
Motivated Reinforcement Learning

Curious Characters for Multiuser Games

Bearbeitet von
Kathryn E Merrick, Mary Lou Maher

1st Edition. 2009. Buch. xiv, 206 S. Hardcover
ISBN 978 3 540 89186 4

Format (B x L): 15,5 x 23,5 cm

Weitere Fachgebiete > EDV, Informatik > Informationsverarbeitung > Maschinelles
Lernen

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Merrick-Maher-Motivated-Reinforcement-Learning/productview.aspx?product=105041&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_105041&campaign=pdf/105041
http://www.beck-shop.de/trefferliste.aspx?toc=8318
http://www.beck-shop.de/trefferliste.aspx?toc=8318
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783540891864_TOC_001.pdf

Chapter 1
Non-Player Characters in Multiuser Games

Massively multiuser, persistent, online virtual worlds are emerging as
important platforms for multiuser computer games, social interaction,
education, design, defence and commerce. In these virtual worlds, non-player
characters use artificial intelligence to take on roles as storytellers, enemies,
opponents, partners and facilitators. Non-player characters share their world
with hundreds of thousands of creative, unpredictable, human controlled
characters. As the complexity and functionality of multiuser virtual worlds
increases, non-player characters are becoming an increasingly challenging
application for artificial intelligence techniques [1]. The rise of multiuser
games in particular has created a need for new kinds of artificial intelligence
approaches that can produce characters with adaptive and complex behaviours
for large-scale, dynamic game environments. Players are demanding more
believable and intelligent non-player characters to enhance their gaming
experience [2].
 Motivated reinforcement learning is an emerging artificial intelligence
technology that provides a theoretical and practical approach for developing
adaptive characters for multiuser games. Motivated reinforcement learning has
advantages over existing character control algorithms because it allows the
development of non-player characters that can generate dynamic behaviour
and adapt in time with an unpredictable, changing game environment.
Motivated reinforcement learning uses computational models of human
motivation – such as curiosity, interest and competence – to empower non-
player characters to self-identify new tasks on which to focus their attention.
The characters then use a reinforcement learning component to learn
behavioural cycles to perform these tasks. The result is an agent model for
non-player characters that are continually evolving new behaviours as a
response to their experiences in their environment.
 Motivated reinforcement learning transforms character design because it
provides non-player characters with a mechanism for open-ended, online

© Springer-Verlag Berlin Heidelberg 2009
K.E. Merrick, M.L. Maher, Motivated Reinforcement Learning, DOI 10.1007/978-3-540-89187-1_1,

1 Non-Player Characters in Multiuser Games

4

adaptation of their own behaviour. In this book we aim to provide game
programmers, and those with an interest in artificial intelligence, with the
knowledge required to develop adaptable, intelligent non-player characters that
can take on a life of their own in dynamic, multiuser virtual worlds.

1.1 Types of Multiuser Games

Computer games can be classified in a range of genres including action games,
role-playing games, adventure games, strategy games, simulation games,
sports games and racing games. Of these genres, action, role-playing,
simulation and racing games have been starting points for multiuser games. A
smaller subset again, including role-playing games and simulation games, has
emerged as genres for games in persistent virtual worlds. The following
sections introduce some distinguishing characteristics of these genres.

1.1.1 Massively Multiplayer Online Role-Playing Games

Massively multiplayer online role-playing games (MMORPGs) such as World
of Warcraft, Ultima Online, Everquest and Asheron’s Call are defined by a
cast of non-player characters (NPCs) who act as enemies, partners and support
characters to provide challenges, offer assistance and support the storyline.
These characters exist in a persistent virtual world in which thousands of
human players take on roles such as warriors, magicians and thieves and play
and interact with NPCs and each other. Over time, the landscape of these
worlds evolves and changes as players build their own houses or castles and
craft items such as furniture, armour or weapons to personalise their dwellings
or sell to other players. Unlike computer games played in non-persistent
worlds, persistent game worlds offer months rather than hours of game play,
which must be supported by NPCs. However, current technologies used to
build non-player enemy, partner and support characters tend to constrain them
to a set of fixed behaviours that cannot evolve in time with the world in which
they dwell. The resulting behaviour of NPCs has been limited to looping
animations with a few scripted action sequences triggered by a player’s actions
[3].
 Sophisticated NPCs have the potential to enrich game worlds by providing
opportunities for interesting interactions with players, making the game world
more interactive and thus improving the believability of the game [4].

