
1 Introduction

1.1 Linear antennas

Wireless communication depends upon the interaction of oscillating electric currents
in specially designed, often widely separated configurations of conductors known as
antennas. Those considered in this book consist of thin metal wires, rods or tubes
arranged in arrays. Electric charges in the conductors of a transmitting array are
maintained in systematic accelerated motion by suitable generators that are connected
to one or more of the elements by transmission lines. These oscillating charges exert
forces on other charges located in the distant conductors of a receiving array of
elements of which at least one is connected by a transmission line to a receiver.
Fundamental quantities which describe such interactions are the electromagnetic field,
the driving-point admittance, and the driving-point impedance. These can be easily
determined if the distributions of current on the array elements are known. The
determination of the currents on the array elements is the main concern of this book.
In this first chapter, the basic electromagnetic equations are formulated and applied
to a single antenna in free space. The simplest approach of assuming the current
rather than actually determining it is reviewed first. Then, integral equations for the
current distributions are derived, and determining the current by numerical methods
is discussed. These discussions serve as an introduction to the analytical theory of
antennas and arrays based on the solution of integral equations that is presented in
subsequent chapters.

Figures 1.1a and 1.1b show two simple practical radiating systems. In Fig. 1.1a, a
section at the open end of a two-wire transmission line has been bent outward to form
a dipole antenna. In Fig. 1.1b, the inner conductor of a coaxial transmission line is
extended above a ground plane. In both cases, the transmission lines are connected to
generators which oscillate at a frequency f = ω/2π . In a small region (comparable
in extent with the distance between the two conductors of the transmission line), the
antenna and line are coupled. Owing to the complications involved in this coupling,
it is convenient to replace the actual generator/transmission line with an idealized so-
called delta-function generator, which maintains an impressed electric field Ee(z) =
ẑEe

z (z) = V δ(z)ẑ at the surface of the antenna. This is the linear antenna of Fig. 1.1c.
The impressed field is non-zero only at the center z = 0 of the cylindrical surface.
The delta-function generator is an independent voltage source in the sense of ordinary
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Figure 1.1 (a) Dipole antenna and two-wire transmission line. (b) Monopole antenna over a ground
plane. (c) Simplified center-driven linear antenna.

circuit theory. The linear antenna of Fig. 1.1c can also serve as a model for other
types of radiating systems. The simplifying assumption of studying the antenna in the
absence of the connecting transmission line is particularly useful when the antenna is
an array element.

The radius of the linear dipole antenna of Fig. 1.1c is a, and its half-length is h. It is
assumed throughout this book that the radius is much smaller than both the wavelength
λ and the length 2h of the antenna. Under such conditions, one can neglect the small
currents on the capped ends of the antenna and assume that only a current Kz(z) =
I (z)/2πa is maintained on the cylindrical surface of the antenna. Other concepts of
circuit theory can be introduced, and are particularly useful to the antenna engineer:
the driving-point admittance Y0 and driving-point impedance Z0 are defined as

Y0 = G0 + j B0 = I (0)

V
= 1

Z0
, Z0 = R0 + j X0 = V

I (0)
= 1

Y0
. (1.1)

G0, B0, R0, and X0 are respectively, the driving-point conductance, susceptance,
resistance, and reactance. When h, a, and f are such that the antenna is at resonance,
one has X0 = 0 and B0 = 0. As an example of the use of these quantities in a practical
situation, consider the problem of designing the antenna so that, at a given frequency
f , there is maximum power transfer from a transmission line of given characteristic
impedance Zc. With the assumption that the transmission line and the antenna can be
studied separately, the problem is reduced to that of determining h and a so that Z0 is
equal to Z∗

c , the complex conjugate of Zc.
The delta function δ(z) is zero except when z = 0. Additional, well-known

properties of the delta function are

δ(z) =
{

0, if z 	= 0

∞, if z = 0
,

∫ b

−b
δ(z) dz = 1 (1.2a)
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3 1.2 Maxwell’s equations and potential functions

δ(kz) = 1

|k| δ(z), f (z)δ(z) = f (0)δ(z) (1.2b)

∫ b

−b
f (z)δ(z) dz = f (0) (1.2c)

d

dz
H(z) = δ(z) where H(z) =

{
1, if z > 0

0, if z < 0.
(1.2d)

In (1.2), b is any positive constant, k is any real constant, f (z) is any smooth function
of z, and H(z) is the step function.

