

1

Definition of $\zeta(s)$, Z(t) and basic notions

1.1 The basic notions

The classical Riemann zeta-function

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \prod_{p} (1 - p^{-s})^{-1} \qquad (s = \sigma + it, \, \sigma > 1)$$
 (1.1)

admits analytic continuation to \mathbb{C} . It is regular on \mathbb{C} except for a simple pole at s=1. The product representation in (1.1) shows that $\zeta(s)$ does not vanish for $\sigma>1$. The Laurent expansion of $\zeta(s)$ at s=1 reads

$$\zeta(s) = \frac{1}{s-1} + \gamma_0 + \gamma_1(s-1) + \gamma_2(s-1)^2 + \cdots,$$

where the so-called *Stieltjes constants* γ_k are given by

$$\gamma_k = \frac{(-1)^k}{k!} \lim_{N \to \infty} \left(\sum_{m \le N} \frac{\log^k m}{m} - \frac{\log^{k+1} N}{k+1} \right) \qquad (k = 0, 1, 2, \ldots).$$

In particular

$$\gamma \equiv \gamma_0 = \lim_{N \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{N} - \log N \right) = -\Gamma'(1) = 0.5772157\dots$$

is the Euler constant and

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$$
 (Re $s > 0$) (1.2)

is the familiar Euler gamma-function.

The product in (1.1) is called the *Euler product*. As usual, p denotes prime numbers, so that by its very essence $\zeta(s)$ represents an important tool for the

2 Definition of $\zeta(s)$, Z(t) and basic notions

investigation of prime numbers. This is even more evident from the relation

$$-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \Lambda(n) n^{-s} \qquad (\sigma > 1),$$

which follows by logarithmic differentiation of (1.1), where the von Mangoldt function $\Lambda(n)$ is defined as

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^{\alpha}, \\ 0 & \text{if } n \neq p^{\alpha} \quad (\alpha \in \mathbb{N}). \end{cases}$$

The zeta-function can be also used to generate many other important arithmetic functions; for example,

$$\frac{\zeta(s)}{\zeta(2s)}$$
 $(\sigma > 1),$ $\frac{\zeta(2s)\zeta(3s)}{\zeta(6s)}$ $(\sigma > \frac{1}{2})$

generate the characteristic functions of *squarefree* and *squarefull* numbers, respectively. One also has, for a given $k \in \mathbb{N}$,

$$\zeta^{k}(s) = \sum_{n=1}^{\infty} d_{k}(n)n^{-s} \qquad (\sigma > 1),$$
 (1.3)

where the (general) divisor function $d_k(n)$ represents the number of ways n can be written as a product of k factors, so that in particular $d_1(n) \equiv 1$ and $d_2(n) = \sum_{\delta|n} 1$ is the number of positive divisors of n. The function $d_k(n)$ is a multiplicative function of n (meaning $d_k(mn) = d_k(m)d_k(n)$ if m and n are coprime), and

$$d_k(p^{\alpha}) = (-1)^{\alpha} {\binom{-k}{\alpha}} = \frac{k(k+1)\cdots(k+\alpha-1)}{\alpha!}$$

for primes p and $\alpha \in \mathbb{N}$.

Another significant aspect of $\zeta(s)$ is that it can be generalized to many other similar Dirichlet series (notably to the Selberg class S, which will be discussed in Chapter 3). A vast body of literature exists on many facets of zeta-function theory, such as the distribution of its zeros and power moments of $|\zeta(\frac{1}{2}+it)|$ (see, e.g., the monographs [Iv1], [Iv4], [Mot1], [Ram] and [Tit3]). It is within this framework that the classical Hardy function (see, e.g., [Iv1]) Z(t) ($t \in \mathbb{R}$) arises, and plays an important rôle in the theory of $\zeta(s)$. It is defined as

$$Z(t) := \zeta(\frac{1}{2} + it) \left(\chi(\frac{1}{2} + it)\right)^{-1/2},\tag{1.4}$$

where $\chi(s)$ comes from the well-known functional equation for $\zeta(s)$; see (1.5) and (1.6) below. The basic properties of Z(t) will be discussed in Section 1.3.

1.2 The functional equation for
$$\zeta(s)$$

3

1.2 The functional equation for $\zeta(s)$

The functional equation is one of the most fundamental tools of zetafunction theory. Therefore we shall, for the sake of completeness, provide a proof which incidentally originated with the great German mathematician B. Riemann (1826-1866), who founded the theory of $\zeta(s)$ in his epoch-making memoir [Rie].