1.1 Types of Multiuser Games

5

1.1.2 Multiuser Simulation Games

Simulation games such as The Sims are distinguished by characters that can
respond to certain changes in their environment with new behaviours. Human
players modify the circumstances that surround NPCs in order to influence the
emergence of certain types of character behaviour for which points may be
awarded or which trigger a new phase of the game. Existing simulation and
organic simulation games are, however, limited by the set of changes that
players may make to the game environment while the game is in progress.
 In contrast, human users in current virtual worlds such as Second Life [5],
Active Worlds [6] and There [7] can use open-ended modelling tools to create
and modify world content. This sort of open-ended modelling is not available
in many existing game worlds. The popularity and rapid growth in the user
base of open-ended virtual worlds suggests the viability of a new generation of
computer game situated in open-ended environments. A key challenge to be
overcome in the development of such games, however, is the development of
NPCs that can respond autonomously to the open-ended changes to their
environment.

1.1.3 Open-Ended Virtual Worlds

The earliest open-ended virtual worlds were text-based, object-oriented,
multiuser dungeons (MOOs).1 MOOs are persistent, multiuser, interactive
systems that can be thought of as low-bandwidth virtual worlds. MOOs such as
LambdaMOO [8] are distinguished from multiuser dungeons (MUDs) by the
ability for users to perform object-oriented programming within the MOO
server, expanding and changing how the MOO server behaves to all users.
Examples of such changes include authoring new rooms and objects, and
changing the way the MOO interface operates. These changes are made using
a MOO programming language that often features libraries of verbs that can be
used by programmers in their coding.
 More recently, the improvement in computer graphics technology has
made large-scale, 3D virtual worlds possible. Screen shots from Second Life
and Active Worlds, including their 3D modelling tools, are shown in Fig. 1.1
and Fig. 1.2. In these worlds, the virtual landscape can be extended using a
combination of primitive shapes and textures to create new buildings, plants,
animals and other artefacts. These artefacts can also be assigned dynamic
behaviours using in-world scripting tools. The ability to define object

1 MOO = MUD, Object-Oriented.

1 Non-Player Characters in Multiuser Games

6

Fig. 1.1 In the Second Life virtual world, complex designs can be created using a combination of
primitives, uploaded textures and scripts. Image from [9].

1.1 Types of Multiuser Games

7

Fig. 1.2 In Active Worlds, complex designs can be created using basic shapes, textures and actions.
Image from [9].

1 Non-Player Characters in Multiuser Games

8

geometry and assign natural language labels, descriptions and behaviours to
designed objects are key aspects that distinguish these virtual worlds as open-
ended environments.
 While the users of MOOs and 3D virtual worlds have used their open-
ended expansion capacities to develop games within these environments, these
games have tended to adhere to existing genres such as adventure and role-
playing games. The development of games that incorporate NPCs that can
respond to the open-ended building capabilities of virtual worlds has been
difficult due to the lack of artificial intelligence techniques that can operate in
such environments.

1.2 Character Roles in Multiuser Games

NPCs fall into three main categories: enemies, partners and support characters
[3]. Enemies are characters that oppose human players in a pseudo-physical
sense by attacking the virtual life force of the human player with weapons or
magic. Enemies and competitors form a critical character group in a wide
range of game genres from action games to strategy or sport games. As a
result, the artificial intelligence techniques for enemies and competitors have
been a focus of game development.
 Partner characters may perform a number of roles within a game. From a
competitive perspective, partners take the opposite role to enemies and attempt
to protect human players with whom they are allied. Alternatively, however,
partner characters might perform non-combat roles to support their human ally.
Vendor characters in Ultima Online, for example, sell goods on behalf of their
human ally. In some games, partner characters may also be taught to perform
certain behaviours by players. As with enemy characters, the combat role of
partner characters has been well developed. Similarly, existing learning
algorithms such as neural networks and reinforcement learning have been used
successfully to achieve partner characters that learn from human supervision.
The development of characters in a supporting role, however, has so far
received less attention.
 Support characters are the merchants, tradesmen, guards, innkeepers and
so on who support the storyline of the game by offering quests, advice, goods
for sale or training. Support characters expand the requirements of artificial
intelligence in games beyond those of tactical enemies to social dialogue and
behaviours. However, in contrast to enemies or competitors, support characters
are among the least sophisticated artificially intelligent characters in current
computer games, limited in both their interactions with players and in their
behaviour [3]. Conversations with players tend to take the form of scripted
speeches interspersed with decision points at which players can affect the
direction of the conversation. The behaviour of support characters is generally

