
Engineering Secure Two-Party Computation Protocols

Design, Optimization, and Applications of Efficient Secure Function Evaluation

Bearbeitet von
Thomas Schneider

1. Auflage 2012. Taschenbuch. xvi, 138 S. Paperback
ISBN 978 3 642 30041 7

Format (B x L): 15,5 x 23,5 cm
Gewicht: 400 g

Weitere Fachgebiete > EDV, Informatik > Computerkommunikation,
Computervernetzung > Netzwerkprotokolle, EDI

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Schneider-Engineering-Secure-Two-Party-Computation-Protocols/productview.aspx?product=10661530&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_10661530&campaign=pdf/10661530
http://www.beck-shop.de/trefferliste.aspx?toc=8278
http://www.beck-shop.de/trefferliste.aspx?toc=8278
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642300417_TOC_001.pdf

Chapter 2
Basics of Efficient Secure Function Evaluation

2.1 Common Notation and Definitions

In this section we introduce common notation (Sect. 2.1.1), cryptographic primitives
(Sect. 2.1.2), function representations (Sect. 2.1.3), the adversary model (Sect. 2.1.4),
and the Random Oracle (RO) model (Sect. 2.1.5) used in this book.

2.1.1 Notation

We use the following standard notations.

2.1.1.1 Basics

Bitstrings. {0, 1}� denotes the space of binary strings of length �. a||b denotes the
concatenation of strings a and b. 〈a, b〉 is a vector with two components a and b, and
its representation as a bit string is a||b. For strings s, t ∈ {0, 1}�, s ⊕ t denotes their
bitwise exclusive-or (XOR).

Random Choice. Uniform random choice is denoted by the ∈R operator, e.g.,
r ∈R D reads “draw r uniformly at random from D”.

Protocol Participants. We call the two Secure Function Evaluation (SFE) partic-
ipants client C (Alice) and server S (Bob). This naming choice is influenced by the
asymmetry in the SFE protocols, which fits into the client–server model. We want to
point out that we do not limit ourselves to this setting even though this client–server
relationship in fact exists in most real-life two-party SFE scenarios.

2.1.1.2 Security and Correctness Parameters

Our security and correctness parameters are named as shown in Table 2.1.
Table 2.2 contains current recommendations by ECRYPT II [74] for the size

of thesymmetric security parameter t and the asymmetric security parameter T.

T. Schneider, Engineering Secure Two-Party Computation Protocols, 5
DOI: 10.1007/978-3-642-30042-4_2, © Springer-Verlag Berlin Heidelberg 2012

6 2 Basics of Efficient Secure Function Evaluation

Table 2.1 Security and
correctness parameters

Symbol Name

t Symmetric security parameter (bit length of
symmetric keys)

T Asymmetric security parameter (bit length of
RSA moduli)

σ Statistical security parameter
κ Correctness parameter

Table 2.2 Security
parameters: recommended
sizes [74]

Security level Recommended
use until

t (bit) T (bit)

Ultra-short 2012 80 1,248
Short 2020 96 1,776
Medium 2030 112 2,432
Long 2040 128 3,248

An overview and comparison of different recommendations is available at [96].
In implementations, the statistical security parameter σ and the correctness para-

meter κ can be chosen as σ = κ = 40.

2.1.2 Cryptographic Primitives

Pseudo-Random Function (PRF) keyed with k and evaluated on x is denoted by
PRFk(x). PRF can be instantiated with a block cipher, e.g., AES, or a cryptographic
hash function, e.g., SHA-256. AES is preferable if PRF is run repeatedly with the
same key k as in this case the key schedule of AES needs to be run only once and
hence amortizes.

Message Authentication Code (MAC) keyed with k and evaluated on message
m is denoted by MACk(m). In our token-based protocols in Chap. 4 we use a MAC
algorithm that does not need to store the entire message, but can operate “online” on
small blocks, e.g., AES-CMAC [204] or HMAC [146].

2.1.3 Function Representations

We use several standard representations for functions which are particularly useful
for SFE protocols as shown in Fig. 2.1: boolean circuits (Sect. 2.1.3.1) and arithmetic
circuits (Sect. 2.1.3.2).

2.1 Common Notation and Definitions 7

Fig. 2.1 Function represen-
tations. a Boolean circuit. b
Arithmetic circuit

(a) (b)

2.1.3.1 Boolean Circuits

Boolean circuits are a classical representation of functions in engineering and com-
puter science.

Definition 1 (Boolean Circuit) A boolean circuit with u inputs, v outputs and n
gates is a Directed Acyclic Graph (DAG) with |V | = u + v + n vertices (nodes) and
|E | edges. Each node corresponds to either a gate, an input or an output. The edges
are called wires.

For simplicity, the input and output nodes are often omitted in the graphical
representation of a boolean circuit as shown in Fig. 2.1a. For a more detailed definition
see [225].

Definition 2 (Gate) A d-input gate Gd is a boolean function which maps d ≥ 0
input bits to one output bit, i.e., Gd : (in1, . . . , ind) ∈ {0, 1}d → {0, 1}.

Typical gates are XOR (⊕), XNOR (=), AND (∧), OR (∨).

Topologic Order. Gates of a boolean circuit can be evaluated in any order, as long
as all of the current gate’s inputs are known. This property is ensured by sorting (and
evaluating) the gates topologically, which can be done efficiently in O(|V | + |E |)
[64, Topological sort, pp. 549–552]. The topologic order of a boolean circuit indexes
the gates with labels G1, . . . , Gn and ensures that the ith gate Gi has no inputs that
are outputs of a successive gate G j>i . In complexity theory, a circuit with such a
topologic order is called a straight-line program [6]. Given the values of the inputs,
the output of the boolean circuit can be evaluated by evaluating the gates one-by-
one in topologic order. A valid topologic order for the example boolean circuit in
Fig. 2.1a would be ∧,⊕,∨,=. The topologic order is not necessarily unique, e.g.,
⊕,∧,=,∨ would be possible as well.

Throughout this book we assume that boolean circuits are ordered topologically.

2.1.3.2 Arithmetic Circuits

Arithmetic circuits are a more compact function representation than boolean circuits.
An arithmetic circuit over a ring R and the set of variables x1, . . . , xn is a DAG.

Figure 2.1a illustrates an example. Each node with in-degree zero is called an input

8 2 Basics of Efficient Secure Function Evaluation

gate labeled by either a variable xi or an element in R. Every other node is called a
gate and labeled by either + or × denoting addition or multiplication in R.

Any boolean circuit can be expressed as an arithmetic circuit over R = Z2.
However, if we use R = Zm for sufficiently large modulus m, the arithmetic circuit
can be much smaller than its corresponding boolean circuit, as integer addition and
multiplication can be expressed as single operations in Zm .

Number Representation. We note that arithmetic circuits can simulate com-
putations on both positive and negative integers x by mapping them into elements
of Zm : x
→ x mod m. As with all fixed precision arithmetics, over- and underflows
must be avoided.