The next section introduces the fundamental equations of electromagnetic theory
that are useful in the antenna problems considered in this book. More details can be
found in [1], and in more concise form in [2, Chapter 1].

1.2 Maxwell’s equations and the potential functions

The interaction of charges and currents is governed by Maxwell’s equations which
define the electromagnetic field. With an assumed time dependence e jωt , they are

∇ × B = µ0(J + jωε0E), ∇ · B = 0 (1.3a)

∇ × E = − jωB, ∇ · E = ρ/ε0, (1.3b)

where the electric vector E is in volts per meter (V/m), the magnetic vector B in tesla
(T). SI units are used throughout this book. The volume density of current J in amperes
per square meter (A/m2) is the charge crossing unit area per second. The volume
density of charge ρ is in coulombs per cubic meter (C/m3). J and ρ satisfy the equation
of continuity,

∇ · J + jωρ = 0. (1.3c)

In the interior of perfect conductors, J = 0 and ρ = 0. In (1.3), ε0 and µ0 are the
absolute permittivity and permeability of free space. They have the numerical values
ε0 = 8.854 × 10−12 farads per meter (F/m) and µ0 = 4π × 10−7 henrys per meter
(H/m), and are related to the velocity c of light and the characteristic impedance ζ0 of
free space by

c = 1√
µ0ε0

, ζ0 =
√

µ0

ε0
. (1.4)

Transmission lines and antennas are made from highly conducting materials such
as brass or copper. In most cases, it is an excellent approximation to assume that the
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4 Introduction

conductors are perfect. The relevant boundary conditions at an interface between a
perfect conductor and air are

n̂ × E = 0, n̂ · E = η/ε0 (1.5a)

n̂ × B = µ0K, n̂ · B = 0. (1.5b)

In (1.5), n̂ is the unit normal to the conductor–air interface. Its direction is outward
from the conductor to the air. K is the surface density of current in amperes per meter
(A/m) and η is the surface density of charge in coulombs per square meter (C/m2)
on the perfect conductor. The left-hand equation in (1.5a) states that the component
of the electric field in air tangent to the surface of the perfect conductor must be
zero. The left-hand equation in (1.5b) states that the tangential magnetic field in air
is proportional to the surface density of current on the conductor.

It is convenient to introduce the scalar and vector potentials φ, A. The defining
relationships between the potentials and the electromagnetic-field vectors are obtained
with the aid of Maxwell’s equations. With the vector identity ∇ · (∇ × C) = 0 (where
C is any vector) and the equation ∇ · B = 0, the magnetic field may be expressed in
the form

B = ∇ × A. (1.6)

If (1.6) is substituted in (1.3b), it follows that

∇ × (E + jωA) = 0. (1.7)

The identity ∇ × (∇ψ) = 0, where ψ is a scalar function, then permits the definition
of φ in the form

−∇φ = E + jωA. (1.8)

The substitution of (1.6) and (1.8) into the remaining Maxwell equations leads
to coupled partial differential equations for A and φ. They can be decoupled if the
following condition relating A and φ is imposed:

∇ · A = − jωµ0ε0φ or ∇ · A = − j
β2

0

ω
φ, (1.9)

where the free-space wave number β0 (also denoted by k in this book) is given by

β0 = ω
√

µ0ε0 = ω

c
= 2π

λ
(1.10)

and λ is the free-space wavelength. Equation (1.9) is known as the Lorentz condition.
The resulting equations for A and φ are

(∇2 + β2
0 )A = −µ0J, (∇2 + β2

0 )φ = −ρ/ε0. (1.11)
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5 1.3 Power and the Poynting vector
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Figure 1.2 Perfect conductor in air.