9

limited to a looping animation with a few scripted action sequences triggered
by a player’s exploits. As a result, support characters tend to stand in one
place, continually chopping wood or drinking from their mug of ale, until a
player initiates an interaction. During the scripted interaction the support
character may gesture or move a short distance. However once the interaction
is over the character returns to its looping behaviour. The following sections
describe the existing artificial intelligence approaches that achieve this
behaviour in further detail and highlight the need for new, more adaptive,
character control algorithms.

1.3 Existing Artificial Intelligence Techniques for Non-
Player Characters in Multiuser Games

Existing technologies used to create NPCs in MMORPGs fall into two broad
categories: reflexive agents and learning agents. Reflexive approaches, such as
state machines and rule based algorithms, have been common in enemy and
support characters while learning algorithms have been used in partners and
some enemy characters.

1.3.1 Reflexive Agents

Reflexive behaviour [10] is a preprogrammed response to the state of the
environment – a reflex without reasoning. Only recognised states will produce
a response. NPCs such as enemies, partners and support characters commonly
use reflexive techniques such as state machines, fuzzy logic and rule-based
approaches to define their behaviour.

Rule-Based Approaches

Rule-based approaches define a set of rules about states of the game world of
the form: if <condition> then <action>. If the NPC observes a state that
fulfils the <condition> of a rule, then the corresponding <action> is taken.
Only states of the world that meet a <condition> will produce an <action>
response. An example rule from a warrior NPC in the Baldur’s Gate role-
playing game (RPG) [11] is shown in Fig. 1.3. The condition component of
this rule is an example of how such rules are domain-dependent as it makes the
assumption that the character’s environment contains enemies.

1.3 Existing Artificial Intelligence Techniques for Non-Player Characters

1 Non-Player Characters in Multiuser Games

10

 startup state Startup${
 trigger OnGoHandleMessage$(WE_ENTERED_WORLD){
 if (godb.IsEditMode()){
 SetState Finish$;
 }
 else{
 SetState Spawn$;
 }
 }
 }

 state Spawn${
 event OnEnterState${
 GoCloneReq cloneReq$ = MakeGoCloneReq(

 "gpg_gremal_caged");
 cloneReq$.StartingPos = owner.Go.Placement.Position;

 cloneReq$.SetStartingOrient =
 owner.Go.Placement.Orientation;
 cloneReq$.SnapToTerrain = true;
 newGoid$ = GoDb.SCloneGo(cloneReq$);
 }
 event OnGoHandleMessage$(eWorldEvent e$, WorldMessage msg$){
 ...
 Goid Master$;
 Master$ = msg$.GetSendFrom();
 if(master$.Go.Actor.GetSkillLevel("Combat Magic") > 0.01){
 Report.SScreen(master$.Go.Player.MachineId,

 Report.Translate(owner.go.getmessage("too_evil")));
 }
 else{

 ...
 }

 }
 }

 state Finish${
 }

Fig. 1.4 An example of part of a state machine for a Dungeon Siege Gremel [12].

 IF
 !Range(NearestEnemyOf(Myself),3)
 Range(NearestEnemyOf(Myself),8)
 THEN
 RESPONSE #40
 EquipMostDamagingMelee()
 AttackReevalutate(NearestEnemyOf(Myself),60)
 RESPONSE #80
 EquipRanged()
 AttackReevalutate(NearestEnemyOf(Myself),30)
 END

Fig. 1.3 An example rule from a warrior character in Baldur’s Gate [11].

