
Grouping Multidimensional Data

Recent Advances in Clustering

Bearbeitet von
Jacob Kogan, Charles Nicholas, Marc Teboulle

1. Auflage 2005. Buch. xii, 268 S. Hardcover
ISBN 978 3 540 28348 5

Format (B x L): 15,5 x 23,5 cm
Gewicht: 590 g

Weitere Fachgebiete > EDV, Informatik > Datenbanken, Informationssicherheit,
Geschäftssoftware > Datenkompression, Dokumentaustauschformate

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Kogan-Nicholas-Teboulle-Grouping-Multidimensional-Data/productview.aspx?product=104867&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_104867&campaign=pdf/104867
http://www.beck-shop.de/trefferliste.aspx?toc=8237
http://www.beck-shop.de/trefferliste.aspx?toc=8237
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783540283485_TOC_001.pdf

The Star Clustering Algorithm
for Information Organization

J.A. Aslam, E. Pelekhov, and D. Rus

Summary. We present the star clustering algorithm for static and dynamic infor-
mation organization. The offline star algorithm can be used for clustering static in-
formation systems, and the online star algorithm can be used for clustering dynamic
information systems. These algorithms organize a data collection into a number of
clusters that are naturally induced by the collection via a computationally efficient
cover by dense subgraphs. We further show a lower bound on the accuracy of the
clusters produced by these algorithms as well as demonstrate that these algorithms
are computationally efficient. Finally, we discuss a number of applications of the
star clustering algorithm and provide results from a number of experiments with
the Text Retrieval Conference data.

1 Introduction

We consider the problem of automatic information organization and present
the star clustering algorithm for static and dynamic information organization.
Offline information organization algorithms are useful for organizing static col-
lections of data, for example, large-scale legacy collections. Online information
organization algorithms are useful for keeping dynamic corpora, such as news
feeds, organized. Information retrieval (IR) systems such as Inquery [427],
Smart [378], and Google provide automation by computing ranked lists of
documents sorted by relevance; however, it is often ineffective for users to
scan through lists of hundreds of document titles in search of an information
need. Clustering algorithms are often used as a preprocessing step to organize
data for browsing or as a postprocessing step to help alleviate the “information
overload” that many modern IR systems engender.

There has been extensive research on clustering and its applications
to many domains [17, 231]. For a good overview see [242]. For a good
overview of using clustering in IR see [455]. The use of clustering in IR was

2 J.A. Aslam et al.

mostly driven by the cluster hypothesis [429], which states that “closely asso-
ciated documents tend to be related to the same requests.” Jardine and van
Rijsbergen [246] show some evidence that search results could be improved
by clustering. Hearst and Pedersen [225] re-examine the cluster hypothesis by
focusing on the Scatter/Gather system [121] and conclude that it holds for
browsing tasks.

Systems like Scatter/Gather [121] provide a mechanism for user-driven
organization of data in a fixed number of clusters but the users need to be in
the loop and the computed clusters do not have accuracy guarantees. Scat-
ter/Gather uses fractionation to compute nearest-neighbor clusters. Charika
et al. [104] consider a dynamic clustering algorithm to partition a collection of
text documents into a fixed number of clusters. Since in dynamic information
systems the number of topics is not known a priori, a fixed number of clusters
cannot generate a natural partition of the information.

In this chapter, we provide an overview of our work on clustering algo-
rithms and their applications [26–33]. We propose an offline algorithm for
clustering static information and an online version of this algorithm for clus-
tering dynamic information. These two algorithms compute clusters induced
by the natural topic structure of the information space. Thus, this work is
different from [104,121] in that we do not impose the constraint to use a fixed
number of clusters. As a result, we can guarantee a lower bound on the topic
similarity between the documents in each cluster. The model for topic sim-
ilarity is the standard vector space model used in the IR community [377],
which is explained in more detail in Sect. 2 of this chapter.

While the clustering document represented in the vector space model is our
primary motivating example, our algorithms can be applied to clustering any
set of objects for which a similarity measure is defined, and the performance
results stated largely apply whenever the objects themselves are represented
in a feature space in which similarity is defined by the cosine metric.

To compute accurate clusters, we formalize clustering as covering graphs
by cliques [256] (where the cover is a vertex cover). Covering by cliques is NP
complete and thus intractable for large document collections. Unfortunately,
it has also been shown that the problem cannot be approximated even in
polynomial time [322, 465]. We instead use a cover by dense subgraphs that
are star shaped and that can be computed offline for static data and online for
dynamic data. We show that the offline and the online algorithms produce cor-
rect clusters efficiently. Asymptotically, the running time of both algorithms
is roughly linear in the size of the similarity graph that defines the informa-
tion space (explained in detail in Sect. 2). We also show lower bounds on the
topic similarity within the computed clusters (a measure of the accuracy of
our clustering algorithm) as well as provide experimental data.

We further compare the performance of the star algorithm to two widely
used algorithms for clustering in IR and other settings: the single link

The Star Clustering Algorithm for Information Organization 3

method1 [118] and the average link algorithm2 [434]. Neither algorithm pro-
vides guarantees for the topic similarity within a cluster. The single link al-
gorithm can be used in offline and online modes, and it is faster than the
average link algorithm, but it produces poorer clusters than the average link
algorithm. The average link algorithm can only be used offline to process sta-
tic data. The star clustering algorithm, on the other hand, computes topic
clusters that are naturally induced by the collection, provides guarantees on
cluster quality, computes more accurate clusters than either the single link or
the average link methods, is efficient, admits an efficient and simple online ver-
sion, and can perform hierarchical data organization. We describe experiments
in this chapter with the TREC3 collection demonstrating these abilities.

Finally, we discuss the use of the star clustering algorithm in a number
of different application areas including (1) automatic information organiza-
tion systems, (2) scalable information organization for large corpora, (3) text
filtering, and (4) persistent queries.

