced
starting from 5 µs with length spacing being 5 µs.

Figure 2.20 shows that the overall trend is improving loss per-
formance with increasing number of FDLs. This is because when
an FDL buffer is introduced, if a node cannot schedule a burst at
its original arrival time, the node can try delaying the burst and
scheduling it at a later time. The larger the number of FDLs there
are in a buffer, the more options the node has in delaying bursts,
which improves burst dropping performance. Note also that the
curves for LAUC-VF tend to level off. This can be explained by
the fact that the scheduling window is increasingly fragmented as

2.5 Ordered Scheduling 63

more FDLs are introduced. For LAUC-VF, this negative effect op-
poses and neutralises the beneficial effect of having more FDLs,
which explains the levelling off of its curve. Ordered Scheduling, on
the other hand, is not affected due to its deferment of scheduling
decisions. The above effect is more pronounced in Figure 2.20(a)
than it is in Figure 2.20(b) because having two offset-based QoS
classes already introduces significant fragmentation in the schedul-
ing window so the additional fragmentation caused by more FDLs
has less effect.

The impact of slot size on the performance of Basic Ordered
Scheduling is studied next. For this and the remaining experi-
ments, input traffic with two QoS classes is used. In this experi-
ment, the loss performance of Basic Ordered Scheduling with dif-
ferent slot sizes is measured at an overall offered load of 0.6 and
compared to Enhanced Ordered Scheduling and LAUC-VF. The
results are plotted in Figure 2.21. Since the performance of the
latter two algorithms is not affected by slot size, their loss curves
show up as horizontal lines. On the other hand, as the slot size gets
larger, the burst dropping performance of Basic Ordered Schedul-
ing rapidly worsens due to its discrete implementation of the ad-
mission control test. At a slot size of 1 µs, which is what is used
by Enhanced Ordered Scheduling, the dropping probability of Ba-
sic Ordered Scheduling is nearly three orders of magnitude larger
than Enhanced Ordered Scheduling. These results confirm the ne-
cessity to use much smaller slot sizes for Basic Ordered Scheduling
compared to Enhanced Ordered Scheduling.

The final experiment in this section investigates the effects of
the number of wavelengths per link on the performance of the al-
gorithms. The performance results of a non-void filling scheduling
scheme as described in section 2.2.1 is included. The purpose is to
see how its performance compares to those of other void filling al-
gorithms at different numbers of wavelengths. The burst dropping
probabilities are measured at an overall offered load of 0.8 and dif-
ferent numbers of wavelengths per link and plotted in Figure 2.22.
It shows that the overall trend is decreasing loss probabilities with
increasing number of wavelengths per link. This is the direct result
of an OBS switch behaving like an M |M |k|k loss system. Observe

64 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

0 2 4 6 8 10
10

7

10
6

10
5

10
4

10
3

10
2

10
1

FDL buffer depth

D
ro

pp
in

g
pr

ob
ab

ili
ty

LAUC VF

Basic OS

Enhanced OS

(a) Single traffic class

0 2 4 6 8 10
10

3

10
2

10
1

FDL buffer depth

D
ro

pp
in

g
pr

ob
ab

ili
ty

LAUC VF

Basic OS
Enhanced OS

(b) Two traffic classes

Fig. 2.20. Burst loss probability versus buffer depth

2.5 Ordered Scheduling 65

10
8

10
7

10
6

10
5

10
4

10
3

10
2

Slot size (s)

D
ro

pp
in

g
pr

ob
ab

ili
ty

LAUC VF

Basic OS
Enhanced OS

Fig. 2.21. Performance of Basic Ordered Scheduling with different slot size

also that the performance of the Horizon scheme is poor when the
number of wavelengths is low but gets very close to that of LAUC-
VF when the number of wavelengths is high. Among the void filling
algorithms, the relative performance between Enhanced Ordered
Scheduling and LAUC-VF remains the same. However, the rela-
tive performance of Basic Ordered Scheduling compared to the en-
hanced version gradually decreases as the number of wavelengths
per link increases. This is also due to the discrete nature of Basic
Ordered Scheduling. As a slot handles more and more bursts, the
chance that Basic Ordered Scheduling over-reports the number of
occupied wavelengths as illustrated in Figure 2.15 increases. From
this experiment and the previous one, it is observed that the per-
formance of Ordered Scheduling depends on the ratio between the
number of slots per burst and the number of wavelengths per link.