Theorem 1.1 The function $\zeta(s)$ admits analytic continuation to \mathbb{C} , where it satisfies the functional equation

$$\pi^{-s/2}\zeta(s)\Gamma(\frac{1}{2}s) = \pi^{-(1-s)/2}\zeta(1-s)\Gamma(\frac{1}{2}(1-s)). \tag{1.5}$$

Remark 1.2 The functional equation (1.5) is in a symmetric form. Alternatively we can write (1.5) as

$$\zeta(s) = \chi(s)\zeta(1-s),\tag{1.6}$$

where we set

$$\chi(s) = \frac{\Gamma(\frac{1}{2}(1-s))}{\Gamma(\frac{1}{2}s)} \pi^{s-1/2}.$$

This expression can be put into other equivalent forms. For example, we have

$$\chi(s) = 2^{s} \pi^{s-1} \sin(\frac{1}{2}\pi s) \Gamma(1-s) = \frac{(2\pi)^{s}}{2\Gamma(s)\cos(\pi s/2)},$$
(1.7)

where we used the well-known identities

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}, \quad \Gamma(s)\Gamma(s+\frac{1}{2}) = 2^{1-2s}\sqrt{\pi}\Gamma(2s). \tag{1.8}$$

Remark 1.3 Note that (1.6) gives the identity

$$\chi(s)\chi(1-s) = 1.$$
 (1.9)

All identities (1.5)-(1.9) hold for $s \in \mathbb{C}$.

Before we proceed to the proof of the functional equation (1.5), we need a result on a transformation formula for *the theta-function* (see (1.14)), embodied in the following lemma.

Lemma 1.4 We have

$$\sum_{n=-\infty}^{\infty} e^{-\pi n^2 t} = \frac{1}{\sqrt{t}} \sum_{n=-\infty}^{\infty} e^{-\pi n^2/t} \qquad (t > 0).$$
 (1.10)

4 Definition of $\zeta(s)$, Z(t) and basic notions

Proof of Lemma 1.4 For $v \in \mathbb{R}$, $\tau = iy$, y > 0 we have the Fourier expansion

$$f(v) := \sum_{n = -\infty}^{\infty} e^{\pi i \tau (n+v)^2} = \sum_{k = -\infty}^{\infty} c_k e^{2\pi i k v},$$
 (1.11)

since f(v) is periodic with period 1 and $f(v) \in C^1[0, 1]$. Hence with $A = -2\pi i k$, $B = \pi y$, we have for the Fourier coefficients c_k the expression

$$c_{k} = \int_{0}^{1} \sum_{n=-\infty}^{\infty} e^{\pi i \tau (n+v)^{2} - 2\pi i k v} dv$$

$$= \sum_{n=-\infty}^{\infty} \int_{0}^{1} e^{\pi i \tau (n+v)^{2} - 2\pi i k (n+v)} dv$$

$$= \int_{-\infty}^{\infty} e^{-\pi y v^{2} - 2\pi i k v} dv = \int_{-\infty}^{\infty} e^{Av - Bv^{2}} dv$$

$$= \sqrt{\frac{\pi}{B}} e^{A^{2}/(4B)} = \frac{1}{\sqrt{y}} e^{-\pi k^{2}/y}.$$
(1.12)

The change of order of summation and integration in (1.12) is justified by absolute convergence. Here we used the classical integral

$$\int_{-\infty}^{\infty} \exp(At - Bt^2) dt = \sqrt{\frac{\pi}{B}} \exp\left(\frac{A^2}{4B}\right) \qquad (\text{Re } B > 0).$$
 (1.13)

Setting v = 0, $i\tau = i^2y = -t$, y = t in (1.11) and (1.12), we obtain (1.10) of Lemma 1.4. By analytic continuation it is seen that (1.10) remains valid for $\mathbb{R}e\ t > 0$. If we define the theta-function as

$$\vartheta(t) = \sum_{n=1}^{\infty} e^{-\pi n^2 t} \qquad (\operatorname{\mathbb{R}e} t > 0), \tag{1.14}$$

then (1.10) yields the transformation formula

$$\vartheta(t) = \frac{1}{2\sqrt{t}} \left(2\vartheta\left(\frac{1}{t}\right) + 1 \right) - \frac{1}{2} \qquad (\operatorname{\mathbb{R}e} t > 0). \tag{1.15}$$