2 Motivation for the Star Clustering Algorithm

In this section we describe our clustering model and provide motivation for
the star clustering algorithm. We begin by describing the vector space model
for document representation and consider an idealized clustering algorithm
based on clique covers. Given that clique cover algorithms are computationally
infeasible, we redundant propose an algorithm based on star covers. Finally, we
argue that star covers retain many of the desired properties of clique covers
in expectation, and we demonstrate in subsequent sections that clusterings
based on star covers can be computed very efficiently both online and offline.

2.1 Clique Covers in the Vector Space Model

We formulate our problem by representing a document collection by its
similarity graph. A similarity graph is an undirected, weighted graph G =
(V,E,w), where the vertices in the graph correspond to documents and each
weighted edge in the graph corresponds to a measure of similarity between
two documents. We measure the similarity between two documents by using
a standard metric from the IR community – the cosine metric in the vector
space model of the Smart IR system [377,378].

1In the single link clustering algorithm a document is part of a cluster if it is “related”
to at least one document in the cluster

2In the average link clustering algorithm a document is part of a cluster if it is
“related” to an average number of documents in the cluster

3TREC is the Annual Text Retrieval Conference. Each participant is given of the
order of 5 GB of data and a standard set of queries to test the systems. The results
and the system descriptions are presented as papers at the TREC

4 J.A. Aslam et al.

The vector space model for textual information aggregates statistics on
the occurrence of words in documents. The premise of the vector space model
is that two documents are similar if they use similar words. A vector space
can be created for a collection (or corpus) of documents by associating each
important word in the corpus with one dimension in the space. The result
is a high-dimensional vector space. Documents are mapped to vectors in this
space according to their word frequencies. Similar documents map to nearby
vectors. In the vector space model, document similarity is measured by the
angle between the corresponding document vectors. The standard in the IR
community is to map the angles to the interval [0, 1] by taking the cosine of
the vector angles.

G is a complete graph with edges of varying weight. An organization of
the graph that produces reliable clusters of similarity σ (i.e., clusters where
documents have pairwise similarities of at least σ) can be obtained by (1)
thresholding the graph at σ and (2) performing a minimum clique cover with
maximal cliques on the resulting graph Gσ. The thresholded graph Gσ is an
undirected graph obtained from G by eliminating all the edges whose weights
are lower than σ. The minimum clique cover has two features. First, by using
cliques to cover the similarity graph, we are guaranteed that all the documents
in a cluster have the desired degree of similarity. Second, minimal clique covers
with maximal cliques allow vertices to belong to several clusters. In many
information retrieval applications, this is a desirable feature as documents
can have multiple subthemes.

Unfortunately, this approach is computationally intractable. For real cor-
pora, similarity graphs can be very large. The clique cover problem is NP-
complete, and it does not admit polynomial-time approximation algorithms
[322, 465]. While we cannot perform a clique cover or even approximate such
a cover, we can instead cover our graph by dense subgraphs. What we lose in
intracluster similarity guarantees, we gain in computational efficiency.

2.2 Star Covers

We approximate a clique cover by covering the associated thresholded similar-
ity graph with star-shaped subgraphs. A star-shaped subgraph on m+1 vertices
consists of a single star center and m satellite vertices, where there exist edges
between the star center and each of the satellite vertices (see Fig. 1). While
finding cliques in the thresholded similarity graph Gσ guarantees a pairwise
similarity between documents of at least σ, it would appear at first glance that
finding star-shaped subgraphs in Gσ would provide similarity guarantees be-
tween the star center and each of the satellite vertices, but no such similarity
guarantees between satellite vertices. However, by investigating the geometry
of our problem in the vector space model, we can derive a lower bound on
the similarity between satellite vertices as well as provide a formula for the
expected similarity between satellite vertices. The latter formula predicts that
the pairwise similarity between satellite vertices in a star-shaped subgraph is

The Star Clustering Algorithm for Information Organization 5

s1

s2

s3
s4

s7

s6

s5 C

Fig. 1. An example of a star-shaped subgraph with a center vertex C and satellite
vertices s1–s7. The edges are denoted by solid and dashed lines. Note that there is
an edge between each satellite and a center, and that edges may also exist between
satellite vertices

high, and together with empirical evidence supporting this formula, we con-
clude that covering Gσ with star-shaped subgraphs is an accurate method for
clustering a set of documents.

Consider three documents C, s1, and s2 that are vertices in a star-shaped
subgraph of Gσ, where s1 and s2 are satellite vertices and C is the star center.
By the definition of a star-shaped subgraph of Gσ, we must have that the
similarity between C and s1 is at least σ and that the similarity between C
and s2 is also at least σ. In the vector space model, these similarities are
obtained by taking the cosine of the angle between the vectors associated
with each document. Let α1 be the angle between C and s1, and let α2 be
the angle between C and s2. We then have that cosα1 ≥ σ and cos α2 ≥ σ.
Note that the angle between s1 and s2 can be at most α1 + α2; we therefore
have the following lower bound on the similarity between satellite vertices in
a star-shaped subgraph of Gσ.

Theorem 1. Let Gσ be a similarity graph and let s1 and s2 be two satellites
in the same star in Gσ. Then the similarity between s1 and s2 must be at least

cos(α1 + α2) = cos α1 cos α2 − sin α1 sin α2.

The use of Theorem 1 to bound the similarity between satellite vertices can
yield somewhat disappointing results. For example, if σ = 0.7, cos α1 = 0.75,
and cos α2 = 0.85, we can conclude that the similarity between the two satel-
lite vertices must be at least4:

0.75 × 0.85 −
√

1 − (0.75)2
√

1 − (0.85)2 ≈ 0.29.

4Note that sin θ =
√

1 − cos2 θ

6 J.A. Aslam et al.

Note that while this may not seem very encouraging, the analysis is based
on absolute worst-case assumptions, and in practice, the similarities between
satellite vertices are much higher. We can instead reason about the expected
similarity between two satellite vertices by considering the geometric con-
straints imposed by the vector space model as follows.