Simulation study for an entire network

The three scheduling algorithms are next simulated in a realistic
network setting to see if the network topology affects the per-
formance trend among the algorithms. For this experiment, the

66 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

20 40 60 80 100 120 140 160 180 200
10

7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Number of wavelengths per link

D
ro

pp
in

g
pr

ob
ab

ili
ty

LAUC VF
Basic OS
Enhanced OS

Horizon

Fig. 2.22. Burst loss probability versus number of wavelengths per link

topology in Figure 2.23, which is a simplified topology of the US
backbone network, is used. The topology consists of 24 nodes and
43 links. The average node degree is 3.6. Shortest path routing is
used to determine the transmission paths among nodes and the
average hop length of the paths is 3. For simplicity, the propaga-
tion delays between adjacent nodes are assumed to have a fixed
value of 10 ms. The links are bi-directional, each implemented by
two uni-directional links in opposite directions.

The input traffic and hardware configuration for each node re-
main the same, i.e., two offset-based QoS classes, eight wavelengths
per link and six FDLs per output link at each node. Each node
has 23 separate assembly queues, one for every other node. An
incoming IP packet to a node enters one of the queues with equal
probability. The IP packet arrival rates are the same for every
node. The header packet processing time per node is assumed to
be ∆ = 1 µs. For a path with H hops, the initial offset times as-
signed for bursts of classes 1 and 2 are ∆ ·H µs and ∆ ·H + 3 µs,
respectively.

2.5 Ordered Scheduling 67

1

2

4

5

6

7 9

11

123

8
10

13

14
18

17

16

15

19

20

21

22

23

24

Fig. 2.23. 24-node NSF network topology

The burst dropping probabilities for the algorithms are plotted
against the offered load to the network. The offered load is mea-
sured in terms of the number of departing bursts per node per µs.
The simulation results are shown in Figure 2.24. It is observed that
the performance trend is similar to that in Figure 2.17. The order
among the algorithms remains the same, i.e., Enhanced Ordered
Scheduling has the best performance, followed by Basic Ordered
Scheduling and LAUC-VF. Note that the arrival rates used in
this experiment are much smaller than those used in Figure 2.17
but the ranges of the burst dropping probabilities are approxi-
mately the same. This is because in a network environment, many
paths may converge at some nodes, causing bottlenecks. The of-
fered loads to those bottlenecked nodes are much larger than the
average offered load to the network and most of the burst loss in
the network is concentrated there.

68 2 NODE-BASED QOS IMPROVEMENT MECHANISMS

0.5 1 1.5 2 2.5
10

8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

Arrival rate (bursts / node / us)

D
ro

pp
in

g
pr

ob
ab

ili
ty

Class 1

Class 2

Enhanced OS
Basic OS

LAUC VF

Fig. 2.24. Average burst loss probability for NSFNET versus average network load

References

1. D. B. Sarrazin, H. F. Jordan, and V. P. Heuring, “Fiber Optic Delay Line
Memory,” Applied Optics, vol. 29, no. 5, pp. 627–637, 1990.

2. I. Chlamtac et al., “CORD: Contention Resolution by Delay Lines,” IEEE Jour-
nal on Selected Areas in Communications, vol. 14, no. 5, pp. 1014–1029, 1996.

3. D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in Optical Packet
Switches,” IEEE/OSA Journal of Lightwave Technology, vol. 16, no. 12, pp.
2081–2094, 1998.

4. W. D. Zhong and R. S. Tucker, “A New Wavelength-Routed Photonic Packet
Buffer Combining Traveling Delay Lines with Delay Line Loops,” IEEE/OSA
Journal of Lightwave Technology, vol. 19, no. 8, pp. 1085–1092, 2001.

5. T. Zhang, K. Lu, and J. P. Jue, “Shared Fiber Delay Line Buffers in Asyn-
chronous Optical Packet Switches,” IEEE Journal on Selected Areas in Com-
munications, vol. 24, no. 4, pp. 118–127, 2006.

6. K. K. Merchant et al., “Analysis of an Optical Burst Switching Router With
Tunable Multiwavelength Recirculating Buffers,” IEEE/OSA Journal of Light-
wave Technology, vol. 23, no. 10, pp. 3302–3312, 2005.

7. D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, and I. Andonovic,
“SLOB: A Switch with Large Optical Buffers for Packet Switching,” IEEE/OSA
Journal of Lightwave Technology, vol. 16, no. 10, pp. 1725–1736, 1998.

8. I. Chlamtac, A. Fumagalli, and C. J. Shu, “Multibuffer Delay Line Architec-
tures for Efficient Contention Resolution in Optical Switching Nodes,” IEEE
Transactions on Communications, vol. 48, no. 12, pp. 2089–2098, 2000.

9. N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-Stage
Fiber Delay Line Buffer in Photonic Packet Switch for Asynchronously Arriving
Variable-Length Packets,” IEICE Transactions on Communications, vol. E88-B,
no. 1, pp. 258–265, 2005.

10. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-Light Optical Buffers:
Capabilities and Fundamental Limitations,” IEEE/OSA Journal of Lightwave
Technology, vol. 23, no. 12, pp. 4046–4066, 2005.