2.1.4 Adversary Model

The standard approach for formalizing and proving security of cryptographic proto-
cols is to consider adversaries with different capabilities. In the following we give
intuition for the capabilities of malicious, covert, and semi-honest adversaries. We
refer to [99] for formal definitions and to [145, 152] for more detailed discussions.

Malicious adversaries, also called active adversaries, are the strongest type of
adversaries and are allowed to arbitrarily deviate from the protocol, aiming to learn
private inputs of the other parties and/or to influence the outcome of the computation.
Not surprisingly, protection against such attacks is relatively expensive, as discussed
in Sect. 2.3.1.2.

Covert adversaries are similar to malicious adversaries, but with the restriction
that they must avoid being caught cheating. That is, a protocol in which an active
attacker may gain advantage may still be considered secure if attacks are discovered
with certain fixed probability (e.g., 1/2). It is reasonable to assume that in many
social, political and business scenarios the consequences of being caught overweight
the gain from cheating. At the same time, protocols secure against covert adversaries
can be substantially more efficient than those secure against malicious players, as
shown in Sect. 2.3.1.2.

Semi-honest adversaries, also called passive adversaries, do not deviate from the
protocol but try to infer additional information from the transcript of messages seen in
the protocol. Far from trivial, this model covers many typical practical settings such as
protection against insider attacks. Further, designing and evaluating the performance
of protocols in the semi-honest model is a first step towards protocols with stronger
security guarantees (cf. Sect. 2.3.1.2). Indeed, most protocols and implementations
of protocols for practical privacy-preserving applications focus on the semi-honest
model [19, 76, 164, 173, 189].

2.1 Common Notation and Definitions 9

2.1.5 Random Oracle Model

Some of our constructions in this book make use of ROs [24], a relatively strong
assumption. In fact, it has been shown in [57] that some (contrived) uses of RO
cannot be securely instantiated with any hash function. Therefore, proofs in the RO
model cannot be seen as proofs in the strictest mathematical sense. However, we
believe that modeling cryptographic hash functions, such as SHA-256, as RO is
well-justified in many practical settings because of the following reasons:

Firstly, to date, no attacks exploiting the RO assumption are known on practical
systems. This holds true even in the academic context: Important attacks on SHA-1
[226] that exploit the structure of the functions were far from being practical, and
simply accelerated migration to stronger primitives, which are believed secure today.
While some attacks, such as the attack on MD5 [209], are in fact practical, the use
of MD5 had long been considered unsafe, and [209] broke poorly managed systems.
Thus we do not consider [209] an attack on properly implemented protocols. In fact,
[209] and the preliminary work that led to it only support the historic fact that users
of hash functions do receive weakness warnings years ahead of possible real breaks.

Further, even in well-understood and deployed real-life systems, the crypto core
(which includes the employed hash functions) is almost never targeted for attacks,
in favor of much easier to exploit implementation flaws.

In sum, we believe that making the RO assumption on the employed hash function
is practically justified in our and many other settings.

2.2 Cryptographic Primitives for Secure Two-Party
Computation

In this section we describe essential building blocks used in SFE protocols: Homo-
morphic Encryption (HE) in Sect. 2.2.1, Garbled Circuits (GCs) in Sect. 2.2.2, and
Oblivious Transfer (OT) in Sect. 2.2.3.

2.2.1 Homomorphic Encryption

HE schemes are semantically secure encryption schemes which allow computation
of specific operations on ciphertexts and hence can be used for secure evaluation of
arithmetic circuits as described next.

Let (Gen, Enc, Dec) be a semantically secure encryption scheme with plaintext
space P , ciphertext space C , and algorithms for key generation Gen, encryption Enc
and decryption Dec. We write [[m]] for Enc(m, r), where r is random.

10 2 Basics of Efficient Secure Function Evaluation

Table 2.3 Additively homomorphic encryption schemes

Scheme P Ciphertext size Enc(m, r)

Paillier [176] ZN 2T gmr N mod N 2

Damgård–Jurik [65] ZN s (s + 1)T gmr N s
mod N s+1

Damgård–Geisler–Krøigaard [66] Zu T gmhr mod N
Lifted EC-ElGamal [75] Zp 4t + 2 (gr , gmhr)

N RSA modulus; s ≥ 1; u small prime; p 2t-bit prime; g, h generators

2.2.1.1 Additively Homomorphic Encryption

An additively HE scheme allows addition under encryption as follows. It defines an
operation + on plaintexts and a corresponding operation � on ciphertexts, satisfying
∀x, y ∈ P : [[x]] � [[y]] = [[x + y]]. This naturally allows for multiplication with a
plaintext constant a using repeated doubling and adding: ∀a ∈ N, x ∈ P : a[[x]] =
[[ax]].

Popular instantiations for additively HE schemes are summarized in Table 2.3: The
Paillier cryptosystem [176] provides a T -bit plaintext space and 2T -bit ciphertexts,
where T is the size of the RSA modulus N , and is sufficient for most applications
(details see below). The Damgård–Jurik cryptosystem [65] is a generalization of
the Paillier cryptosystem which provides a larger plaintext space of size sT -bit for
(s + 1)T -bit ciphertexts for arbitrary s ≥ 1. The Damgård–Geisler–Krøigaard cryp-
tosystem [66–68] has smaller ciphertexts of size T -bit, but can only be used with
a small plaintext space Zu , where u is a small prime, as decryption requires com-
putation of a discrete logarithm. Finally, the lifted ElGamal [75] cryptosystem has
additively homomorphic properties and very small ciphertexts. However, decryp-
tion is only possible if the plaintext is known to be in a small subset of the plaintext
space, as the discrete logarithm of a generator with large order has to be brute-forced.
Lifted ElGamal implemented over an EC group (Lifted EC-ElGamal) provides a 2t-
bit plaintext space and very small ciphertexts of size 2(2t + 1) bits ∼ 4t bits when
using point compression.

The Paillier Cryptosystem. The most widely used additively HE system is that
of Paillier [176] where the public key is an RSA modulus N and the secret key is the
factorization of N . The extension of [65, Sect. 6] allows one to pre-compute expensive
modular exponentiations of the form r N mod N 2 in a setup phase, s.t. only two
modular multiplications per encryption are needed in the time-critical online phase.
The party which knows the factorization of N (i.e., the secret key), can use Chinese
remaindering to efficiently pre-compute these exponentiations and to decrypt.

2.2 Cryptographic Primitives for Secure Two-Party Computation 11

2.2.1.2 Fully Homomorphic Encryption

Some HE systems allow both addition and multiplication under encryption. For
this, a separate operation × for multiplication of plaintexts and a corresponding
operation � on ciphertexts is defined satisfying ∀x, y ∈ P : [[x]] � [[y]] = [[x × y]].
Cryptosystems with such a property are called fully homomorphic.