Theorem 2. Let C be a star center, and let S1 and S2 be the satellite vertices
of C. Then the similarity between S1 and S2 is given by

cos α1 cos α2 + cos θ sin α1 sin α2,

where θ is the dihedral angle5 between the planes formed by S1C and S2C.

This theorem is a fairly direct consequence of the geometry of C, S1, and
S2 in the vector space; details may be found in [31].

How might we eliminate the dependence on cos θ in this formula? Consider
three vertices from a cluster of similarity σ. Randomly chosen, the pairwise
similarities among these vertices should be cos ω for some ω satisfying cos ω ≥
σ. We then have

cos ω = cos ω cos ω + cos θ sinω sin ω

from which it follows that

cos θ =
cos ω − cos2 ω

sin2 ω
=

cos ω(1 − cos ω)
1 − cos2 ω

=
cos ω

1 + cos ω
.

Substituting for cos θ and noting that cosω ≥ σ, we obtain

cos γ ≥ cos α1 cos α2 +
σ

1 + σ
sin α1 sin α2. (1)

Equation (1) provides an accurate estimate of the similarity between two satel-
lite vertices, as we demonstrate empirically.

Note that for the example given in Sect. 2.2, (1) would predict a similarity
between satellite vertices of approximately 0.78. We have tested this formula
against real data, and the results of the test with the TREC FBIS data set6

are shown in Fig. 2. In this plot, the x-axis and y-axis are similarities between
cluster centers and satellite vertices, and the z-axis is the root mean squared
prediction error (RMS) of the formula in Theorem 2 for the similarity between
satellite vertices. We observe the maximum root mean squared error is quite
small (approximately 0.16 in the worst case), and for reasonably high similar-
ities, the error is negligible. From our tests with real data, we have concluded
that (1) is quite accurate. We may further conclude that star-shaped sub-
graphs are reasonably “dense” in the sense that they imply relatively high
pairwise similarities between all documents in the star.

5The dihedral angle is the angle between two planes on a third plane normal to the
intersection of the two planes

6Foreign Broadcast Information Service (FBIS) is a large collection of text docu-
ments used in TREC

The Star Clustering Algorithm for Information Organization 7

0
0.2

0.4
0.6

0.8
1

0 0.2 0.4 0.6 0.8 1cos a2

cos a1

0

0.04

0.08

0.12

0.16

RMS

Fig. 2. The RMS prediction error of our expected satellite similarity formula over
the TREC FBIS collection containing 21,694 documents

3 The Offline Star Clustering Algorithm

Motivated by the discussion of Sect. 2, we now present the star algorithm,
which can be used to organize documents in an information system. The
star algorithm is based on a greedy cover of the thresholded similarity
graph by star-shaped subgraphs; the algorithm itself is summarized in Fig. 3
below.

Theorem 3. The running time of the offline star algorithm on a similarity
graph Gσ is Θ(V + Eσ).

For any threshold σ:

1. Let Gσ = (V, Eσ) where Eσ = {e ∈ E : w(e) ≥ σ}.
2. Let each vertex in Gσ initially be unmarked.
3. Calculate the degree of each vertex v ∈ V .
4. Let the highest degree unmarked vertex be a star center, and construct a

cluster from the star center and its associated satellite vertices. Mark each
node in the newly constructed star.

5. Repeat Step 4 until all nodes are marked.
6. Represent each cluster by the document corresponding to its associated star

center.

Fig. 3. The star algorithm

8 J.A. Aslam et al.

Proof. The following implementation of this algorithm has a running time
linear in the size of the graph. Each vertex v has a data structure associated
with it that contains v.degree, the degree of the vertex, v.adj, the list of ad-
jacent vertices, v.marked, which is a bit denoting whether the vertex belongs
to a star or not, and v.center, which is a bit denoting whether the vertex is
a star center. (Computing v.degree for each vertex can be easily performed
in Θ(V + Eσ) time.) The implementation starts by sorting the vertices in V
by degree (Θ(V) time since degrees are integers in the range {0, |V |}). The
program then scans the sorted vertices from the highest degree to the low-
est as a greedy search for star centers. Only vertices that do not belong to
a star already (that is, they are unmarked) can become star centers. Upon
selecting a new star center v, its v.center and v.marked bits are set and for
all w ∈ v.adj, w.marked is set. Only one scan of V is needed to determine all
the star centers. Upon termination, the star centers and only the star centers
have the center field set. We call the set of star centers the star cover of the
graph. Each star is fully determined by the star center, as the satellites are
contained in the adjacency list of the center vertex. ��

This algorithm has two features of interest. The first feature is that the
star cover is not unique. A similarity graph may have several different star
covers because when there are several vertices of the same highest degree, the
algorithm arbitrarily chooses one of them as a star center (whichever shows up
first in the sorted list of vertices). The second feature of this algorithm is that
it provides a simple encoding of a star cover by assigning the types “center”
and “satellite” (which is the same as “not center” in our implementation) to
vertices. We define a correct star cover as a star cover that assigns the types
“center” and “satellite” in such a way that (1) a star center is not adjacent
to any other star center and (2) every satellite vertex is adjacent to at least
one center vertex of equal or higher degree.

Figure 4 shows two examples of star covers. The left graph consists of
a clique subgraph (first subgraph) and a set of nodes connected to only to
the nodes in the clique subgraph (second subgraph). The star cover of the
left graph includes one vertex from the 4-clique subgraph (which covers the
entire clique and the one nonclique vertex it is connected to), and single-
node stars for each of the noncovered vertices in the second set. The addition
of a node connected to all the nodes in the second set changes the clique
cover dramatically. In this case, the new node becomes a star center. It thus
covers all the nodes in the second set. Note that since star centers cannot
be adjacent, no vertex from the second set is a star center in this case. One
node from the first set (the clique) remains the center of a star that covers
that subgraph. This example illustrates the connection between a star cover
and other important graph sets, such as set covers and induced dominating
sets, which have been studied extensively in the literature [19, 183]. The star
cover is related but not identical to a dominating set [183]. Every star cover
is a dominating set, but there are dominating sets that are not star covers.