11. A. S. Acampora and S. I. A. Shah, “Multihop Lightwave Networks: A Com-
parison of Store-and-Forward and Hot-Potato Routing,” IEEE Transactions on
Communications, vol. 40, no. 6, pp. 1082–1090, 1992.

12. A. G. Greenberg and B. Hajek, “Deflection Routing in Hypercube Networks,”
IEEE Transactions on Communications, vol. 40, no. 6, pp. 1070–1081, 1992.

70 References

13. F. Forghieri, A. Boroni, and P. R. Prucnal, “Analysis and Comparison of Hot-
Potato and Single-Buffer Deflection Routing in Very High Bit Rate Optical
Mesh Networks,” IEEE Transactions on Communications, vol. 43, no. 1, pp.
88–98, 1995.

14. T. Chich, J. Cohen, and P. Fraigniaud, “Unslotted Deflection Routing: A Prac-
tical and Efficient Protocol for Multihop Optical Networks,” IEEE/ACM Trans-
actions on Networking, vol. 9, no. 1, pp. 47–59, 2001.

15. S. Yao, B. Mukherjee, S. J. B. Yoo, and S. Dixit, “A Unified Study of Contention-
Resolution Schemes in Optical Packet-Switched Networks,” IEEE/OSA Journal
of Lightwave Technology, vol. 21, no. 3, pp. 672–683, 2003.

16. C.-F. Hsu, T.-L. Liu, and N.-F. Huang, “Performance Analysis of Deflection
Routing in Optical Burst-Switched Networks,” in Proc. IEEE Infocom, 2002,
pp. 66–73.

17. S. Lee, K. Sriram, H. Kim, and J. Song, “Contention-Based Limited Deflec-
tion Routing Protocol in Optical Burst-Switched Networks,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 8, pp. 1596–1611, 2005.

18. N. Ogino, and H. Tanaka, “Deflection Routing for Optical Bursts Consider-
ing Possibility of Contention at Downstream Nodes,” IEICE Transactions on
Communications, vol. E88-B, no. 9, pp. 3660–3667, 2005.

19. C. Cameron, A. Zalesky, and M. Zukerman, “Prioritized Deflection Routing in
Optical Burst Switching,” IEICE Transactions on Communications, vol. E88-B,
no. 5, pp. 1861–1867, 2005.

20. A. Detti, V. Eramo, and M. Listanti, “Performance Evaluation of a New Tech-
nique for IP Support in a WDM Optical Network: Optical Composite Burst
Switching (OCBS),” IEEE/OSA Journal of Lightwave Technology, vol. 20, no. 2,
pp. 154–165, 2002.

21. V. M. Vokkarane and J. P. Jue, “Burst Segmentation: An Approach for Re-
ducing Packet Loss in Optical Burst Switched Networks,” SPIE/Kluwer Optical
Networks, vol. 4, no. 6, pp. 81–89, 2003.

22. V. M. Vokkarane, , G. P. Thodime, V. U. Challagulla, and J. P. Jue, “Channel
Scheduling Algorithms using Burst Segmentation and FDLs for Optical Burst-
Switched Networks,” in Proc. IEEE International Conference on Communica-
tions, 2003, pp. 1443–1447.

23. W. Tan, S. Wang, and L. Li, “Burst Segmentation for Void-Filling Scheduling
and Its Performance Evaluation in Optical Burst Switching,” Optics Express,
vol. 12, no. 26, pp. 6615–6623, 2004.

24. Z. Rosberg, H. L. Vu, M. Zukerman, and J. White, “Performance Analyses of
Optical Burst Switching Networks,” IEEE Journal on Selected Areas in Com-
munications, vol. 21, no. 7, pp. 1187–1197, 2003.

25. V. Eramo and M. Listanti, “Packet Loss in a Bufferless Optical WDM Switch
Employing Shared Tunable Wavelength Converters,” IEEE/OSA Journal of
Lightwave Technology, vol. 18, no. 12, pp. 1818–1833, 2000.

26. V. Eramo, M. Listanti, and P. Pacifici, “A Comparison Study on the Number of
Wavelength Converters Needed in Synchronous and Asynchronous All-Optical
Switching Architectures,” IEEE/OSA Journal of Lightwave Technology, vol. 21,
no. 2, pp. 340–355, 2003.

27. M. Yao, Z. Liu, and A. Wen, “Accurate and Approximate Evaluations of Asyn-
chronous Tunable Wavelength Converter Sharing Schemes in Optical Burst
Switched Networks,” IEEE/OSA Journal of Lightwave Technology, vol. 23,
no. 10, pp. 2807–2815, 2005.