Until recently, it was widely believed that such cryptosystems do not exist. Sev-
eral works provided partial solutions: [34] and [95] allow for polynomially many
additions and one multiplication, and ciphertexts of [193] grow exponentially in
the number of multiplications. Recent schemes [92, 93, 201, 223] are fully homo-
morphic. Even if the size of the ciphertexts of these fully HE schemes is indepen-
dent of the number of multiplications, the size and computational cost of fully HE
schemes are substantially larger than those of additively HE schemes. First imple-
mentation results of [201] show that even for almost fully HE schemes with conser-
vatively chosen security parameters that allow for multiplicative depth d = 2.5 of
the evaluated circuit, i.e., at most two multiplications, encrypting a single bit takes
3.7 s on a 2.4 GHz Intel Core2 (6600) CPU. Most recent implementation results of
[148] indicate that the performance of somewhat homomorphic encryption schemes
might be sufficient for outsourcing certain types of computations, whereas fully
HE is still very inefficient as shown in [94] whose implementation requires in the
order of Gigabytes of communication and minutes of computation on high-end IBM
System ×3500 servers.

Although significant effort is underway in the theoretical community to improve
its performance, it seems unlikely that fully HE will reach the efficiency of current
public-key encryption schemes. Intuitively, this is because a fully HE cryptosystem
must provide both the same strong security guarantees (semantic security) and extra
algebraic structure to allow for homomorphic operations. The extra structure weakens
security, and countermeasures (costing performance) are necessary.

2.2.1.3 Computing on Encrypted Data

Homomorphic encryption naturally allows for secure evaluation of arithmetic circuits
over P , called computing on encrypted data, as follows. The client C generates a key
pair for an HE cryptosystem and sends her inputs encrypted under the public key
to the server S together with the public key. With a fully HE scheme, S can simply
evaluate the arithmetic circuit by computing on the encrypted data and send back the
(encrypted) result to C, who then decrypts it to obtain the output.1 If the HE scheme
only supports addition, one round of interaction between C and S is needed to evaluate
each multiplication gate (or layer of multiplication gates) as describedbelow. Today,

1 If S is malicious, it must additionally be ensured that he indeed computed the intended functionality
by means of verifiable computing (cf. Sect. 4.3.3.2).

12 2 Basics of Efficient Secure Function Evaluation

using additively HE and interaction for multiplication results in much faster SFE
protocols than using fully HE schemes.

Packing. Often the plaintext space P of the HE scheme is substantially larger than
the size of the encrypted numbers. This allows one to pack multiple numbers into one
ciphertext (before or after additive blinding) and send back only a single ciphertext
from S to C. This optimization substantially decreases the size of the messages sent
from S to C as well as the number of decryptions performed by C. The computational
overhead for S is small as packing the ciphertexts [[x1]], . . . , [[xn]] into one ciphertext
[[X]] = [[xn|| . . . ||x1]] costs less than one full-range modular exponentiation by using
Horner’s scheme: [[X]] = [[xn]]; for i = n −1 downto 1 : [[X]] = 2|xi+1|[[X]]� [[xi]].

Interactive Multiplication with Additively Homomorphic Encryption. To
multiply two �-bit values encrypted under additively HE and held by S, [[x]] and [[y]],
the following standard protocol requires one single round of interaction between S
and C: S randomly chooses rx , ry ∈R {0, 1}�+σ , where σ is the statistical security
parameter, computes the blinded values [[x̄]] = [[x + rx]], [[ȳ]] = [[y + ry]] and sends
these to C. C decrypts, multiplies and sends back [[z]] = [[x̄ ȳ]]. S obtains [[xy]] by
computing [[xy]] = [[z]] � (−rx)[[y]] � (−ry)[[x]] � [[−rxry]].

Efficiency of single or multiple multiplications in parallel can be improved by
packing the blinded ciphertexts together instead of sending them to C separately.

Security. We note that in SFE protocols based on HE, the security of the party who
knows the secret key (C in our setting) is computational as it is computationally hard
for the other party to break the semantic security of the HE scheme. The security of
the party who computes under HE (S in our setting) is statistical as this party always
statistically blinds all intermediate values before sending them back.

Efficiency. As SFE based on additively HE requires interaction for multiply-
ing two ciphertexts, the round complexity of such protocols is determined by the
multiplicative depth of the evaluated function, i.e., the number of successive multi-
plications.

When the public key is known to both parties, encryptions and re-randomization
values can be pre-computed in a setup phase.

Still, the online phase requires computationally expensive public key operations
such as modular exponentiations for multiplying with constants, or decryptions.

2.2.2 Garbled Circuit Constructions

Another efficient method for computing under encryption is based on Garbled Cir-
cuits (GCs). The fundamental idea of GCs going back to Yao [231], is to represent
the function f to be evaluated as a boolean circuit C and encrypt (garble) each wire
with a symmetric encryption scheme. In contrast to HE (cf. Sect. 2.2.1), the encryp-
tions here cannot be operated on directly, but require helper information which is
generated and exchanged in a setup phase in the form of a garbled table for each
gate.

2.2 Cryptographic Primitives for Secure Two-Party Computation 13

In this section we summarize existing schemes for constructing and evaluating
GCs and give applications in Sect. 2.3.1. We give an algorithmic description of GCs
and refer to the original papers on GCs constructions for details and proofs of security.

2.2.2.1 Components of GC Constructions

We start by briefly introducing the main components of GC constructions: garbled
values and garbled tables to compute thereon.

Garbled Values. Computations in a GC are not performed on plain values 0 or 1,
but on random-looking secrets, called garbled values. During construction of the
GC, two random-looking garbled values w̃0

i , w̃1
i are assigned to each wire wi of C .

The garbled value w̃
j
i corresponds to the plain value j , but, as it looks random, does

not reveal its corresponding plain value j .
In efficient GC constructions, each garbled value is composed of a symmetric

t-bit key and a random-looking permutation bit (see Point-and-Permute below):

w̃0
i =

〈

k0
i , π0

i

〉

, w̃1
i =

〈

k1
i , π1

i

〉

with k0
i , k1

i ∈ {0, 1}t , π0
i ∈ {0, 1} (2.1)

and
π1

i = 1 − π0
i . (2.2)

The exact method for choosing the values k0
i , k1

i , π0
i is determined by the specific

GC construction (cf. Sect. 2.2.2.3).
Garbled Tables. To allow computations on garbled values, for each gate Gi (i =

1, . . . , n) of the circuit C , a garbled table ˜Gi is constructed. Given the garbled values
corresponding to Gi ’s input wires, ˜Gi allows one to decrypt only the corresponding
garbled value of Gi ’s output wire. Formally, let in1, . . . , ind be the input wires of
gate G and out be its output wire. Then, for any input combination b j ∈ {0, 1}
(j = 1, . . . , d), given the corresponding garbled inputs ˜in

b1
1 , . . . , ˜in

bd
d , the garbled

table ˜G allows one to decrypt only ˜outG(b1,...,bd).
In particular, no information about the other garbled output value, the plain input

bits b j , or the plain output bit G(b1, . . . , bd) is revealed.
The general idea for constructing garbled tables is to use for all possible input

combinations b j the garbled input keys ˜in
b j
j to symmetrically encrypt the correspond-

ing output key ˜outG(b1,...,bd). The entries of the garbled table are the ciphertexts for
all possible input combinations. The position of the entries in the garbled table must
be such that it does not reveal any information about the corresponding plain input
values b j .