Proof of Theorem 1.1 We start from

$$\Gamma(\frac{1}{2}s) = \int_0^\infty e^{-x} x^{s/2-1} dx \qquad (\sigma > 0),$$

which is just (1.2) with s/2 in place of s. If $n \in \mathbb{N}$, we write $\pi n^2 x$ in place of x to obtain

$$\Gamma(\frac{1}{2}s) = \pi^{s/2}n^s \int_0^\infty e^{-\pi n^2 x} x^{s/2-1} dx \qquad (\sigma > 0),$$

1.2 The functional equation for
$$\zeta(s)$$

5

or

$$n^{-s} = \frac{\pi^{s/2}}{\Gamma(s/2)} \int_0^\infty e^{-\pi n^2 x} x^{s/2-1} dx \qquad (\sigma > 0).$$

Summation over *n* gives, for $\sigma > 1$,

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \frac{\pi^{s/2}}{\Gamma(s/2)} \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-\pi n^{2}x} x^{s/2-1} dx.$$

Since the series

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} \left| e^{-\pi n^{2}x} x^{s/2-1} \right| dx = \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-\pi n^{2}x} x^{\sigma/2-1} dx = \sum_{n=1}^{\infty} \Gamma(\sigma/2) \pi^{-\sigma/2} n^{-\sigma}$$

converges for $\sigma > 1$, we can change the order of summation and integration to obtain

$$\zeta(s) = \frac{\pi^{s/2}}{\Gamma(s/2)} \int_0^\infty \vartheta(x) x^{s/2-1} \, \mathrm{d}x. \tag{1.16}$$

In view of (1.15) we may write (1.16) as

$$\pi^{-s/2}\Gamma(s/2)\zeta(s) = \int_0^1 x^{s/2-1}\vartheta(x) \, dx + \int_1^\infty x^{s/2-1}\vartheta(x) \, dx$$

$$= \int_0^1 x^{s/2-1} \left(x^{-1/2}\vartheta\left(\frac{1}{x}\right) + \frac{1}{2}x^{-1/2} - \frac{1}{2}\right) dx$$

$$+ \int_1^\infty x^{s/2-1}\vartheta(x) \, dx$$

$$= \frac{1}{s-1} - \frac{1}{s} + \int_0^1 x^{s/2-3/2}\vartheta(1/x) \, dx + \int_1^\infty x^{s/2-1}\vartheta(x) \, dx$$

$$= \frac{1}{s(s-1)} + \int_1^\infty \left(x^{-s/2-1/2} + x^{s/2-1}\right)\vartheta(x) \, dx. \tag{1.17}$$

Note first that the last expression in (1.17) remains invariant if s is replaced by 1 - s. Secondly, the last integral in (1.17) converges uniformly (since $s \ge 1$ in the integrand) in any strip

$$-\infty < a < \sigma = \mathbb{R}e \, s < b < +\infty.$$

Consequently the last integral in (1.17) represents an entire function of s. Therefore

$$\pi^{-s/2}\Gamma(s/2)\zeta(s) - \frac{1}{s(s-1)}$$

Definition of $\zeta(s)$, Z(t) *and basic notions*

is an entire function of s. Since $\pi^{s/2}/\Gamma(s/2)$ is an entire function (because $\Gamma(s)$ has no zeros),

$$\zeta(s) - \frac{1}{s(s-1)} \frac{\pi^{s/2}}{2\Gamma(s/2)}$$

is also an entire function. Further, since $s\Gamma(s/2)=2\Gamma(s/2+1)$, it follows that

$$\zeta(s) - \frac{1}{s-1} \frac{\pi^{s/2}}{2\Gamma(s/2+1)}$$

is an entire function. Since $\sqrt{\pi}/(2\Gamma(3/2)) = 1$, we have that $\zeta(s) - 1/(s-1)$ is an entire function, thus $\zeta(s)$ is regular in \mathbb{C} except for a simple pole at s = 1 with residue 1.

This discussion shows that (1.17) provides analytic continuation of $\zeta(s)$ to \mathbb{C} , as well as the functional equation (1.5).

Corollary 1.5 If we define

$$\eta(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s), \quad \xi(s) = \frac{1}{2} s(s-1) \eta(s),$$
 (1.18)

then $\xi(s)$ is an entire function of s satisfying the functional equation $\xi(s) = \xi(1-s)$. It is real for t=0 and $\sigma=1/2$ and $\xi(0)=\xi(1)=1/2$.