The Star Clustering Algorithm for Information Organization 9

N

Fig. 4. An example of a star-shaped cover before and after the insertion of the node
N in the graph. The dark circles denote satellite vertices. The shaded circles denote
star centers

Star covers are useful approximations of clique covers because star graphs are
dense subgraphs for which we can infer something about the missing edges as
we have shown earlier.

Given this definition for the star cover, it immediately follows that:

Theorem 4. The offline star algorithm produces a correct star cover.

We use the two features of the offline algorithm mentioned earlier in the
analysis of the online version of the star algorithm in Sect. 4. In Sect. 5, we
show that the clusters produced by the star algorithm are quite accurate,
exceeding the accuracy produced by widely used clustering algorithms in IR.

4 The Online Star Algorithm

The star clustering algorithm described in Sect. 3 can be used to accurately
and efficiently cluster a static collection of documents. However, it is often the
case in information systems that documents are added to, or deleted from, a
dynamic collection. In this section, we describe an online version of the star
clustering algorithm, which can be used to efficiently maintain a star clustering
in the presence of document insertions and deletions.

We assume that documents are inserted or deleted from the collection one
at a time. We begin by examining Insert. The intuition behind the incre-
mental computation of the star cover of a graph after a new vertex is inserted
is depicted in Fig. 5. The top figure denotes a similarity graph and a correct
star cover for this graph. Suppose a new vertex is inserted in the graph, as
in the middle figure. The original star cover is no longer correct for the new
graph. The bottom figure shows the correct star cover for the new graph. How
does the addition of this new vertex affect the correctness of the star cover?

10 J.A. Aslam et al.

In general, the answer depends on the degree of the new vertex and its
adjacency list. If the adjacency list of the new vertex does not contain any
star centers, the new vertex can be added in the star cover as a star center.
If the adjacency list of the new vertex contains any center vertex c whose
degree is equal or higher, the new vertex becomes a satellite vertex of c. The
difficult cases that destroy the correctness of the star cover are (1) when the
new vertex is adjacent to a collection of star centers, each of whose degree
is lower than that of the new vertex and (2) when the new vertex increases
the degree of an adjacent satellite vertex beyond the degree of its associated
star center. In these situations, the star structure already in place has to be
modified; existing stars must be broken. The satellite vertices of these broken
stars must be re-evaluated.

Similarly, deleting a vertex from a graph may destroy the correctness of a
star cover. An initial change affects a star if (1) its center is removed or (2) the
degree of the center has decreased because of a deleted satellite. The satellites
in these stars may no longer be adjacent to a center of equal or higher degree,
and their status must be reconsidered.

4.1 The Online Algorithm

Motivated by the intuition in the previous section, we now describe a simple
online algorithm for incrementally computing star covers of dynamic graphs.
The algorithm uses a data structure to efficiently maintain the star covers of
an undirected graph G = (V,E). For each vertex v ∈ V , we maintain the
following data:

v.type satellite or center
v.degree degree of v
v.adj list of adjacent vertices
v.centers list of adjacent centers
v.inQ flag specifying if v being processed

Note that while v.type can be inferred from v.centers and v.degree can be
inferred from v.adj, it will be convenient to maintain all five pieces of data in
the algorithm.

The basic idea behind the online star algorithm is as follows. When a ver-
tex is inserted into (or deleted from) a thresholded similarity graph Gσ, new
stars may need to be created and existing stars may need to be destroyed.
An existing star is never destroyed unless a satellite is “promoted” to center
status. The online star algorithm functions by maintaining a priority queue
(indexed by vertex degree), which contains all satellite vertices that have the
possibility of being promoted. So long as these enqueued vertices are indeed
properly satellites, the existing star cover is correct. The enqueued satellite
vertices are processed in order by degree (highest to lowest), with satellite pro-
motion occurring as necessary. Promoting a satellite vertex may destroy one
or more existing stars, creating new satellite vertices that have the possibility
of being promoted. These satellites are enqueued, and the process repeats. We

The Star Clustering Algorithm for Information Organization 11

Fig. 5. The star cover change after the insertion of a new vertex. The larger-radius
disks denote star centers, the other disks denote satellite vertices. The star edges are
denoted by solid lines. The intersatellite edges are denoted by dotted lines. The top
figure shows an initial graph and its star cover. The middle figure shows the graph
after the insertion of a new document. The bottom figure shows the star cover of
the new graph

next describe in some detail the three routines that comprise the online star
algorithm.

The Insert and Delete procedures are called when a vertex is added to or
removed from a thresholded similarity graph, respectively. These procedures
appropriately modify the graph structure and initialize the priority queue
with all satellite vertices that have the possibility of being promoted. The
Update procedure promotes satellites as necessary, destroying existing stars
if required, and enqueuing any new satellites that have the possibility of being
promoted.

Figure 6 provides the details of the Insert algorithm. A vertex α with
a list of adjacent vertices L is added to a graph G. The priority queue Q is
initialized with α (lines 17 and 18) and its adjacent satellite vertices (lines 13
and 14).