To achieve this, the original GC construction proposed by Yao [231] randomly
permutes the entries in the garbled table. In order to find the right entry to decrypt, the
symmetric encryption function requires an efficiently verifiable range to determine
which entry was decrypted successfully, as described in [151]. However, this method

14 2 Basics of Efficient Secure Function Evaluation

has a large overhead as multiple trial-decryption need to be performed and ciphertext
size increases.

In the following we briefly discuss the state-of-the-art for efficiently instantiating
the used symmetric encryption function.

Point-and-Permute. The point-and-permute technique described in [164] allows
one to immediately find the right entry for decryption in the garbled table as follows:
The entries of the garbled table are permuted such that the permutation bits of the
garbled input wires π1, . . . , πd are used to point directly to the entry of the garbled
table which needs to be decrypted. As the permutation bits look random, the position
of the entries in the garbled table appears random as well and hence reveals no
information about the input bits b1, . . . , bd .

By applying the point-and-permute technique, the employed symmetric encryp-
tion scheme no longer needs to have an efficiently verifiable range.

Encryption Function. The encryption function for encrypting garbled table entries
is Es

k1,...,kd
(m) with inputs d keys of length t , a message m, and some additional

information s. The additional information s must be unique per invocation of the
encryption function, i.e., it is used only once for any choice of keys. Indeed, it
is crucial that in the GC constructions s contains a unique and independent gate
identifier (cf. [213]).

As proposed in [154, 180], E can be instantiated efficiently with a Key Derivation
Function KDF� (k1, . . . , kd , s) whose � bits of output are independent of the input
keys k1, . . . , kd in isolation, and which depends on the value of s:

Es
k1,...,kd

(m) = m ⊕ KDF|m|(k1, . . . , kd , s). (2.3)

KDF can be instantiated with a cryptographic hash function H :

• The most efficient implementation of KDF is a single invocation of H ,

KDF�(k1, . . . , kd , s) = H(k1|| . . . ||kd ||s)1...�. (2.4)

• Alternatively, KDF could also be implemented by d separate calls to H ,

KDF�(k1, . . . , kd , s) = H(k1||s)1...� ⊕ · · · ⊕ H(kd ||s)1...�. (2.5)

In practical implementations, H can be chosen for example from the SHA-family.
For provable security of the GC construction, H is modeled as RO, circular corre-
lation robust, or PRF, depending on the specific GC construction used as described
later in Sect. 2.2.2.5.

2.2 Cryptographic Primitives for Secure Two-Party Computation 15

Fig. 2.2 Interface of GC
constructions. a createGC.
b evalGC

(a)

(b)

2.2.2.2 Interfaces and Structure of GC Constructions

GC constructions can be seen as algorithms with clean interfaces and a common
general structure as described next.

Interface of GC Constructions. Each GC construction consists of two random-
ized algorithms: createGC generates a GC and evalGC evaluates it, as shown in
Fig. 2.2:

• createGC takes a boolean circuit C as input and outputs the corresponding
GC ˜C (consisting of a garbled table for each of its gates), and pairs of garbled
values for each of C’s input and output wires.

• evalGC gets as inputs C , ˜C and one garbled value for each of C’s inputs,
˜in1, . . . , ˜inu and returns the corresponding garbled output values ˜out1, . . . , ˜outv .

We note that the inputs and outputs of both algorithms can be streams of data,
i.e., given piece-by-piece without ever storing the entire objects.

Completeness and Correctness. Each GC construction must be complete and
correct. Completeness requires that for all boolean circuits C , createGC creates
a GC ˜C , pairs of garbled inputs and garbled outputs. Correctness requires that
afterwards for all possible input bits xi ∈ {0, 1}, i = 1, . . . , u, given the corre-
sponding garbled values ˜ini = ˜in

xi
i as inputs, evalGC outputs the garbled values

˜out j = ˜out
z j
j , j = 1, . . . , v which correspond to C evaluated on the input values:

(z1, . . . , zv) = C(x1, . . . , xu).
One-time use. We stress that for security reasons, ˜C cannot be evaluated more than

once (otherwise, multiple runs of evalGC can leak information about input or output
values). evalGC must always be run on freshly generated outputs of createGC.

General Structure of GC Constructions. The efficient GC constructions pre-
sented next have the following general structure:

• createGC starts by assigning random-looking garbled values (˜in
0
i ,

˜in
1
i) to all input

wires of C and outputs these. Afterwards, for each gate Gi of C in topologic order
(cf. assumption in Sect. 2.1.3.1), two random-looking garbled values are assigned
to the gate’s output wire and afterwards its garbled table ˜Gi is created and output

16 2 Basics of Efficient Secure Function Evaluation

as part of ˜C . Finally, the garbled outputs (˜out0j , ˜out1j) for each of C’s output wires
are output.

• evalGC evaluates the GC ˜C on the garbled inputs ˜ini by evaluating each garbled
gate ˜Gi of ˜C in the topologic order determined by C . Finally, the garbled values
of C’s output wires ˜out j are output.

2.2.2.3 Efficient GC Constructions

In the following we describe efficient GC constructions which are suited well for
efficient implementation [180].

All GC constructions presented next start with choosing the garbled input values.
The garbled zero values ˜in

0
i are chosen randomly, i.e., k0

i ∈R {0, 1}t and π0
i ∈R {0, 1}

in Eq. (2.1). The corresponding garbled values for one ˜in
1
i are chosen randomly as

k1
i ∈R {0, 1}t , or according to Eq. (2.8) in the case of “free XOR” as described below.

The following GC techniques successively fix the garbled output values of each
gate in order to decrease the size of the garbled tables.

Point-and-Permute. The point-and-permute GC construction was first described
in [164], implemented in Fairplay [157], and also used in [142, 154].2 This technique
chooses both garbled output values of a d-input gate Gi at random and results in a
garbled table with 2d table entries. For each of the 2d possible input combinations
b1, . . . , bd , the garbled table entry at position π1, . . . , πd is constructed by using the
keys of Gi ’s garbled inputs to encrypt the corresponding garbled output:

π1, . . . , πd : Ei ||π1||...||πd

k
b1
1 ,...,k

bd
d

(

˜outG(b1,...,bd)
)

. (2.6)

Garbled Row Reduction. The GC construction of [164], called Garbled Row
Reduction, extends the point-and-permute GC construction by fixing one of the gar-
bled output values resulting in a garbled table of 2d − 1 table entries. The first entry
of each garbled table is forced to be zero and hence does not need to be transferred.
By substituting into Eq. (2.6), this fixes one of the two garbled output values to be
pseudo-randomly derived from the garbled input values. The other garbled output
value is chosen at random satisfying Eq. (2.2). For details we refer to the description
in [180].