The solutions to (1.11) can be derived with the use of the retarded Green’s function.
They are

A(r) = µ0

4π

∫
J(r′)

e− jβ0|r−r′|

|r − r′| dV ′ (1.12a)

and

φ(r) = 1

4πε0

∫
ρ(r′)

e− jβ0|r−r′|

|r − r′| dV ′, (1.12b)

where the volume integrations extend over the entire region occupied by currents or
charges. In most cases considered in this book, the conductors are perfect so that only
surface current densities K and surface charge densities η are present. In such cases,
the volume integrals in (1.12) reduce to surface integrals. In the limit of infinitely thin
wire antennas, the surface integrals in turn reduce to line integrals.

1.3 Power and the Poynting vector

The complex Poynting vector is defined as

S = 1

2µ0
E × B∗, (1.13)

where the asterisk denotes the complex conjugate. The integral of the normal com-
ponent of Re{S} over a closed surface � is the time-average, total power transferred
from within �. The time average is over a period T = 2π/ω. Several useful identities
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6 Introduction

involving the Poynting vector are now derived. The geometry of interest is shown in
Fig. 1.2. A perfect conductor surrounded by air is shown. The conductor–air interface
is the closed surface �0, and n̂0 is the unit outward normal. Assume that there is
an impressed electric field Ee tangent to the surface of the conductor. As a result, a
surface current density K exists on the conductor’s surface. This, in turn, maintains
an electromagnetic field E and B in the air. The total electric field on the conductor’s
surface is E + Ee, and the boundary conditions on the surface of the perfect conductor
are

n̂0 × (E + Ee) = 0, n̂0 × B = µ0K. (1.14)

Suppose that �1 is a closed (mathematical) surface in the air surrounding the perfect
conductor, and that n̂1 is the corresponding unit normal vector. Let τ01 be the volume
lying between �0 and �1, and consider the quantity∫

τ01

∇ · S dV . (1.15)

First, with (1.13), the vector identity

∇ · (E × B∗) = B∗ · (∇ × E) − E · (∇ × B∗) (1.16)

and the Maxwell equations on the left in (1.3a, b), it is seen that∫
τ01

∇ · S dV = − jω
∫

τ01

( 1
2 µ−1

0 |B|2 − 1
2 ε0|E|2) dV . (1.17)

The boundaries of the volume τ01 are the surfaces �0 and �1. Application of the
divergence theorem to the quantity in (1.15) yields∫

τ01

∇ · S dV = −
∫

�0

(n̂0 · S) d� +
∫

�1

(n̂1 · S) d�. (1.18)

A comparison of (1.17) and (1.18) yields the identity∫
�1

(n̂1 · S) d� =
∫

�0

(n̂0 · S) d� − jω
∫

τ01

( 1
2 µ−1

0 |B|2 − 1
2 ε0|E|2) dV . (1.19a)

If one takes the real part of this equation, no volume integral appears:

P ≡
∫

�0

(n̂0 · Re{S}) d� =
∫

�1

(n̂1 · Re{S}) d�. (1.19b)

Equation (1.19b) states that P , the total time-average power entering �0, is the same
as the total time-average power leaving �1.