References 71

28. G. Shen, S. K. Bose, T. H. Cheng, C. Lu, and T. Y. Chai, “Performance Study
on a WDM Packet Switch with Limited-Range Wavelength Converters,” IEEE
Communications Letters, vol. 5, no. 10, pp. 432–434, 2001.

29. Z. Zhang and Y. Yang, “Performance Modeling of Bufferless WDM Packet
Switching Networks with Wavelength Conversion,” in Proc. IEEE Globecom,
2003, pp. 2498–2502.

30. V. Eramo, M. Listanti, and M. Spaziani, “Resources Sharing in Optical Packet
Switches with Limited-Range Wavelength Converters,” IEEE/OSA Journal of
Lightwave Technology, vol. 23, no. 2, pp. 671–687, 2005.

31. J. S. Turner, “Terabit Burst Switching,” Journal of High Speed Network, vol. 8,
no. 1, pp. 3–16, 1999.

32. Y. Xiong, M. Vandenhoute, and H. C. Cankaya, “Control Architecture in Optical
Burst-Switched WDM Networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 18, no. 10, pp. 1838–1851, 2000.

33. L. Tančevski, S. Yegnanarayanan, G. Castanon, L. Tamil, F. Masetti, and T. Mc-
Dermott, “Optical Routing of Asynchronous, Variable Length Packets,” IEEE
Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 2084–2093,
2000.

34. M. Iizuka, M. Sakuta, Y. Nishino, and I. Sasase, “A Scheduling Algorithm Min-
imizing Voids Generated by Arriving Bursts in Optical Burst Switched WDM
Network,” in Proc. IEEE Globecom, 2002, pp. 2736–2740.

35. M. Ljolje, R. Inkret, and B. Mikac, “A Comparative Analysis of Data Schedul-
ing Algorithms in Optical Burst Switching Networks,” in Proc. Conference on
Optical Network Design and Modeling, 2005, pp. 493–500.

36. S. Q. Zheng, Y. Xiong, and H. C. Cankaya, “Hardware Design of a Channel
Scheduling Algorithm for Optical Burst Switching Routers,” in Proc. SPIE,
vol. 4872, 2002, pp. 199–209.

37. J. Xu, C. Qiao, J. Li, and G. Xu, “Efficient Burst Scheduling Algorithms in
Optical Burst-Switched Networks Using Geometric Techniques,” IEEE Journal
on Selected Areas in Communications, vol. 22, no. 9, pp. 1796–1811, 2004.

38. F. Farahmand, and J. P. Jue, “Look-Ahead Window Contention Resolution in
Optical Burst Switched Networks,” in Proc. IEEE Workshop on High Perfor-
mance Switching and Routing, 2003, pp. 147–151.

39. S. Charcranoon, T. S. El-Bawab, J. D. Shin, and H. C. Cankaya, “Group
Scheduling for Multi-Service Optical Burst Switching (OBS) Networks,” Pho-
tonic Network Communications, vol. 11, no. 1, pp. 99-110, 2006.

40. H. Li, H. Neo, and L. J. I. Thng, “Performance of the Implementation of a
PipeLine Buffering System in Optical Burst Switching Networks,” in Proc. IEEE
Globecom, 2003, pp. 2503–2507.

41. J. Li, C. Qiao, and Y. Chen, “Maximizing Throughput for Optical Burst Switch-
ing Networks,” in Proc. IEEE Infocom, 2004, pp. 1853–1863.

42. N. Barakat, and E. H. Sargent, “Separating Resource Reservations from Service
Requests to Improve the Performance of Optical Burst Switching Networks,”
IEEE Journal on Selected Areas in Communications, vol. 24, no. 4, pp. 95–107,
2006.

43. S. K. Tan, G. Mohan, and K. C. Chua, “Algorithms for Burst Rescheduling in
WDM Optical Burst Switching Networks,” Computer Networks, vol. 41, no. 1,
pp. 41–55, 2003.

72 References

44. S. K. Tan, G. Mohan, and K. C. Chua, “Burst Rescheduling with Wavelength
and Last-Hop FDL Reassignment in WDM Optical Burst Switching Networks,”
in Proc. IEEE International Conference on Communications, 2003, pp. 1448–
1452.

45. M. H. Phung, K. C. Chua, G. Mohan, M. Motani, T. C. Wong, and P. Y. Kong,
“On Ordered Scheduling for Optical Burst Switching,” Computer Networks,
vol. 48, no. 6, pp. 891–909, 2005.

46. R. Bhagwan and B. Lin, “Fast and Scalable Priority Queue Architecture for
High-Speed Network Switches,” in Proc. IEEE Infocom, 2000, pp. 538–547.

47. A. Ioannou and M. Katevenis, “Pipelined Heap (Priority Queue) Management
for Advanced Scheduling in High-Speed Networks,” in Proc. IEEE International
Conference on Communications, 2001, pp. 2043–2047.