Secret-Sharing. The GC construction of Pinkas et al. [180] uses Shamir’s secret-
sharing [197] to fix both garbled output values resulting in a garbled table with 2d −2
entries. In the following we summarize the general idea of this construction and refer
to [180, Sect. 5] for details.

The construction exploits the fact that both keys of a gate’s garbled output
values can be chosen independently and pseudo-randomly. The basic idea is to

2 We note that the GC construction of Yu et al. [233, Sect. 3.3] is less efficient as garbled tables are
larger and require slightly more computation.

2.2 Cryptographic Primitives for Secure Two-Party Computation 17

pseudo-randomly derive keys Kr ∈ {0, 1}t and bit masks Mr ∈ {0, 1} for all combi-
nations of garbled inputs as

Kr ||Mr = KDFt+1
(

kb1
1 || . . . ||kbd

d ||s
)

. (2.7)

The keys Kr are interpreted as elements in F2t and used as supporting points of
two polynomials P(X), Q(X) of the same degree: P(X) is defined by those keys
which should map to the garbled output value ˜out1 := P(0). Similarly, Q(X) maps
to the garbled output value ˜out0 := Q(0). Overall, 2d − 2 points are stored as part
of the garbled table, where some points are on both and some on only one of the
polynomials. The bits Mr are used to encrypt the permutation bits of the garbled
outputs as in the point-and-permute GC construction resulting in an additional 2d

encrypted bits in the garbled table.
During evaluation of the garbled gate, the garbled inputs are used to derive Kr , Mr

according to Eq. (2.7). Then, Mr is used to decrypt the output permutation bit which
defines through which of the supporting points in the garbled table to interpolate the
polynomial. Finally, the garbled output key is determined by evaluating the polyno-
mial at X = 0.

Generalization to arbitrary d . We note that the Secret-Sharing GC construction
can be generalized from d = 2 (as described in [180, Sect. 5]) to arbitrary d-input
gates as follows: Assume that n1 of the 2d entries in the gate’s function table equal
one and the remaining n0 := 2d − n1 entries equal zero. In the following we assume
that n1 ≥ n0 (otherwise we invert the role of zero and one). The polynomial P ,
interpolated through those keys Kr that should map to the garbled output value for
one, has degree n1. We store n1 − 1 extra points P(2d + 1), . . . , P(2d + n1 − 1)

in the garbled table. Afterwards, we interpolate polynomial Q of degree n1 through
the n0 keys Kr that should map to the garbled output value for zero and the common
n1 − n0 extra points P(2d + 1), . . . , P(2d + n1 − n0). Now, we create n0 − 1 extra
points Q(2d + n1 − n0 + 1), . . . , Q(2d + n1 − 1). The order of the extra points
on P and Q in the garbled table is such that the output permutation bit can be used
to obliviously index which extra points to use for interpolation. The garbled table
consists of n1 − n0 common extra points and n0 − 1 extra points on P resp. Q,
in total n1 − n0 + 2(n0 − 1) = n1 + n0 − 2 = 2d − 2 keys. The overall size of the
garbled table hence is (2d − 2)t + 2d bits.

Free XOR. As observed in [142], a fixed distance between corresponding garbled
values allows “free” evaluation of XOR gates, i.e., garbled XOR gates require no
garbled table and allow very efficient creation and evaluation (XOR of the garbled
values). The main idea is to choose a fixed relation between the two garbled values
for each garbled wire:

k1
i := k0

i ⊕ Δ, (2.8)

where Δ ∈R {0, 1}t is the randomly chosen global key distance. During creation of
a garbled XOR gate, the garbled output value is set to˜out0 = ˜in

0
1 ⊕ ˜in

0
2. Similarly,

18 2 Basics of Efficient Secure Function Evaluation

Table 2.4 Efficient GC constructions for d-input gates

GC technique Size of garbled table (bits) Free XOR [142]

Point-and-permute [164] 2d t + 2d

Garbled row reduction
[164]

(2d − 1)t + (2d − 1)

Secret-sharing [180] (2d − 2)t + 2d

t : symmetric security parameter

evaluation of a garbled XOR gate is done by computing ˜out = ˜in
0
1 ⊕ ˜in

0
2. Garbled

non-XOR gates can be constructed with any GC construction which fixes at most one
of the garbled outputs of a gate, i.e., from the GC techniques described above Point-
and-Permute and Garbled Row Reduction allow combination with “free XORs”, but
not the Secret-Sharing technique (cf. Table 2.4).

2.2.2.4 Complexity of Efficient GC Constructions

The complexity of the GC constructions presented in Sect. 2.2.2.3 is summarized in
Table 2.4. When using free XORs, XOR gates require no communication and only
negligible computation (XOR of bitstrings). We compare the complexity for other
gates next.

Computation Complexity. Interestingly, all GC constructions have almost the
same computation complexity, which is dominated by invocations of a cryptographic
hash function H : for each d-input gate, createGC requires 2d invocations of KDF
and evalGC requires one invocation. As described in Sect. 2.2.2.1, each invocation
of KDF needs one or d invocations of H depending on whether H is modeled as RO
or not.

The Secret-Sharing GC construction requires slightly more computations as it
also requires interpolation of two polynomials of degree at most 2d − 1 over F2t .

On the other hand, the computation complexity to randomly choose the garbled
output values of the gates decreases as follows: Point-and-Permute chooses both
garbled values (one with free XOR), Garbled Row Reduction one (none with free
XOR), and Secret-Sharing none.

Communication Complexity. As shown in Table 2.4, the size of each garbled
table decreases by approximately t bits per gate from Point-and-Permute to Garbled
Row Reduction and from there to Secret-Sharing. Especially for gates with low
degree d these savings can be quite significant, i.e., up to −25 % for Garbled Row
Reduction and −50 % for Secret-Sharing for the common case of d = 2.

However, the Secret-Sharing construction, which cannot be combined with Free
XOR, results only in better communication complexity than Garbled Row Reduction
if the evaluated circuits do not have many XOR gates. Indeed, we show in Chap. 3that

2.2 Cryptographic Primitives for Secure Two-Party Computation 19

most commonly used circuit building blocks can be transformed such that most of
the gates are XOR gates and hence Garbled Row Reduction is more efficient than
Secret-Sharing w.r.t. both computation and communication.