12 J.A. Aslam et al.

Insert(α, L, Gσ)
1 α.type ← satellite
2 α.degree ← 0
3 α.adj ← ∅
4 α.centers ← ∅
5 forall β in L
6 α.degree ← α.degree + 1
7 β.degree ← β.degree + 1
8 Insert(β, α.adj)
9 Insert(α, β.adj)

10 if (β.type = center)
11 Insert(β, α.centers)
12 else
13 β.inQ ← true
14 Enqueue(β, Q)
15 endif
16 endfor
17 α.inQ ← true
18 Enqueue(α, Q)
19 Update(Gσ)

Fig. 6. Pseudocode for Insert

Delete(α, Gσ)
1 forall β in α.adj
2 β.degree ← β.degree − 1
3 Delete(α, β.adj)
4 endfor
5 if (α.type = satellite)
6 forall β in α.centers
7 forall µ in β.adj
8 if (µ.inQ = false)
9 µ.inQ ← true

10 Enqueue(µ, Q)
11 endif
12 endfor
13 endfor
14 else
15 forall β in α.adj
16 Delete(α, β.centers)
17 β.inQ ← true
18 Enqueue(β, Q)
19 endfor
20 endif
21 Update(Gσ)

Fig. 7. Pseudocode for Delete

The Delete algorithm presented in Fig. 7 removes vertex α from the
graph data structures, and depending on the type of α enqueues its adjacent
satellites (lines 15–19) or the satellites of its adjacent centers (lines 6–13).

Finally, the algorithm for Update is shown in Fig. 8. Vertices are orga-
nized in a priority queue, and a vertex φ of highest degree is processed in
each iteration (line 2). The algorithm creates a new star with center φ if φ
has no adjacent centers (lines 3–7) or if all its adjacent centers have lower
degree (lines 9–13). The latter case destroys the stars adjacent to φ, and their
satellites are enqueued (lines 14–23). The cycle is repeated until the queue is
empty.

Correctness and Optimizations

The online star cover algorithm is more complex than its offline counterpart.
One can show that the online algorithm is correct by proving that it produces
the same star cover as the offline algorithm, when the offline algorithm is run
on the final graph considered by the online algorithm. We first note, however,
that the offline star algorithm need not produce a unique cover. When there
are several unmarked vertices of the same highest degree, the algorithm can
arbitrarily choose one of them as the next star center. In this context, one can

The Star Clustering Algorithm for Information Organization 13

Update(Gσ)
1 while (Q �= ∅)
2 φ ← ExtractMax(Q)
3 if (φ.centers = ∅)
4 φ.type ← center
5 forall β in φ.adj
6 Insert(φ, β.centers)
7 endfor
8 else
9 if (∀δ ∈ φ.centers, δ.degree < φ.degree)

10 φ.type ← center
11 forall β in φ.adj
12 Insert(φ, β.centers)
13 endfor
14 forall δ in φ.centers
15 δ.type ← satellite
16 forall µ in δ.adj
17 Delete(δ, µ.centers)
18 if (µ.degree ≤ δ.degree ∧ µ.inQ = false)
19 µ.inQ ← true
20 Enqueue(µ, Q)
21 endif
22 endfor
23 endfor
24 φ.centers ← ∅
25 endif
26 endif
27 φ.inQ ← false
28 endwhile

Fig. 8. Pseudocode for Update

show that the cover produced by the online star algorithm is the same as one
of the covers that can be produced by the offline algorithm. We can view a star
cover of Gσ as a correct assignment of types (that is, “center” or “satellite”)
to the vertices of Gσ. The offline star algorithm assigns correct types to the
vertices of Gσ. The online star algorithm is proven correct by induction. The
induction invariant is that at all times, the types of all vertices in V − Q are
correct, assuming that the true type of all vertices in Q is “satellite.” This
would imply that when Q is empty, all vertices are assigned a correct type,
and thus the star cover is correct. Details can be found in [28,31].

Finally, we note that the online algorithm can be implemented more ef-
ficiently than described here. An optimized version of the online algorithm
exists, which maintains additional information and uses somewhat different
data structures. While the asymptotic running time of the optimized version

14 J.A. Aslam et al.

of the online algorithm is unchanged, the optimized version is often faster in
practice. Details can be found in [31].

4.2 Expected Running Time of the Online Algorithm

In this section, we argue that the running time of the online star algorithm
is quite efficient, asymptotically matching the running time of the offline star
algorithm within logarithmic factors. We first note, however, that there ex-
ist worst-case thresholded similarity graphs and corresponding vertex inser-
tion/deletion sequences that cause the online star algorithm to “thrash” (i.e.,
which cause the entire star cover to change on each inserted or deleted ver-
tex). These graphs and insertion/deletion sequences rarely arise in practice
however. An analysis more closely modeling practice is the random graph
model [78] in which Gσ is a random graph and the insertion/deletion se-
quence is random. In this model, the expected running time of the online star
algorithm can be determined. In the remainder of this section, we argue that
the online star algorithm is quite efficient theoretically. In subsequent sections,
we provide empirical results that verify this fact for both random data and a
large collection of real documents.

The model we use for expected case analysis is the random graph model
[78]. A random graph Gn,p is an undirected graph with n vertices, where each
of its possible edges is inserted randomly and independently with probability
p. Our problem fits the random graph model if we make the mathematical
assumption that “similar” documents are essentially “random perturbations”
of one another in the vector space model. This assumption is equivalent to
viewing the similarity between two related documents as a random variable.
By thresholding the edges of the similarity graph at a fixed value, for each
edge of the graph there is a random chance (depending on whether the value
of the corresponding random variable is above or below the threshold value)
that the edge remains in the graph. This thresholded similarity graph is thus a
random graph. While random graphs do not perfectly model the thresholded
similarity graphs obtained from actual document corpora (the actual similar-
ity graphs must satisfy various geometric constraints and will be aggregates
of many “sets” of “similar” documents), random graphs are easier to ana-
lyze, and our experiments provide evidence that theoretical results obtained
for random graphs closely match empirical results obtained for thresholded
similarity graphs obtained from actual document corpora. As such, we use
the random graph model for analysis and experimental verification of the
algorithms presented in this chapter (in addition to experiments on actual
corpora).