The next identity of interest is obtained by expressing
∫
�0

(n̂0 · S) d� in (1.19a) in
terms of Ee and K. With (1.13), the vector identity n̂0 · (E × B∗) = −E · (n̂0 × B∗),
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7 1.4 Field of thin linear antennas

and the boundary conditions (1.14), it is seen that
∫
�0

(n̂0 · S) d� = ∫
�0

1
2 Ee · K∗ d�

so that (1.19a) can be written as∫
�0

1
2 Ee · K∗ d� = jω

∫
τ01

( 1
2 µ−1

0 |B|2 − 1
2 ε0|E|2) dV +

∫
�1

(n̂1 · S) d�. (1.20a)

The real part of this expression is

P ≡
∫

�0

Re{ 1
2 Ee · K∗} d� =

∫
�1

(n̂1 · Re{S}) d�. (1.20b)

In (1.20), �1 is any surface completely surrounding the air–conductor interface �0.
Equations (1.20a, b) can be extended to surfaces �1 that pass through the surface of
the perfect conductor, provided that Ee = 0 on any part of �0 excluded by �1. This
follows from the boundary condition n̂0 ×E = 0 on the part of �0 excluded by �1 and
the fact that all fields are zero within the volume occupied by the perfect conductor.

Equation (1.20b) states that the time-average power transferred to the perfect
conductor from the “generator” (i.e. the impressed electric field Ee) is all radiated
into free space. Equations (1.20a, b) possess analogues for the case of imperfect
conductors; these involve a volume integral instead of a surface integral, and include a
term due to the ohmic losses in the conductors. It is important to note that in both
(1.19) and (1.20), only integrations of n̂ · S over closed surfaces appear; it is not
mathematically justified to attach meaning to an integral of n̂ · S over only a part
of a closed surface.

Consider the limiting case of an infinitely thin, perfectly conducting wire lying on
the z-axis between −h and h. The impressed electric field is Ee

z (z), and the current on
the wire is I (z). In this limit, (1.20b) reduces to

P ≡
∫ h

−h
Re{ 1

2 Ee
z (z)I ∗(z)} dz =

∫
�1

(n̂1 · Re{S}) d�. (1.20c)

1.4 The field of thin linear antennas: general equations

Now consider the linear antenna of Fig. 1.1c and assume that a � h and β0a � 1.
Both cylindrical coordinates ρ, 
, z and spherical coordinates r, �, 
 are to be used
throughout this book. Rotational symmetry obtains, so that all cylindrical or spherical
field components are independent of 
. There is a surface current density Kz(z) on the
cylindrical surface ρ = a, and also a current on the small capped ends of the antenna.
The latter currents can be neglected when calculating the field of the antenna. The total
current I (z) and the charge per unit length q(z) are defined to be

I (z) = 2πaKz(z), q(z) = 2πaη(z). (1.21)
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8 Introduction
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Figure 1.3 Coordinate system for calculations in the far zone.

They are related by the one-dimensional equation of continuity

d I (z)

dz
= − jωq(z). (1.22)

I (z) is even with respect to z and q(z) is odd.
When calculating the field of the antenna, one can assume that the current is located

at the axis z = 0, which is the same as replacing the antenna of radius a by an
infinitely thin antenna. With this assumption, but without reference to a particular
current distribution I (z), formulas for calculating the field are given in this section
and some general characteristics of the field are discussed. The coordinate system is
shown in Fig. 1.3.

It is seen from (1.12a) that A = ẑAz(ρ, z). Equations (1.12a, b) reduce to

Az = µ0

4π

∫ h

−h
I (z′)

e− jβ0 R

R
dz′ (1.23a)

and

φ = 1

4πε0

∫ h

−h
q(z′)

e− jβ0 R

R
dz′, (1.23b)

where R = |r − ẑz′| is the distance from a point z′ on the infinitely thin antenna to the
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9 1.4 Field of thin linear antennas

observation point r. The one-dimensional Lorentz condition is

∂ Az

∂z
= − j

β2
0

ω
φ. (1.23c)

The E and B fields are obtained from (1.6) and (1.8) with (1.23a) and (1.23c). In the
cylindrical coordinates ρ, 
, z, they are B = 
̂

B
 and E = ρ̂ρρEρ + ẑEz , where

B
 = −∂ Az

∂ρ
(1.24a)

