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2.1 Introduction

Schlieren and shadowgraph techniques are introduced in the present chapter. Topics
including optical arrangement, principle of operation, and data analysis are discussed.
Being refractive index-based techniques, schlieren and shadowgraph are to be com-
pared with interferometry, discussed in Chap. 1. Interferometry assumes the passage
of the light beam through the test section to be straight and measurement is based on
phase difference, created by the density field, between the test beam and the refer-
ence beam. Beam bending owing to refraction is neglected in interferometry and is a
source of error. Schlieren and shadowgraph dispense with the reference beam, sim-
plifying the measurement process. They exploit refraction effects of the light beam
in the test section. Schlieren image analysis is based on beam deflection (but not
displacement) while shadowgraph accounts for beam deflection as well as displace-
ment [3, 8, 10]. In its original form, shadowgraph traces the path of the light beam
through the test section and can be considered the most general approach among
the three. Quantitative analysis of shadowgraph images can be tedious and, in this
respect, schlieren has emerged as the most popular refractive index-based technique,
combining ease of instrumentation with simplicity of analysis.
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2.2 Laser Schlieren

A basic schlieren setup using concave mirrors that form the letter Z is shown in
Fig. 2.1. The Z -type monochrome schlieren system comprises concave mirrors, flat
mirrors, a knife-edge, and a laser as a light source. The optical components and the
lasers are kept on a common centerline at a certain elevation. Under undisturbed
conditions, the original laser beam as well as the center of the collimated beam (after
expansion and collimation) fall on the central portion of the optical components.
For the images presented in the following chapters, concave mirrors of the schlieren
apparatus are of 1.3 m focal length each and 200 mm diameter. Relatively large focal
lengths of the concave mirrors make the schlieren technique quite sensitive to the
thermal/concentration gradients. Out of the two concave mirrors, the first acts as the
collimator while the second concave mirror placed after the test cell decollimates
the laser beam with a focus at a knife-edge. Flat mirror M1 directs the diverging
laser beam onto the first concave mirror which collimates it into a beam of uni-
form diameter. The collimated beam passes through the test section and falls on the
second concave mirror which focuses it onto the plane of the knife-edge. The test
section is placed between the two concave mirrors. Optical elements are supported
on adjustable mounts (with permissible movements in x and y directions, z being
the direction of propagation of the laser beam). Slight misalignment in the system
with respect to the direction of the laser beam can be taken care of by adjusting the
mounts. The knife-edge is placed at the focal plane of the second concave mirror. It
is positioned to cutoff a part of the light focused on it, so that in the absence of any
disturbance in the test section, the illumination on the screen is uniformly reduced.
The mount holding the knife-edge ensures that the knife-edge has flexibility in ori-
entation, say, vertical or horizontal as required in the measurement being carried out.
The mount permits the movement of the knife-edge parallel to the direction of the
laser beam as well as in plane, so as to cutoff the desired extent of light intensity. In
practice, the knife-edge is set perpendicular to the direction in which the density gra-
dients are to be observed. In many applications discussed in the present monograph,
density gradients are predominantly in the vertical direction and the knife-edge has
been kept horizontal. The initial light intensity values (on a gray scale of 0–255) have
been chosen to be <20, making the image look uniformly dark.

Schlieren measurements rely on intensity of light measured in turn by the CCD
camera. Within limits, the sensor array of the camera is a linear device and converts
intensity to voltage in direct proportion. Beyond the range, nonlinearities set in and
the camera is said to be saturated. Since the light falling at the knife-edge is a spot,
light intensities are large, and a neutral density filter may be used to uniformly reduce
illumination reaching the camera. The screen shown in Fig. 2.1 serves this purpose
as well. There could, however, be a disadvantage of non-uniformities of the screen
creating errors in intensity measurement and should be addressed. Alternatively, an
additional lens can collimate the spot formed at the knife-edge and create a light
beam of larger diameter and lower intensity for the camera.
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Fig. 2.1 Schematic diagram of a Z -type laser schlieren setup

The issue of camera saturation is serious when lasers are used as a light source.
White light sources may also be used in the context of schlieren since coherence is
not a matter of concern here. The light source, in the present monograph is, however,
a laser, except for discussions related to Chap. 3.