The time required to insert/delete a vertex and its associated edges and
to appropriately update the star cover is largely governed by the number of
stars that are broken during the update, since breaking stars requires inserting
new elements into the priority queue. In practice, very few stars are broken
during any given update. This is partly due to the fact that relatively few stars

The Star Clustering Algorithm for Information Organization 15

exist at any given time (as compared to the number of vertices or edges in
the thresholded similarity graph) and partly to the fact that the likelihood of
breaking any individual star is also small. We begin by examining the expected
size of a star cover in the random graph model.

Theorem 5. The expected size of the star cover for Gn,p is at most 1 +
2 log n/ log(1/(1 − p)).

Proof. The star cover algorithm is greedy: it repeatedly selects the unmarked
vertex of highest degree as a star center, marking this node and all its adjacent
vertices as covered. Each iteration creates a new star. We argue that the
number of iterations is at most 1 + 2 log n/ log(1/(1 − p)) for an even weaker
algorithm, which merely selects any unmarked vertex (at random) to be the
next star. The argument relies on the random graph model described earlier.

Consider the (weak) algorithm described earlier which repeatedly selects
stars at random from Gn,p. After i stars have been created, each of the i star
centers is marked, and some of the n − i remaining vertices is marked. For
any given noncenter vertex, the probability of being adjacent to any given
center vertex is p. The probability that a given noncenter vertex remains
unmarked is therefore (1 − p)i, and thus its probability of being marked is
1 − (1 − p)i. The probability that all n − i noncenter vertices are marked
is then

(
1 − (1 − p)i

)n−i. This is the probability that i (random) stars are
sufficient to cover Gn,p. If we let X be a random variable corresponding to
the number of star required to cover Gn,p, we then have

Pr[X ≥ i + 1] = 1 −
(
1 − (1 − p)i

)n−i
.

Using the fact that for any discrete random variable Z whose range is
{1, 2, . . . , n},

E[Z] =
n∑

i=1

i × Pr[Z = i] =
n∑

i=1

Pr[Z ≥ i],

we then have

E[X] =
n−1∑
i=0

[
1 −

(
1 − (1 − p)i

)n−i
]
·

Note that for any n ≥ 1 and x ∈ [0, 1], (1−x)n ≥ 1−nx. We may then derive

E[X] =
n−1∑
i=0

[
1 −

(
1 − (1 − p)i

)n−i
]

≤
n−1∑
i=0

[
1 −

(
1 − (1 − p)i

)n
]

=
k−1∑
i=0

[
1 −

(
1 − (1 − p)i

)n
]

+
n−1∑
i=k

[
1 −

(
1 − (1 − p)i

)n
]

16 J.A. Aslam et al.

≤
k−1∑
i=0

1 +
n−1∑
i=k

n(1 − p)i

= k +
n−1∑
i=k

n(1 − p)i

for any k. Selecting k so that n(1−p)k = 1/n (i.e., k = 2 log n/ log(1/(1 − p))),
we have

E[X] ≤ k +
n−1∑
i=k

n(1 − p)i

≤ 2 log n/ log(1/(1 − p)) +
n−1∑
i=k

1/n

≤ 2 log n/ log(1/(1 − p)) + 1. ��

Combining the above theorem with various facts concerning the behavior
of the Update procedure, one can show the following.

Theorem 6. The expected time required to insert or delete a vertex in a ran-
dom graph Gn,p is O(np2 log2 n/ log2(1/(1 − p))), for any 0 ≤ p ≤ 1 − Θ(1).

The proof of this theorem is rather technical; details can be found in [31].
The thresholded similarity graphs obtained in a typical IR setting are almost
always dense: there exist many vertices comprising relatively few (but dense)
clusters. We obtain dense random graphs when p is a constant. For dense
graphs, we have the following corollary.

Corollary 1. The total expected time to insert n vertices into (an initially
empty) dense random graph is O(n2 log2 n).

Corollary 2. The total expected time to delete n vertices from (an n vertex)
dense random graph is O(n2 log2 n).

Note that the online insertion result for dense graphs compares favorably
to the offline algorithm; both algorithms run in time proportional to the size
of the input graph, Θ(n2), within logarithmic factors. Empirical results on
dense random graphs and actual document collections (detailed in Sect. 4.3)
verify this result.

For sparse graphs (p = Θ(1/n)), we note that 1/ ln(1/(1 − ε)) ≈ 1/ε for
small ε. Thus, the expected time to insert or delete a single vertex is
O(np2 log2 n/ log2(1/(1 − p))) = O(n log2 n), yielding an asymptotic result
identical to that of dense graphs, much larger than what one encounters in
practice. This is due to the fact that the number of stars broken (and hence

The Star Clustering Algorithm for Information Organization 17

vertices enqueued) is much smaller than the worst-case assumptions assumed
in the analysis of the Update procedure. Empirical results on sparse random
graphs (detailed in the following section) verify this fact and imply that the
total running time of the online insertion algorithm is also proportional to the
size of the input graph, Θ(n), within lower order factors.

4.3 Experimental Validation

To experimentally validate the theoretical results obtained in the random
graph model, we conducted efficiency experiments with the online star clus-
tering algorithm using two types of data. The first type of data matches our
random graph model and consists of both sparse and dense random graphs.
While this type of data is useful as a benchmark for the running time of the
algorithm, it does not satisfy the geometric constraints of the vector space
model. We also conducted experiments using 2,000 documents from the TREC
FBIS collection.

Aggregate Number of Broken Stars

As discussed earlier, the efficiency of the online star algorithm is largely gov-
erned by the number of stars that are broken during a vertex insertion or
deletion. In our first set of experiments, we examined the aggregate num-
ber of broken stars during the insertion of 2,000 vertices into a sparse random
graph (p = 10/n), a dense random graph (p = 0.2), and a graph corresponding
to a subset of the TREC FBIS collection thresholded at the mean similarity.
The results are given in Fig. 9.