1.3 Properties of Hardy's function

We continue with the discussion of Z(t). Recall that the zeta, sine and the gamma-function take conjugate values at conjugate points. Hence it follows from (1.7) and (1.9) that

$$\overline{\chi(\frac{1}{2}+it)} = \chi(\frac{1}{2}-it) = \chi^{-1}(\frac{1}{2}+it),$$

so that (1.4) gives $Z(t) \in \mathbb{R}$ when $t \in \mathbb{R}$, and $|Z(t)| = |\zeta(\frac{1}{2} + it)|$. Thus the zeros of $\zeta(s)$ on the "critical line" $\mathbb{R}e \, s = 1/2$ are in one-to-one correspondence with the real zeros of Z(t). This property makes Z(t) an invaluable tool in the study of the zeros of the zeta-function on the critical line. If we use (1.5) and (1.6) we have

$$\left(\chi(\frac{1}{2}+it)\right)^{-1/2} = \pi^{-it/2} \frac{\Gamma^{1/2}(\frac{1}{4}+\frac{1}{2}it)}{\Gamma^{1/2}(\frac{1}{4}-\frac{1}{2}it)} = \pi^{-it/2} \frac{\Gamma(\frac{1}{4}+\frac{1}{2}it)}{|\Gamma(\frac{1}{4}+\frac{1}{2}it)|} := e^{i\theta(t)},$$

say, where $\theta(t)$ is a smooth function for which

$$\theta(t) = -\frac{1}{2i} \log \chi(\frac{1}{2} + it), \qquad \theta'(t) = -\frac{1}{2} \frac{\chi'(\frac{1}{2} + it)}{\chi(\frac{1}{2} + it)}.$$

Note that also

$$\theta(t) = \operatorname{Im} \left\{ \log \Gamma(\frac{1}{4} + \frac{1}{2}it) \right\} - \frac{1}{2}t \log \pi \in \operatorname{\mathbb{R}e}$$
 (1.19)

if $t \in \mathbb{R}$, thus $\theta(0) = 0$. The function $\theta(t)$ is odd, since in view of $\chi(s)\chi(1-s) = 1$ we have

$$\theta(-t) = -\frac{1}{2i} \log \chi(\frac{1}{2} - it) = -\frac{1}{2i} \log \frac{1}{\chi(\frac{1}{2} + it)}$$
$$= \frac{1}{2i} \log \chi(\frac{1}{2} + it) = -\theta(t).$$

It is also monotonic increasing for $t \ge 7$, which follows from formulas (1.21)-(1.22) below. We may write Z(t) alternatively as

$$Z(t) = e^{i\theta(t)} \zeta(\frac{1}{2} + it), \quad e^{i\theta(t)} := \pi^{-it/2} \frac{\Gamma(\frac{1}{4} + \frac{1}{2}it)}{|\Gamma(\frac{1}{4} + \frac{1}{2}it)|} \quad (\theta(t) \in \mathbb{R}).$$
 (1.20)

It is also useful to note that Z(t) is an even function of t, because

$$Z(-t) = \zeta(\frac{1}{2} - it) \left(\chi(\frac{1}{2} - it) \right)^{-1/2} = \zeta(\frac{1}{2} + it) \left(\chi(\frac{1}{2} - it) \right)^{1/2}$$
$$= \zeta(\frac{1}{2} + it) \left(\chi(\frac{1}{2} + it) \right)^{-1/2} = Z(t).$$

We have the explicit representation

$$\theta(t) = \frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \Delta(t). \tag{1.21}$$

Here (see Lemma 5.1 for a proof; here $\Delta(t)$ is not to be confused with the error term in the Dirichlet divisor problem)

$$\Delta(t) := \frac{t}{4} \log \left(1 + \frac{1}{4t^2} \right) + \frac{1}{4} \arctan \frac{1}{2t} + \frac{t}{2} \int_0^\infty \frac{\psi(u)}{(u + \frac{1}{4})^2 + (\frac{t}{2})^2} du$$
(1.22)

with

$$\psi(x) = x - [x] - \frac{1}{2} = -\sum_{n=1}^{\infty} \frac{\sin(2n\pi x)}{n\pi} \qquad (x \notin \mathbb{Z}).$$

The representation (1.21)-(1.22) follows from *Stirling's formula* (see (2.14)) for the gamma-function in the form

$$\log \Gamma(s) = (s - 1/2)\log s - s + \log \sqrt{2\pi} - \int_0^\infty \frac{\psi(u)}{u + s} du,$$

7

8 Definition of $\zeta(s)$, Z(t) and basic notions

which in turn is a consequence of the product formula

$$\frac{1}{\Gamma(s)} = s \exp(\gamma s) \prod_{n=1}^{\infty} \left(1 + \frac{s}{n} \right) e^{-s/n}. \tag{1.23}$$

Note that (1.23) valid for $s \in \mathbb{C}$, and can serve as a definition of $\Gamma(s)$ equivalent to (1.2).