2.2.2.5 Security of Efficient GC Constructions

The first full proof of security of the original version of Yao’s GC protocol [231] was
given in [151]. This proof was later adapted to show the security of various efficient
GC constructions that differ in how the underlying KDF is composed from calls to
H (cf. Eqs. 2.4 vs. 2.5) and how H needs to be modeled.

For practical applications, modeling H as a RO and instantiating it with a call
to a cryptographic hash function, e.g., chosen from the SHA family, should provide
reasonable security guarantees for all efficient GC constructions presented above. In
more detail, the current situation is as follows:

The GC construction that uses Point-and-Permute together with free XORs and
instantiates KDF with a single invocation of H (cf. Eq. 2.4) was proven secure when
H is modeled as RO [142]. As proven in [60], this assumption can be relaxed to
circular correlation robustness, but not to correlation robustness alone.

According to [154], for Point-and-Permute without free XORs, H can be modeled
as RO for one invocation of H (cf. Eq. 2.4), and as PRF for several invocations of H
(cf. Eq. 2.5).

As sketched in [180], for Garbled Row Reduction and Secret-Sharing, that use
several invocations of H (cf. Eq. 2.5), H can be modeled to be some variant of
correlation robust or as PRF, depending on whether free XORs are used or not.

2.2.3 Oblivious Transfer

Parallel 1-out-of-2 OT of n t ′-bit strings, denoted as OTn
t ′ , is a two-party protocol

run between a chooser (client C) and a sender (server S) as shown in Fig. 2.3: For
i = 1, . . . , n, S inputs n pairs of t ′-bit strings s0

i , s1
i ∈ {0, 1}t ′ and C inputs n choice

bits bi ∈ {0, 1}. At the end of the protocol, C learns the chosen strings sbi
i , but nothing

about the other strings s1−bi
i , while S learns nothing about C’s choices bi .

In the following, we assume that OT is used in the context of SFE protocols (as
described later in Sect. 2.3.1), i.e., the transferred strings are garbled values with
length t ′ = t + 1 ∼ t where t is the symmetric security parameter (cf. Sect. 2.1.1.2).

We describe techniques to efficiently implement OT next.

20 2 Basics of Efficient Secure Function Evaluation

Fig. 2.3 Parallel 1-out-of-2
OT of n t ′-bit strings (OTn

t ′)

2.2.3.1 Efficient OT Protocols

OTn
t ′ can be instantiated efficiently with different protocols, e.g., [3, 163].
For example the protocol of Naor and Pinkas [163] implemented over a suitably

chosen EC consists of three messages (S → C → S → C) in which 2n + 1 EC
points and 2nt ′ encrypted bits are sent. Using point compression, each point can be
represented with 2t +1 bits and hence the overall communication complexity of this
protocol is (2n + 1) · (2t + 1) + 2nt ′ bits ≈ 6nt bits. As a computation, S performs
2n + 1 point multiplications and 2n invocations of a cryptographic hash function H ,
modeled as RO, and C performs 2n point multiplications and n invocations of H .
This protocol is provably secure against malicious C and semi-honest S in the RO
model.

Similarly, the protocol of Aiello et al. [3] implemented over a suitably chosen EC
using point compression has communication complexity n(6(2t+1))+(2t+1) bits ∼
12nt bits and is secure against malicious C and semi-honest S in the standard model
as described in [144].

2.2.3.2 Extending OT Efficiently

The extensions of Ishai et al. [121] can be used to reduce the number of computa-
tionally expensive public-key operations of OTn

t ′ to be independent of n.3 The trans-
formation for semi-honest C reduces OTn

t ′ to OTt
t (with roles of C and S swapped)

and a small additional overhead: one additional message, 2n(t ′ + t) bits of additional
communication, and O(n) invocations of a correlation robust hash function H (2n
for S and n for C) which is substantially cheaper than O(n) public-key operations.
A slightly less efficient OT extension for malicious C is given in [121] and improved
in [166].

2.2.3.3 Pre-Computing OT

All computationally expensive operations for OT can be shifted into a setup phase
by pre-computing OT as described in Beaver [23]: In the setup phase, the parallel
OT protocol is run on randomly chosen values ri ∈R {0, 1} by C and m j

i ∈ {0, 1}t ′

by S. In the online phase, C uses her random bits ri to mask her private inputs bi ,

3 This is the reason for our choice of notation OTn
t ′ instead of n × OTt ′ .

2.2 Cryptographic Primitives for Secure Two-Party Computation 21

Table 2.5 Complexity of OTn
t in the RO model

Complexity Setup phase Online phase

For n ≤ t : Beaver [23] + Naor and Pinkas [163]
Communication Moves 3 2

Data [bits] 6nt 2nt
Computation Client C H n

EC mult 2n
Server S H 2n

EC mult 2n + 1
For n>t : Beaver [23] + Ishai et al. [121] + Naor and Pinkas [163]
Communication Moves 4 2

Data [bits] 4nt + 6t2 2nt
Computation Client C H n + 2t

EC mult 2t + 1
Server S H 2n + t

EC mult 2t

and sends the masked bits to S. S replies with encryptions of his private inputs s j
i

using his random masks m j
i from the setup phase. Which input of S is masked with

which random value is determined by C’s message. Finally, C applies the masks mi

she received from the OT protocol in the setup phase to decrypt the correct output
values sbi

i .
More precisely, the setup phase works as follows: For i = 1, . . . , n, C chooses

random bits ri ∈R {0, 1} and S chooses random masks m0
i , m1

i ∈R {0, 1}t ′ . Both
parties run an OTn

t ′ protocol on these randomly chosen values, where S inputs the
pairs

〈

m0
i , m1

i

〉

and C inputs ri and obtains the masks mi = mri
i as output. In the

online phase, for each i = 1, . . . , n, C masks its input bits bi with ri as b̄i = bi ⊕ ri

and sends these masked bits to S. S responds with the masked pair of t ′-bit strings
〈

s̄0
i , s̄1

i

〉 = 〈

m0
i ⊕ s0

i , m1
i ⊕ s1

i

〉

if b̄i = 0 or
〈

s̄0
i , s̄1

i

〉 = 〈

m0
i ⊕ s1

i , m1
i ⊕ s0

i

〉

otherwise.

C obtains
〈

s̄0
i , s̄1

i

〉

and decrypts sbi
i = s̄ri

i ⊕ mi . Overall, the online phase consists
of two messages of size n bits and 2nt ′ bits and negligible computation (XOR of
bitstrings).

2.2.3.4 OT Complexity

Combining the previously described improvements for pre-computing and extending
OT with the efficient OT protocol of Naor and Pinkas [163] yields a highly efficient
implementation of OTn

t in the RO model as summarized in Table 2.5. Similarly, an
efficient implementation in the standard model using correlation robust hashing can
be obtained by combining with the protocol of Aiello et al. [3] instead.