For the sparse random graph, while inserting 2,000 vertices, 2,572 total
stars were broken – approximately 1.3 broken stars per vertex insertion on
average. For the dense random graph, while inserting 2,000 vertices, 3,973
total stars were broken – approximately 2 broken stars per vertex insertion
on average. The thresholded similarity graph corresponding to the TREC
FBIS data was much denser, and there were far fewer stars. While inserting
2,000 vertices, 458 total stars were broken – approximately 23 broken stars
per 100 vertex insertions on average. Thus, even for moderately large n, the
number of broken stars per vertex insertion is a relatively small constant,
though we do note the effect of lower order factors especially in the random
graph experiments.

Aggregate Running Time

In our second set of experiments, we examined the aggregate running time
during the insertion of 2,000 vertices into a sparse random graph (p = 10/n),
a dense random graph (p = 0.2), and a graph corresponding to a subset of
the TREC FBIS collection thresholded at the mean similarity. The results are
given in Fig. 10.

18 J.A. Aslam et al.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000

ag
gr

eg
at

e
nu

m
be

r
of

 s
ta

rs
 b

ro
ke

n

number of vertices

sparse graph

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000

ag
gr

eg
at

e
nu

m
be

r
of

 s
ta

rs
 b

ro
ke

n

number of vertices

dense graph

0

100

200

300

400

500

0 500 1000 1500 2000

ag
gr

eg
at

e
nu

m
be

r
of

 s
ta

rs
 b

ro
ke

n

number of vertices

real

Fig. 9. The dependence of the number of broken stars on the number of inserted
vertices in a sparse random graph (top left figure), a dense random graph (top right
figure), and the graph corresponding to TREC FBIS data (bottom figure)

Note that for connected input graphs (sparse or dense), the size of the
graph is on the order of the number of edges. The experiments depicted in
Fig. 10 suggest a running time for the online algorithm, which is linear in the
size of the input graph, though lower order factors are presumably present.

5 The Accuracy of Star Clustering

In this section we describe experiments evaluating the performance of the
star algorithm with respect to cluster accuracy. We tested the star algo-
rithm against two widely used clustering algorithms in IR: the single link
method [429] and the average link method [434]. We used data from the TREC
FBIS collection as our testing medium. This TREC collection contains a very
large set of documents of which 21,694 have been ascribed relevance judg-
ments with respect to 47 topics. These 21,694 documents were partitioned
into 22 separate subcollections of approximately 1,000 documents each for 22
rounds of the following test. For each of the 47 topics, the given collection of
documents was clustered with each of the three algorithms, and the cluster
that “best” approximated the set of judged relevant documents was returned.
To measure the quality of a cluster, we use the standard F measure from
IR [429]:

The Star Clustering Algorithm for Information Organization 19

0.0

1.0

2.0

3.0

4.0

5.0

0.0 2.0 4.0 6.0 8.0 10.0

ag
gr

eg
at

e
ru

nn
in

g
tim

e
(s

ec
on

ds
)

number of edges (x103)

sparse graph

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.0 1.0 2.0 3.0 4.0

ag
gr

eg
at

e
ru

nn
in

g
tim

e
(s

ec
on

ds
)

number of edges (x105)

dense graph

0.0

2.0

4.0

6.0

8.0

0.0 2.0 4.0 6.0 8.0

ag
gr

eg
at

e
ru

nn
in

g
tim

e
(s

ec
on

ds
)

number of edges (x105)

real

Fig. 10. The dependence of the running time of the online star algorithm on the
size of the input graph for a sparse random graph (top left figure), a dense random
graph (top right figure), and the graph corresponding to TREC FBIS data (bottom
figure)

F (p, r) =
2

(1/p) + (1/r)
,

where p and r are the precision and recall of the cluster with respect to the set
of documents judged relevant to the topic. Precision is the fraction of returned
documents that are correct (i.e., judged relevant), and recall is the fraction of
correct documents that are returned. F (p, r) is simply the harmonic mean of
the precision and recall; thus, F (p, r) ranges from 0 to 1, where F (p, r) = 1
corresponds to perfect precision and recall, and F (p, r) = 0 corresponds to
either zero precision or zero recall.

For each of the three algorithms, approximately 500 experiments were
performed; this is roughly half of the 22 × 47 = 1,034 total possible ex-
periments since not all topics were present in all subcollections. In each
experiment, the (p, r, F (p, r)) values corresponding to the cluster of highest
quality were obtained, and these values were averaged over all 500 experiments
for each algorithm. The average (p, r, F (p, r)) values for the star, average-
link, and single-link algorithms were, (0.77, 0.54, 0.63), (0.83, 0.44, 0.57) and
(0.84, 0.41, 0.55), respectively. Thus, the star algorithm represents a 10.5%
improvement in cluster accuracy with respect to the average-link algorithm
and a 14.5% improvement in cluster accuracy with respect to the single-link
algorithm.

20 J.A. Aslam et al.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

F
=

2/
(1

/p
+

1/
r)

experiment #

star
single link

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

F
=

2/
(1

/p
+

1/
r)

experiment #

star
average link

Fig. 11. The F measure for the star clustering algorithm vs. the single link clustering
algorithm (left) and the star algorithm vs. the average link algorithm (right). The y
axis shows the F measure. The x axis shows the experiment number. Experimental
results have been sorted according to the F value for the star algorithm

Figure 11 shows the results of all 500 experiments. The first graph shows
the accuracy (F measure) of the star algorithm vs. the single-link algorithm;
the second graph shows the accuracy of the star algorithm vs. the average-
link algorithm. In each case, the results of the 500 experiments using the star
algorithm were sorted according to the F measure (so that the star algorithm
results would form a monotonically increasing curve), and the results of both
algorithms (star and single-link or star and average-link) were plotted accord-
ing to this sorted order. While the average accuracy of the star algorithm is
higher than that of either the single-link or the average-link algorithms, we
further note that the star algorithm outperformed each of these algorithms in
nearly every experiment.