2.2.1 Positioning the Knife-Edge

Before the start of experiments, the schlieren setup (Fig. 2.1) has to be carefully
aligned. Apart from issues, such as collimation, focus, and uniform light intensity
over the collimated light beam, the adjustment of the knife-edge plays a significant
role in the quality of the schlieren image recorded. With best alignment, the undis-
turbed light beam should form a spot at the knife-edge whose dimensions match the
diameter of the pinhole used in the spatial filter (except for scaling introduced by the
focal lengths of the optical elements). As the knife-edge is moved to block the spot
of light, the intensity of illumination decreases uniformly over the screen. This effect
is demonstrated in Fig. 2.2 where the distribution of light intensity over the screen is
shown for various positions of the knife-edge. Figure 2.2a and c respectively show
non-uniform distribution of light intensity when the knife-edge is either too close or
too far away from the second concave mirror. Figure 2.2b shows light intensity distri-
bution for a correctly placed knife-edge partly blocking the light spot. An important
step in the alignment procedure is to adjust the percent cutoff by the knife-edge in
order to obtain the desired sensitivity. If the cutoff is small, a large amount of light
passes over to the screen and results in poor contrast of the schlieren images along
with the possibility of camera saturation. If the cutoff is large, high contrast images
are possible but the measurement may result in the loss of information in regions of
low density gradient.

http://dx.doi.org/10.1007/978-1-4614-4535-7_3
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Fig. 2.2 Effect of knife-edge movement on the schlieren image for a horizontal knife-edge cutting
off the light beam from below. a Knife-edge is very close to the second concave mirror; b Knife-edge
is correctly placed. c Knife-edge is beyond the focal plane of the second concave mirror [8]

Disturbances to a schlieren system include floor vibrations, heavy machinery, and
also the movement of laboratory personnel in the vicinity. The schlieren technique,
however, is not nearly as vibration-sensitive as interferometry, where motion am-
plitudes of the order of a light wavelength are visible in the form of fringes. Since
schlieren depends primarily on geometric, rather than principles of wave-optics, it is
superior to interferometry in its resistance to shock and vibrations. If the sensitivity
of the schlieren system is deliberately reduced, either by a lower intensity cutoff
by the knife-edge, or by replacing the knife-edge with a graded (gray-scale) filter,
vibration errors would be truly minimal.

2.2.2 Analysis of Schlieren Images

The present section analyzes the process of image formation in a schlieren setup. The
index of refraction (or its spatial derivatives) determines the resulting light intensity
pattern over the screen. An aspect shared by interferometry and schlieren (and indeed,
shadowgraph) is that they generate projection data, namely information integrated
in the direction of propagation of the light beam. The result is a concentration (or
temperature) field that is ray-averaged, specifically, integrated over the length L of
the test section [9].

As discussed in Chap. 1, refractive index techniques depend on the unique refrac-
tive index—density relationship for transparent media. Called the Lorentz–Lorenz
formula, it is expressed as:

n2 − 1

ρ(n2 + 2)
= constant (2.1)

where n is refractive index and ρ, the density. For gases, the refractive index is close
to unity and the expression reduces to the Gladstone–Dale equation

http://dx.doi.org/10.1007/978-1-4614-4535-7_1


2.2 Laser Schlieren 27

n − 1

ρ
= constant (2.2)

For a given wavelength, the constant appearing in Eqs. 2.1 and 2.2 can be evaluated
from the knowledge of n and ρ under reference conditions. It depends on the chemical
composition of the material and varies slightly with wavelength. In general, density of
pure fluids will depend on pressure and temperature. In many applications involving
gases, pressure is sensibly constant and density scales entirely with temperature.
Liquids such as water are practically incompressible and their density will vary only
with temperature. Within limits, this variation of density with temperature can be
taken to be linear. Hence, refractive index will itself scale linearly with temperature.
For a process involving mass transfer, the Lorentz–Lorenz formula as applied to a
solute–solvent system takes the form:

n2 − 1

n2 + 2
= 4

3
π(αA NA + αB NB) (2.3)

Here n is the refractive index of the solution, and α and N are respectively the polar-
izability and mole fraction. This result is often used in crystal growth applications
with suffixes A and B specifying water as the solvent and KDP as the solute, re-
spectively [4–6]. The material property that determines the sensitivity of the optical
measurement is dn/dT (or dn/dC). Compared to gases, the derivative is about three
orders of magnitude larger in liquids. Hence, only a small perturbation is needed to
see refraction in liquids compared to air.

Image formation in a schlieren system arises from the deflection of the light beam
in a variable refractive index field toward a region of higher refractive index. In order
to recover quantitative information from a schlieren image, one has to determine the
cumulative angle of refraction of the light beam emerging from the test cell as a
function of position in the cross-sectional x − y plane [3]. This plane is normal to
the light beam, whose direction of propagation is along the z-direction. The path of
the light beam in a medium whose index of refraction varies in the vertical direction
(y) can be analyzed using the principles of geometric optics as follows (also see
Sect. 1.4.5):