22 2 Basics of Efficient Secure Function Evaluation

2.3 Garbled Circuit Protocols

In this section we show how GCs are used in several protocols for secure computation
in the two-party (Sect. 2.3.1) and multi-party (Sect. 2.3.2) settings. Further applica-
tions of GC such as OTP (Sect. 4.2) or verifiable computing (Sect. 4.3) are described
later in this book.

2.3.1 Two-Party Secure Function Evaluation

SFE allows two parties to implement a joint computation without using a TTP. One
classical example is the Millionaires Problem [231] where two millionaires want to
know who is richer, without either of them revealing their net worth to the other or
a TTP.

More formally, SFE is a cryptographic protocol that allows two players, client C
with private input inC and server S with private input inS , to evaluate a function f
on their private inputs:

(outC, outS) = f (inC, inS). (2.9)

The SFE protocol ensures that both parties learn only their respective output, i.e., C
learns outC and S learns outS , but nothing else about the other party’s private input.
In SFE, the function f is known to both parties.4

Intuitively, according to the real/ideal world paradigm (e.g., [55]), an SFE protocol
executed in the real world is secure if and only if an adversary with defined capabilities
can do no more harm to the protocol executed in the real world than in an ideal world
where each party submits its input to a TTP which computes the results according
to Eq. (2.9) and returns them to the respective party.

In Sect. 2.3.1.1 we start with the description of the classical SFE protocol of
Yao [231] which is secure against semi-honest adversaries and summarize how this
protocol can be secured against more powerful covert and malicious adversaries in
Sect. 2.3.1.2. Afterwards, we show how the evaluated function itself can be hidden
in Sect. 2.3.1.3.

2.3.1.1 SFE with Semi-Honest Adversaries (Yao’s Protocol)

Yao’s protocol [145, 151, 231] for SFE of a function f represented as a boolean
circuit (cf. Sect. 2.1.3.1) works as follows:

4 If needed, SFE can be extended s.t. the function is known to only one of the parties and hidden
from the other as described in Sect. 2.3.1.3.

2.3 Garbled Circuit Protocols 23

1. Create GC: In the setup phase, the constructor (server S) generates a GC ˜f using
algorithm createGC as described in Sect. 2.2.2 and sends ˜f to the evaluator
(client C).

2. Encrypt Inputs: Afterwards, in the online phase, the inputs of the two parties
inC, inS are converted into the corresponding garbled input ˜in = {˜inC, ˜inS} pro-
vided to C: For S’s inputs inS , S simply sends the garbled values corresponding

to his inputs to C, i.e., ˜inS,i = ˜in
inS,i
S,i . Similarly, C must obtain the garbled values

˜inC,i corresponding to her inputs ˜inC,i , but without S learning inC,i . This can
be achieved by running (in parallel for each bit inC,i of inC) a 1-out-of-2 OT
protocol as described in Sect. 2.2.3.

3. Evaluate Function Under Encryption: Now, C can evaluate the GC ˜f on the
garbled inputs ˜in using algorithm evalGC as described in Sect. 2.2.2 and obtains
the garbled outputs ˜out = {˜outC, ˜outS}.

4. Decrypt Outputs: Finally, the garbled outputs are converted into plain outputs
for the respective party: For C’s outputs ˜outC , S reveals their permutation bits to
C (this can be done already in the setup phase). For S’s outputs ˜outS , C sends
the obtained permutation bits to S.

Security. As proven in detail in [152], Yao’s protocol is secure against semi-honest
adversaries.

We observe that in Yao’s protocol the security of GC constructor S is computa-
tional as GC evaluator C can break the GC by guessing garbled input values, verify if
they decrypt correctly and match them with the garbled inputs provided by S. When
instantiating OT with a protocol which provides statistical security for receiver C
(e.g., using the OT protocol of Naor and Pinkas [163]), the security of GC evalua-
tor C is statistical.

Efficiency. The efficiency of Yao’s protocol is dominated by the efficiency of the
GC construction and OT for each input bit of C.

As described in Sect. 2.2.3, OT requires only a constant number of public-key
operations and allows one to shift most communication and computation into the
setup phase. The resulting setup phase requires one to pre-compute |inC | OTs (cf.
Sect. 2.2.3.4), create the GC ˜f (cf. Sect. 2.2.2.4), and transfer ˜f to C (cf. Table 2.4).

The online phase is highly efficient as it requires only symmetric-key operations
for evaluating ˜f (cf. Sect. 2.2.2.4), and three moves (two for the online phase of pre-
computed OT and one for sending the output to S) with about t (2|inC | + |inS |) +
|outS |bits of communication in total.

2.3.1.2 SFE with Stronger Adversaries

GC-based SFE protocols can easily be protected against a covert or malicious client
C by using an OT protocol with corresponding security properties.

Efficient SFE protocols based on GC which additionally protect against a covert
[12, 103] or malicious [150] server S rely on the following cut-and-choose technique:
S creates multiple GCs, deterministically derived from random seeds si , and commits

24 2 Basics of Efficient Secure Function Evaluation

to each, e.g., by sending ˜fi or Hash(˜fi) to C. In the covert case, C asks S to open all
but one GC ˜f I by revealing the corresponding seeds si �=I . For all opened functions,
C computes ˜fi and checks that they match the commitments. The malicious case
is similar, but C asks S to open half of the functions, evaluates the remaining ones
and chooses the majority of their results. Additionally, it must be guaranteed that S’s
input into OT is consistent with the GCs as pointed out in [138], e.g., using committed
or committing OT. The most recent construction of [153] improves over previous
protocols (smaller number of GCs, completely removing the commitments, and also
removing the need to increase the size of the inputs) by using a new primitive called
cut-and-choose OT, an extension of parallel 1-out-of-2 OT with a cut-and-choose
functionality.

The practical performance of cut-and-choose-based GC protocols has been inves-
tigated experimentally in [154, 180]: Secure evaluation of the AES functionality (a
boolean circuit with 33,880 gates) between two Intel Core 2 Duos running at 3.0 GHz,
with 4 GB of RAM connected by a Gigabit ethernet takes approximately 0.5 MB
data transfer and 7 s for semi-honest, 8.7 MB/1 min for covert, and 400 MB/19 min
for malicious adversaries [180]. This shows that protecting GC protocols against
stronger adversaries comes at a relatively high prize.

For completeness, note that cut-and-choose may be avoided with SFE schemes
such as [125] which prove in zero-knowledge that the GC was computed correctly
and the inputs are consistent with committed inputs [88]. However, their elementary
steps involve public-key operations. As estimated in [180], such protocols which
apply public-key operations per gate [125, 168] often require substantially more
computation than cut-and-choose-based protocols.

We further note that there are yet other approaches to malicious security such
as the approach of [123] which achieves malicious security by simulating a SMPC
protocol inside a secure two-party computation protocol with semi-honest security.
Their precise performance comparison is a desirable but complicated undertaking,
since there are several performance measures, and some schemes may work well
only for certain classes of functions.