Our experiments show that in general, the star algorithm outperforms
single-link by 14.5% and average-link by 10.5%. We repeated this experi-
ment on the same data set, using the entire unpartitioned collection of 21,694
documents, and obtained similar results. The precision, recall, and F values
for the star, average-link, and single-link algorithms were (0.53, 0.32, 0.42),
(0.63, 0.25, 0.36), and (0.66, 0.20, 0.30), respectively. We note that the F values
are worse for all three algorithms on this larger collection and that the star al-
gorithm outperforms the average-link algorithm by 16.7% and the single-link
algorithm by 40%. These improvements are significant for IR applications.
Given that (1) the star algorithm outperforms the average-link algorithm, (2)
it can be used as an online algorithm, (3) it is relatively simple to implement
in either of its offline or online forms, and (4) it is efficient, these experiments
provide support for using the star algorithm for offline and online information
organization.

The Star Clustering Algorithm for Information Organization 21

6 Applications of the Star Clustering Algorithm

We have investigated the use of the star clustering algorithm in a number of
different application areas including: (1) automatic information organization
systems [26, 27], (2) scalable information organization for large corpora [33],
(3) text filtering [29, 30], and (4) persistent queries [32]. In the sections that
follow, we briefly highlight this work.

6.1 A System for Information Organization

We have implemented a system for organizing information that uses the star
algorithm (see Fig. 12). This organization system consists of an augmented
version of the Smart system [18, 378], a user interface we have designed, and
an implementation of the star algorithms on top of Smart. To index the docu-
ments, we used the Smart search engine with a cosine normalization weighting
scheme. We enhanced Smart to compute a document-to-document similarity
matrix for a set of retrieved documents or a whole collection. The similarity
matrix is used to compute clusters and to visualize the clusters.

The figure shows the interface to the information organization system.
The search and organization choices are described at the top. The middle two
windows show two views of the organized documents retrieved from the Web
or from the database. The left window shows the list of topics, the number of
documents in each topic, and a keyword summary for each topic. The right
window shows a graphical description of the topics. Each topic corresponds
to a disk. The size of the disk is proportional to the number of documents
in the topic cluster and the distance between two disks is proportional to the
topic similarity between the corresponding topics. The bottom window shows
a list of titles for the documents. The three views are connected: a click in one
window causes the corresponding information to be highlighted in the other
two windows. Double clicking on any cluster (in the right or left middle panes)
causes the system to organize and present the documents in that cluster, thus
creating a view one level deeper in a hierarchical cluster tree; the “Zoom Out”
button allows one to retreat to a higher level in the cluster tree. Details on
this system and its variants can be found in [26,27,29].

6.2 Scalable Information Organization

The star clustering algorithm implicitly assumes the existence of a thresholded
similarity graph. While the running times of the offline and the online star
clustering algorithms are linear in the size of the input graph (to within lower
order factors), the size of these graphs themselves may be prohibitively large.
Consider, for example, an information system containing n documents and a
request to organize this system with a relatively low similarity threshold. The
resulting graph would in all likelihood be dense, i.e., have Ω(n2) edges. If n
is large (e.g., millions), just computing the thresholded similarity graph may

22 J.A. Aslam et al.

Fig. 12. A system for information organization based on the star clustering algo-
rithm

be prohibitively expensive, let alone running a clustering algorithm on such a
graph.

In [33], we propose three methods based on sampling and/or parallelism
for generating accurate approximations to a star cover in time linear in the
number of documents, independent of the size of the thresholded similarity
graph.

6.3 Filtering and Persistent Queries

Information filtering and persistent query retrieval are related problems
wherein relevant elements of a dynamic stream of documents are sought in
order to satisfy a user’s information need. The problems differ in how the
information need is supplied: in the case of filtering, exemplar documents are
supplied by the user, either dynamically or in advance; in the case of persistent
query retrieval, a standing query is supplied by the user.

We propose a solution to the problems of information filtering and per-
sistent query retrieval through the use of the star clustering algorithm. The
salient features of the systems we propose are (1) the user has access to the
topic structure of the document collection star clusters; (2) the query (filtering
topic) can be formulated as a list of keywords, a set of selected documents, or a
set of selected document clusters; (3) document filtering is based on prospective
cluster membership; (4) the user can modify the query by providing relevance
feedback on the document clusters and individual documents in the entire
collection; and (5) the relevant documents adapt as the collection changes.
Details can be found in [29,30,32].

The Star Clustering Algorithm for Information Organization 23

7 Conclusions

We presented and analyzed an offline clustering algorithm for static informa-
tion organization and an online clustering algorithm for dynamic information
organization. We described a random graph model for analyzing the running
times of these algorithms, and we showed that in this model, these algorithms
have an expected running time that is linear in the size of the input graph,
to within lower order factors. The data we gathered from experiments with
TREC data lend support for the validity of our model and analyses. Our em-
pirical tests show that both algorithms exhibit linear time performance in the
size of the input graph (to within lower order factors), and that both algo-
rithms produce accurate clusters. In addition, both algorithms are simple and
easy to implement. We believe that efficiency, accuracy, and ease of implemen-
tation make these algorithms very practical candidates for use in automatic
information organization systems.

This work departs from previous clustering algorithms often employed in
IR settings, which tend to use a fixed number of clusters for partitioning the
document space. Since the number of clusters produced by our algorithms is
given by the underlying topic structure in the information system, our clusters
are dense and accurate. Our work extends previous results [225] that support
using clustering for browsing applications and presents positive evidence for
the cluster hypothesis. In [26], we argue that by using a clustering algorithm
that guarantees the cluster quality through separation of dissimilar documents
and aggregation of similar documents, clustering is beneficial for information
retrieval tasks that require both high precision and high recall.

Acknowledgments

This research was supported in part by ONR contract N00014-95-1-1204,
DARPA contract F30602-98-2-0107, and NSF grant CCF-0418390.