The expression (1.21) is very useful, since it allows one to evaluate explicitly all the derivatives of $\theta(t)$. For $t \to \infty$ it is seen that $\Delta(t)$ admits an asymptotic expansion in terms of negative powers of t, and from (1.19) and Stirling's formula it is found that (B_k is the kth Bernoulli number)

$$\Delta(t) \sim \sum_{n=1}^{\infty} \frac{(2^{2n} - 1)|B_{2n}|}{2^{2n}(2n - 1)2nt^{2n - 1}}.$$
 (1.24)

The meaning of \sim in (1.24) is that, for an arbitrary integer $N \ge 1$, $\Delta(t)$ equals the sum of the first N terms of the series in (1.24), plus the error term, which is $O_N(t^{-2N-1})$. In general we shall have, for $k \ge 0$ and suitable constants $c_{k,n}$,

$$\Delta^{(k)}(t) \sim \sum_{n=1}^{\infty} c_{k,n} t^{1-2n-k}.$$
 (1.25)

Thus (1.21) and (1.24) give

$$\theta(t) \sim \frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \sum_{n=1}^{\infty} \frac{(2^{2n-1} - 1)|B_{2n}|}{2^{2n}(2n-1)2nt^{2n-1}},$$
 (1.26)

and we also have asymptotic expansions for the derivatives of $\theta(t)$. In particular, we have the approximations

$$\theta(t) = \frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{1}{48t} + \frac{7}{5760t^3} + O\left(\frac{1}{t^5}\right),$$

$$\theta'(t) = \frac{1}{2} \log \frac{t}{2\pi} + O\left(\frac{1}{t^2}\right),$$

$$\theta''(t) = \frac{1}{2t} + O\left(\frac{1}{t^3}\right),$$
(1.27)

which are sufficiently sharp for many applications.

1.4 The distribution of zeta-zeros

In what concerns the distribution of zeros of $\zeta(s)$, it is known that $\zeta(s)$ has no zeros in the region

$$\sigma \ge 1 - C(\log t)^{-2/3} (\log \log t)^{-1/3}$$
 $(C > 0, t \ge t_0 > 0).$ (1.28)

This result, the strongest so-called *zero-free region* for $\zeta(s)$ even today, was obtained by an application of I. M. Vinogradov's method of exponential sums. In a modern form, the crucial bound which implies (1.28) states (see, e.g., [Iv1, chapter 6]) that

$$\sum_{N < n < N_1 < 2N} n^{it} \ll N \exp\left(-\frac{C \log^3 N}{\log^2 t}\right) \qquad (C > 0)$$
 (1.29)

for $N_0 \le N \le \frac{1}{2}t$, $t \ge t_0$. From (1.5) it follows that $\zeta(-2n) = 0$ for $n \in \mathbb{N}$. These zeros are the only real zeros of $\zeta(s)$, and are called the *trivial zeros* of $\zeta(s)$. In 1859, B. Riemann [Rie] calculated a few complex zeros of $\zeta(s)$ and found that they lie on the line $\mathbb{R}e \ s = \frac{1}{2}$, which is called the *critical line* in the theory of $\zeta(s)$. The first ten pairs of complex zeros (arranged in size according to their absolute value) are (see, e.g., C. B. Haselgrove [Has])

$$\frac{1}{2} \pm i14.134725..., \quad \frac{1}{2} \pm i21.022039..., \quad \frac{1}{2} \pm i25.010857..., \\ \frac{1}{2} \pm i30.424876..., \quad \frac{1}{2} \pm i32.935061..., \quad \frac{1}{2} \pm i37.586178..., \\ \frac{1}{2} \pm i40.918719..., \quad \frac{1}{2} \pm i43.327073..., \quad \frac{1}{2} \pm i48.005150..., \\ \frac{1}{2} \pm i49.773832....$$

The number of complex zeros $\rho = \beta + i\gamma$ of $\zeta(s)$ with $0 < \gamma \le T$ (multiplicities included) is denoted by N(T). The asymptotic formula for N(T) is the famous *Riemann-von Mangoldt formula*. It was enunciated by B. Riemann [Rie] in 1859, but proved by H. von Mangoldt [Man] in 1895. We state it here as follows.