11

State Machines

State machines can be used to divide a NPC’s reasoning process into a set of
internal states and transitions. In the Dungeon Siege RPG, for example, each
state contains a number of event constructs that cause actions to be taken
based on the state of the game world. Triggers define when the NPC should
transition to another internal state. An example of part of a state machine for a
beast called a ‘Gremel’ [12] is shown in Fig. 1.4. As only characters that
multiply would require a spawn state, this example shows how the states are
character-dependent. In addition, the condition components of the rules within
the states are again heavily domain-dependent – assuming for example that the
environment contains characters that have a combat magic attribute.

Fuzzy Logic

Fuzzy logic provides a way to infer a conclusion based on facts that may be
vague, ambiguous, inaccurate or incomplete [2]. Close Combat 2 is an
example of a game using fuzzy logic. Fuzzy logic uses fuzzy rules of the form
if <X is A> then <Y is B>. X and Y are linguistic variables representing
characteristics being measured – such as temperature, speed or height – while
A and B represent fuzzy categories – such as hot, fast or tall. Fuzzy categories
define decision thresholds within which certain courses of action may be
pursued. Fuzzy logic can be applied to both rule-based approaches and state
machines. While fuzzy logic allows characters to reason in environments
where there is uncertainty, the ability of characters to adapt is still limited by
the set of predefined fuzzy rules.
 An extension of fuzzy logic is fuzzy state machines used in multiplayer
simulation games such as The Sims. Fuzzy state machines combine state
machine and fuzzy logic technologies to create agents that can identify and
respond to states that approximately meet some predefined conditions [13]. For
example, where simulation game NPCs controlled by state machines may
consider balls as a target for kicking, NPCs controlled by fuzzy state machines
may consider any object that, within some threshold, fits the description of
‘being round’ as a target for kicking. Characters with different personalities
can be defined by building fuzzy state machines with different decision
thresholds.
 While fuzzy state machines have been used with success in existing
simulation games, the need to define states and thresholds before the character
is introduced to its environment limits the character to action within the
predefined boundaries of states and decision thresholds. This technology thus
becomes problematic in environments that can be modified in an open-ended
manner.

1.3 Existing Artificial Intelligence Techniques for Non-Player Characters

1 Non-Player Characters in Multiuser Games

12

 In a departure from purely reflexive techniques, the support characters in
some RPGs, such as Blade Runner, have simple goals. However these have
also tended to be fairly narrow, supported by only a limited set of behaviours.
Motivated reinforcement learning (MRL) offers an alternative to the design of
fixed rule sets, states or goals in which a single agent model can be used to
achieve multiple different characters, based on their experiences in their
environment.

Flocking

Flocking [14] is a special example of rule-based reasoning used to control
groups of characters such as crowds or animals. Flocking uses three rules
governing the separation, alignment and cohesion of individuals in a flock,
herd or other kind of group. Separation rules steer an individual to avoid
others, alignment rules steer an individual towards the average heading of the
flock and cohesion rules steer an individual towards the average position of the
flock. Flocking algorithms have been used with great success to represent
lifelike crowd and animal movement and have been incorporated in games
such as Half-Life and Unreal. Using the basic flocking rules, flocks can adapt
to changes in their environment by moving around, towards or away from
objects. However, flocking does not allow character individuality or more
complex adaptation.

1.3.2 Learning Agents

Learning agents are able to modify their internal structure in order to improve
their performance with respect to some task [15]. In some games such as Black
and White, NPCs can be trained to learn behaviours specified by their human
master. The human provides the NPC with a reward such as food or patting to
encourage desirable behaviour and punishment to discourage unwanted
actions. While the behaviour of these characters may potentially evolve in any
direction desired by the human, behaviour development relies on reward from
human players, making it inappropriate for characters such as enemies or
support characters. Learning algorithms used in games include decision trees,
neural networks and reinforcement learning.