2.3.1.3 SFE with Private Functions

In some application scenarios of SFE, the evaluated function itself needs to
be hidden, e.g., as it represents intellectual property of a service provider. This
can be achieved by securely evaluating a Universal Circuit (UCi) which can be
programmed to simulate any circuit C and hence entirely hides C (besides an
upper bound on the number of inputs, number of gates and number of outputs).
Efficient UCi constructions to simulate circuits consisting of up to k two-input gates
are given in [143, 221]. Generalized UCis of [184] can simulate circuits consisting
of d-input gates. Which UCi construction is favorable depends on the size of the
simulated functionality: Small circuits can be simulated with the UCi construction
of [184, 194] with overhead O(k2) gates, medium-size circuits benefit from the con-
struction of [143] with overhead O(k log2 k) gates and for very large circuits the

2.3 Garbled Circuit Protocols 25

construction of [221] with overhead O(k log k) gates is most efficient. Explicit sizes
and a detailed analysis of the break-even points between these constructions are given
in [184]. The alternative approach of [136] for evaluating private functions without
using UCis has complexity linear in k, but requires O(k) public-key operations.

While UCis entirely hide the structure of the evaluated functionality f , it is some-
times sufficient to hide f only within a class of topologically equivalent functionali-
ties F , called secure evaluation of a semi-private function f ∈ F [177]. The circuits
for many standard functionalities are topologically equivalent and differ only in the
specific function tables, e.g., comparison (<,>,=, . . .) or addition/subtraction, as
described later in Sect. 3.3. When no cut-and-choose is used for GCs, it is possible to
directly evaluate the circuit and avoid the overhead of a UCi for semi-private func-
tions, as GC constructions of [157] and [164] (cf. Sect. 2.2.2.3) completely hide the
type of the gates from the GC evaluator. These techniques were used for example in
[83–86, 177].

2.3.2 Garbled Circuit Protocols with Multiple Parties

GCs can also be used for SMPC, i.e., secure computation with more than two parties.
In the following we describe applications of GCs to SMPC in Sect. 2.3.2.1 and secure
mobile agents in Sect. 2.3.2.2.

In the multi-party setting, one party, the GC creator, which is assumed to behave
correctly, creates the GC (cf. algorithm createGC in Sect. 2.2.2.2); another party,
the GC evaluator, obliviously obtains the corresponding garbled inputs and evaluates
the GC (cf. algorithm evalGC in Sect. 2.2.2.2). The other parties provide inputs to
or obtain outputs from the protocol.

We will show later in Chap. 4 that the GC creator can be implemented with
constant-size memory, e.g., within a tamper-proof HW token.

Verifiability of GC. As discussed in detail in Chap. 4, the GC evaluator, who
evaluates the GC on the garbled inputs, need not be trusted at all. Indeed, GC evalua-
tion can be performed by one or more untrusted parties as the garbled outputs allow
verification that the GC evaluation was done correctly [164]: For each garbled output
z̃i , the GC creator provides the output decryption information

〈

0, G (̃z0
i)

〉

,
〈

1, G (̃z1
i)

〉

,
where G is a one-way function (e.g., a cryptographic hash function). This allows one
to check whether z̃i is correct, i.e., either z̃i = z̃0

i or z̃i = z̃1
i , and which is the cor-

responding plain value without revealing the values z̃0
i and z̃1

i . As the GC evaluator
is unable to guess a correct z̃i (except with negligible probability), she must have
obtained it by honestly evaluating the GC.

2.3.2.1 SMPC with Two Servers

As proposed in [164], Yao’s GC protocol (cf. Sect. 2.3.1.1) can be turned into a
SMPC protocol with multiple input players, multiple output players, and two

26 2 Basics of Efficient Secure Function Evaluation

non-colluding computation players who perform the secure computation: the GC
creator is trusted by the output players to behave semi-honestly and the GC evaluator
can even be malicious.

For multiple input players, the parallel 1-out-of-2 OT protocol (cf. Sect. 2.2.3) is
replaced with a parallel 1-out-of-2 proxy OT protocol. The proxy OT protocol splits
the role of the chooser in the OT protocol into two parties: the chooser (input player)
provides the secret input bit b, and the proxy (the GC evaluator) learns the chosen
output string sb, but neither b nor s1−b. As described in [164, Appendix A], efficient
OT protocols (e.g., the protocols of Aiello et al. [3], Naor and Pinkas [163] described
in Sect. 2.2.3) can be naturally converted into a proxy OT protocol as follows: The
chooser sends the two public keys, of which she knows the trapdoor to exactly one,
to the sender. The sender applies an error-correcting code to each of the two strings
s0, s1 and sends their encryptions under the respective public key to the proxy. The
proxy uses the trapdoor obtained by the chooser to decrypt both ciphertexts obtained
from the sender and uses the error correcting code to compute sb.

For multiple output players, the GC evaluator forwards the garbled outputs to the
respective output player who can decrypt and verify the correctness of the output
using the output decryption information obtained from the GC creator.

2.3.2.2 Secure Mobile Agents

In the mobile agents scenario, the originator creates SW agents that can perform
tasks on behalf of the originator. After creating the agents for some specific pur-
pose, the originator sends them out to visit various remote hosts, where the agents
perform computations on behalf of the originator. When the agents return home, the
originator retrieves the results of these computations from the agents. The utility of
this paradigm is based on the ability of the originator to go offline after sending the
agents out, and, ideally, no further interaction between the agent and the originator or
the host should be required. A possible application would be an agent which travels
through the web to select, depending on a policy of the originator, an offer for the
most suitable product at the lowest price.

Secure mobile agents extend the mobile agents scenario with security features.
Here, the visited hosts are not trusted by the originator and vice versa. When an
agent visits a host, it carries along some state from previous computations and uses
this together with input from the host to compute the new agent state possibly along
with an output provided to the host. The agent state (both old and new) is “owned”
by the agent, and should be protected from potentially malicious hosts, whereas the
host input and output are “owned” by the host and should likewise be protected from
potentially malicious agents. The code evaluated by the agent (policy) can be hidden
as well by evaluating a UCi (cf. Sect. 2.3.1.3).

The concept of secure mobile agents was introduced in [192] who give par-
tial solutions based on HE (Sect. 2.2.1). More practical constructions for secure
mobile agents proposed afterwards are based on GCs: An agent can securely migrate
from one host to the next by running a (slightly modified) GC-based SFE protocol

2.3 Garbled Circuit Protocols 27

(cf. Sect. 2.3.1) between the two hosts as described in [53]. To protect against mali-
cious hosts, a TTP can be used to generate the GCs, similarly to the GC constructor
in the construction of Naor et al. [164] (cf. Sect. 2.3.2.1), as proposed in [5]. The
assumption of the TTP was later removed in [212] and a construction which achieves
universal composability is given in [229]. Finally, non-interactive OT based on trusted
HW reduces the communication overhead to the essential minimum where the agent
is sent from one host to the next in a single message [106].