Theorem 1.6 Let

$$S(T) := \frac{1}{\pi} \arg \zeta(\frac{1}{2} + iT).$$
 (1.30)

Then

$$N(T) = \frac{T}{2\pi} \log \left(\frac{T}{2\pi}\right) - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T}\right),\tag{1.31}$$

where the O-term is a continuous function of T, and

$$S(T) = O(\log T). \tag{1.32}$$

Here $\arg \zeta(\frac{1}{2}+iT)$ is evaluated by continuous variation starting from $\arg \zeta(2)=0$ and proceeding along straight lines, first up to 2+iT and then to

© in this web service Cambridge University Press

9

10 Definition of $\zeta(s)$, Z(t) and basic notions

1/2 + iT, assuming that T is not an ordinate of a zeta zero. If T is an ordinate of a zero, then we set S(T) = S(T + 0).

Remark 1.7 On the RH (the Riemann hypothesis, that all complex zeros of $\zeta(s)$ have real parts equal to 1/2) one can slightly improve (1.32) and obtain that (see [Tit3])

$$S(T) = O\left(\frac{\log T}{\log \log T}\right). \tag{1.33}$$

Proof of Theorem 1.6 Let \mathcal{D} be the rectangle with vertices $2 \pm iT$, $-1 \pm iT$, where T (>3) is not an ordinate of a zero. The function $\xi(s)$, defined by (1.18), has 2N(T) zeros in the interior of \mathcal{D} , and none on the boundary. Therefore we have

$$N(T) = \frac{1}{4\pi} \operatorname{Im} \left(\int_{\mathcal{D}} \frac{\xi'(s)}{\xi(s)} \, \mathrm{d}s \right). \tag{1.34}$$

Logarithmic differentiation of (1.18) gives

$$\frac{\xi'(s)}{\xi(s)} = \frac{1}{s} + \frac{1}{s-1} + \frac{\eta'(s)}{\eta(s)},$$

where $\eta(s)$ is also given by (1.18). Observe first that

$$\operatorname{Im}\left\{\int_{\mathcal{D}}\left(\frac{1}{s} + \frac{1}{s-1}\right) \, \mathrm{d}s\right\} = 4\pi.$$

Next, note that $\eta(s) = \eta(1-s)$ and $\eta(\sigma \pm it)$ are conjugates, so that

$$\int_{\mathcal{D}} \left(\frac{\eta'(s)}{\eta(s)} \, \mathrm{d}s \right) = 4 \mathbb{I} \mathrm{m} \, \int_{\mathcal{L}} \left(\frac{\eta'(s)}{\eta(s)} \, \mathrm{d}s \right),$$

where \mathcal{L} consists of the segments [2, 2+iT] and [2+iT, 1/2+iT]. Therefore

$$\operatorname{Im} \int_{\mathcal{L}} \left(\frac{\eta'(s)}{\eta(s)} \, \mathrm{d}s \right) = \operatorname{Im} \left\{ \int_{\mathcal{L}} \left(-\frac{1}{2} \log \pi + \frac{1}{2} \frac{\Gamma'(s/2)}{\Gamma(s/2)} + \frac{\zeta'(s)}{\zeta(s)} \right) \, \mathrm{d}s \right\}$$

$$= -\frac{1}{2} (\log \pi) T + \operatorname{Im} \left(\int_{\mathcal{L}} \frac{\Gamma'(s/2)}{2\Gamma(s/2)} \, \mathrm{d}s + \int_{\mathcal{L}} \frac{\zeta'(s)}{\zeta(s)} \, \mathrm{d}s \right).$$

Note that

$$\operatorname{Im}\left(\int_{\mathcal{L}} \frac{\Gamma'(s/2)}{2\Gamma(s/2)} \, \mathrm{d}s\right) = \operatorname{Im} \log \Gamma(\frac{1}{4} + \frac{1}{2}iT), \tag{1.35}$$

and using Stirling's formula in the form (2.16) we have

$$\operatorname{Im}\left(\int_{\mathcal{L}} \frac{\Gamma'(s/2)}{2\Gamma(s/2)} \, \mathrm{d}s\right) = \frac{1}{2} T \log\left(\frac{T}{2}\right) - \frac{T}{2} - \frac{\pi}{8} + O\left(\frac{1}{T}\right),$$