Decision Trees

Decision trees are hierarchical graphs learned from a training set of previously
made decisions [16]. Internal nodes in the tree represent conditions about

1.3 Existing Artificial Intelligence Techniques for Non-Player Characters 13

states of the environment, while leaf nodes represent actions. If all conditions
on the path to a leaf node are fulfilled, the corresponding action can be taken.
In Black and White, for example, creatures can learn decision trees about what
food to eat based on how tasty the creature finds previously eaten food
provided by a human player. While decision trees allow characters to learn,
thus permitting more adaptable characters than reflexive approaches, they
require a set of examples from which to learn. These examples must be
provided by players. While this is appropriate for partner characters, it is
generally inappropriate for enemies and support characters to have their
behaviour determined only by players.

Neural Networks

Artificial neural networks comprise a network of computational neurons with
interconnecting pathways [16]. Neural networks, like decision trees, learn from
examples. Examples of correct actions in different situations are fed into the
network to train a character. When a character encounters a similar situation it
can make a decision about the correct action to take based on the data stored in
the neural network. Neural networks are used by characters in games such as
Battlecruiser: 3000 AD, but, in many cases, the neural network is frozen
before the release of a game to prevent further learning during the game.
Further learning from character actions can produce networks that adapt
erratically or unpredictably to players’ actions.

Reinforcement Learning

Researchers from Microsoft have shown that it is possible to use reinforcement
learning (RL) [17] to allow NPCs to develop a single skill by applying it to
fighting characters for the Xbox game, Tao Feng [18]. RL agents learn from
trial-and-error and reward. After each interaction with its environment, a RL
agent receives an input that contains some indication of the current state of the
environment and the value of that state to the agent. This value is called a
reward signal. The agent records the reward signal by updating a behavioural
policy that represents information about the reward received in each state
sensed so far. The agent then chooses an action that attempts to maximise the
long-run sum of the values of the reward signal. In Tao Feng, while NPCs
using RL can adapt their fighting techniques over time, it is not possible for
them to identify new skills to learn about as they are limited by a pre-
programmed reward for fighting. MRL offers an alternative approach for the
design of learning characters that overcomes this limitation.

1 Non-Player Characters in Multiuser Games

14

1.3.3 Evolutionary Agents

Evolutionary approaches such as genetic algorithms [19] simulate the process
of biological evolution by implementing concepts such as natural selection,
reproduction and mutation. Individuals in a population are defined in terms of
a digital chromosome. When individuals reproduce, offspring are defined by a
combination of their parent’s chromosomes via processes of crossover and
mutation. Offspring are then evaluated using a fitness function to determine
which will remain in the population and which will be removed (die).
Evolutionary algorithms are robust search methods that can optimise complex
fitness functions. However, when genetic algorithms are used in NPCs, fitness
functions must be predefined by game designers. As in RL, the fitness function
limits the adaptability of a given population of individuals to the skills or tasks
defined by the fitness function.

1.3.4 Smart Terrain

A key paradigm to arise from simulation games is the smart terrain concept
developed by Will Wright for The Sims [11]. Smart terrain discards the
character-oriented approach to reasoning using artificial intelligence and
embeds the behaviours and possible actions associated with a virtual object
within the object itself. For example, the file for the model of a television in
The Sims might contain the instructions for watching it, turning it on and off,
the conditions under which a ‘Sim’ might want to watch it and how a Sim
should be animated while watching it. This approach allows new objects to be
inserted into the game at any point, either as an expansion pack by game
designers or using content creation tools by players. Achieving character
adaptability using this approach, however, requires character behaviours to be
explicitly programmed in each new object. This requires development effort
from game designers and, while compelling for some gamers, is not interesting
for others.
 Expansion packs and content creation tools in general are approaches by
which game designers have attempted to extend the lifetime of games by
extending or allowing players to extend the original game through the addition
of new content. Games in which open-ended modification of the game world is
allowed while the game is in progress have the potential for a longer lifetime
though the provision of more open-ended game play.