Eρ = − jω

β2
0

∂2 Az

∂ρ∂z
(1.24b)

Ez = − jω

β2
0

(
∂2 Az

∂z2
+ β2

0 Az

)
. (1.24c)

In the spherical coordinates r, �, 
 with origin at the center of the antenna, the electric
field is given by

Er = Ez cos � + Eρ sin � (1.25a)

E� = −Ez sin � + Eρ cos �. (1.25b)

At sufficiently great distances from the antenna (r2 � h2 and (β0r)2 � 1), the field
reduces to a simple form known as the radiation or far field. It is given by

Br

 = Er

�/c, (1.26a)

where

Er .= Er
��̂��, Er

� = jωµ0

4π
sin �

∫ h

−h
I (z′)

e− jβ0 R

R
dz′. (1.26b)

The distance R from an arbitrary point on the antenna to the field point is given in
terms of r and z′ by the cosine law, namely (Fig. 1.3),

R =
√

r2 + z′2 − 2r z′ cos �. (1.27a)

In the radiation zone, r2 � z′2. If the binomial expansion is applied to (1.27a) and only
the linear term in z′ is retained, the following approximate form is obtained for R:

R
.= r − z′ cos �, (β0r)2 � 1. (1.27b)

The phase variation of exp(− jβ0 R)/R is replaced with the linear phase variation given
by (1.27b), i.e. by exp(− jβ0r + jβ0z′ cos �). The amplitude 1/R of exp(− jβ0 R)/R
is a slowly varying function of z′ and is replaced by 1/r , where r is the distance to the
center of the antenna. With these approximations, (1.26b) can be written as

Er
� = jζ0 I (0)

2π

e− jβ0r

r
F0(�, β0h), (1.28a)
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10 Introduction

where ζ0 = √
µ0/ε0

.= 120π ohms and

F0(�, β0h) = β0 sin �

2I (0)

∫ h

−h
I (z′)e jβ0z′ cos � dz′. (1.28b)

The term F0(�, β0h) contains all the directional properties of a linear radiator of
length 2h. It is called the field characteristic, field factor, or element factor, and will be
computed for some commonly used current distributions. The magnetic field Br in the
far zone is at right angles to Er and also perpendicular to the direction of propagation
r. It is given by (1.26a). Thus

Br = 
̂

Br

, Br


 = jµ0 I (0)

2π

e− jβ0r

r
F0(�, β0h). (1.28c)

Note that the field in the far zone depends on F0(�, β0h) which is a function of the
particular distribution of current in the antenna.

It is instructive to consider the instantaneous value of the field in (1.28a), which is
obtained by multiplication with e jωt and selection of the real part. Except for a phase
factor,

Er
�(r, t) = Re E�(r)e jωt ∼ sin(ωt − β0r)

r
= sin ω(t − r/c)

r
. (1.29a)

Note that the field at the point r at the instant t is computed from the current at r = 0 at
the earlier time (t − r/c). This is a consequence of the finite velocity of propagation c.

The equiphase and equipotential surfaces of E and B are spherical shells on which
r is equal to a constant. There are an infinite number of such shells that have the
same phase (differ by an integral multiple of 2π ) but only one that has both the
same amplitude and the same phase. The velocity of propagation is the outward
radial velocity of the surfaces of constant phase where the phase is represented by
the argument of the sine term in (1.29a), that is

phase = � = ωt − β0r. (1.29b)

For a constant phase

d�

dt
= 0 = ω − β0 dr

dt
. (1.29c)

It follows that

dr

dt
= ω

β0
= c = 3 × 108 m/s. (1.29d)

Since the phase repeats itself every 2π radians, a wavelength is the distance between
two adjacent equiphase surfaces. For example, if one surface is defined by r = r1 and
the other by r = r2, then

ωt − β0r1 = 2π and ωt − β0r2 = 4π (1.30a)
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