1.5 References

15

1.4 Summary

Multiuser games and open-ended virtual worlds are starting to be used for a
broad range of activities, going beyond entertainment, which can be enhanced
and supported by believable and adaptable NPCs. The in-world object
modelling and programming capacity of virtual worlds such as Second Life
provides a way for players to create and modify both the structure of virtual
terrain, and the geometry, media content, and behaviour of world artefacts.
This significantly changes players’ expectations for believable NPCs and there
is now a need for NPCs that can adapt to open-ended changes to their
environment. In future the roles undertaken by NPCs in virtual worlds may
also expand to encompass facilitators or arbitrators as well as traditional roles
such as enemies and partners. This creates a need for new kinds of character
control technology to enable NPCs to be capable of these more complex roles.
 Current artificial intelligence approaches to developing the behaviour of
NPCs include preprogrammed reflexive behaviours using techniques such as
rules and state machines, and learned behaviours using techniques such as
neural networks and reinforcement learning. The approaches have limitations
in open-ended virtual worlds because they require specific knowledge
embedded in the code about the state of the world and goals of the NPC. Using
these techniques as a starting point, new learning approaches that include
motivation as a trigger have the potential to create a new kind of NPC that is
curious about the changes in the environment and is self-motivated to learn
more about the changes.
 This book introduces MRL as a new technique that transforms the design
of NPCs by providing individual NPCs with a mechanism for open-ended,
online adaptation of their own behaviour. The aim of this book is to provide
game programmers with the knowledge required to develop adaptable,
intelligent NPCs that can take on a life of their own in dynamic, multiuser
virtual worlds. We begin in the next chapter by examining human motivation
with a view to understanding how it can be embodied in artificial agents to
achieve self-motivated, adaptive NPCs.

1.5 References

[1] R. Bartle, Designing virtual worlds, New Riders, Indianapolis, 2004.

[2] P. Baillie-de Byl, Programming believable characters for computer games, Charles
River Media, Hingham, Massachusetts, 2004.

[3] J. Laird and M. van Lent, Human-level AI’s killer application: interactive
computer games. AI Magazine, pp. 15–25, Summer 2001.

1 Non-Player Characters in Multiuser Games

16

[4] D. Zeltzer, Autonomy, interaction and presence. Presence: Teleoperators and
Virtual Environments 1(1):127–132, 1992.

[5] Linden, Second Life, www.secondlife.com (Accessed January, 2007).

[6] Active Worlds, www.activeworlds.com (Accessed January, 2007).

[7] There.com www.there.com (Accessed July, 2008).

[8] F. Rex, LambdaMOO: An introduction, http://www.lambdamoo.info (Accessed
December, 2006).

[9] K. Merrick and M.L. Maher, Motivated reinforcement learning for adaptive
characters in open-ended simulation games, ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology (ACE 2007),
ACM, Salzburg, Austria, pp. 127–134, 2007.

[10] M.L. Maher and J.S. Gero, Agent models of 3D virtual worlds, ACADIA 2002:
Thresholds, California State Polytechnic University, Pamona, pp. 127–138, 2002.

[11] S. Woodcock, Games making interesting use of artificial intelligence techniques.
http://www.gameai.com/games.html (Accessed October, 2005).

[12] Siege University, 303 Skrit, http://garage.gaspowered.com (Accessed March,
2006).

[13] D. Johnson and J. Wiles, Computer games with intelligence, The Tenth IEEE
International Conference on Fuzzy Systems, pp. 1355–1358, 2001.

[14] C. Reynolds, Flocks, herds and schools: a distributed behavioural model.
Computer Graphics 21(4):25–34, 1987.

[15] N.J. Nilsson, Introduction to machine learning,
http://ai.stanford.edu/people/nilsson/mlbook.html (Accessed January, 2006), 1996.

[16] S.J. Russell and P. Norvig, Artificial intelligence: a modern approach, Prentice
Hall, Englewood Cliffs, New Jersey, 1995.

[17] R.S. Sutton and A.G. Barto, Reinforcement learning: an introduction, The MIT
Press Cambridge, Massachusetts, London, England, 2000.

[18] T. Graepel, R. Herbrich and J. Gold, Learning to fight, The International
Conference on Computer Games: Artificial Intelligence, Design and Education,
2004.

[19] D. Goldberg, Genetic algorithms, Addison-Wesley, Reading, Massachusetts,
1989.