Consider two wavefronts at times τ and τ +�τ , separated by a small time differ-
ence �τ , Fig. 2.3. At time τ the ray is at a position z. After a interval �τ , the light
has moved a distance of �τ times the speed of light c. Since c depends on refractive
index, it is a function of y. In addition, the wavefront turns through an angle �α.
The local speed of light is c0/n where c0 is the velocity of light in vacuum and n is
the local refractive index of the medium. Hence the distance �z that the light beam
travels during time interval �τ is

�z = �τ
c0

n

http://dx.doi.org/10.1007/978-1-4614-4535-7_1
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Fig. 2.3 Bending of a light ray in a vertically stratified fluid medium due to refraction

The gradient in refractive index along the y direction results in bending of the wave-
front. Let �α represent the bending angle at a location z. A small increment �α in
angle α can be expressed as

�α ≈ tan(�α) = �2z

�y

The distance �2z is given by

�2z = �zy − �zy+�y ≈ �zy − �zy − �

�y
(�z)(�y) = −c0

�(1/n)

�y
�τ�y

Hence

�α = �2z

�y
= −c0

�(1/n)

�y
�τ = −n�z

�(1/n)

�y

In the limiting case

dα = 1

n

∂n

∂y
dz = ∂(ln n)

∂y
dz (2.4)

Hence, the cumulative angle through which the light beam has turned over the length
L of the test region is

α =
L∫

0

∂(ln n)

∂y
dz (2.5)

where the integration is performed over the entire length of the test section. It is to
be understood that the angle α is a function of the coordinates x and y on the exit
plane of the test cell. If the index of refraction within the test section is different from
that of the ambient air (na), angle α′′ of the light beam emerging from the test cell is
given by Snell’s law

na sin α′′ = n sin α
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Assuming α and α′′ to be small angles, we get

α′′ = n

na
α

Therefore, from Eq. 2.5, we get

α′′ = n

na

L∫

0

1

n

∂n

∂y
dz

If the factor 1/n within the integrand does not change greatly through the test section,
then

α′′ = 1

na

L∫

0

∂n

∂y
dz

Since na ≈ 1.0 the cumulative angle of refraction of the light beam emerging into
the surrounding air is given by

α′′ =
L∫

0

∂n

∂y
dz (2.6)

A schlieren system can be thought of as a device to measure the angle α. In
most applications, this angle is quite small, say, of the order of 10−6-10−3 radians.
It is then reasonable to expect that refractive index gradients lead to the light beam
getting displaced in the plane of the knife-e.g., out-of-plane effects being negligible in
comparison. The small angle approximation helps in image analysis and is uniformly
used through out in the following discussion.

Consider the schlieren measurement system shown in Fig. 2.4 comprising lenses
instead of concave mirrors. A light source that generates a light beam of diameter as

is kept at the focus of lens L1. Thus, a parallel beam of light is created that probes
the density distribution in the test section. The dotted line shows the path of the light
beam in the presence of disturbance in the test region. The second lens L2, whose
focus is the knife-edge collects the light beam and passes onto a screen. As discussed
by Goldstein [3], the screen is ideally located at the conjugate focus of the test section.
This position ensures that intensity changes are related to beam deflection alone, as
required in schlieren, and not beam displacement (the shadowgraph effect). If no
disturbance is present, the passage of the light beam is shown by solid lines reaching
the focus of L2, Fig. 2.5, with diameter a0. This dimension is related to the initial as

a0

as
= f2

f1
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Fig. 2.4 Schematic drawing that shows the path of the light beam in a schlieren
system made of lenses. When the screen is at the conjugate focus, the relationship
(1/p)+(1/q) = (1/ f2) is followed and the image on the screen is the same size as the cross-section
of the test section corresponding to the location p. For the distances shown, the angle detected at
the screen is the cumulative turning of the light beam within the test cell. Figure redrawn from [3]

Fig. 2.5 View of undisturbed
and deflected light beam
cross-sections at the knife-
edge of a schlieren system.
The horizontal displacement
of the light beam does not
contribute to intensity contrast

where f1 and f2 are the focal lengths of lenses L1 and L2, respectively. In a schlieren
system, the knife-edge kept at the focal length of the second convex lens is first
adjusted, when no disturbance in the test region is present, to cutoff all but an amount
corresponding to the dimension ak of the light beam. Let a0 be the original size of
the laser beam falling on the knife-edge. If the knife-edge is properly positioned,
the illumination at the screen changes uniformly, depending upon its direction of the
movement. Let I0 be the illumination at the screen when no knife-edge is present.
The illumination Ik with the knife-edge inserted in the focal plane of the second lens
but without any disturbance in the test region will be given by

Ik = ak

a0
I0 (2.7)

Let �a be the displacement of the light beam in the vertical direction y above the
knife-edge corresponding to the angular deflection (α′′) of the beam passing through
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the test region. From Fig. 2.5, �a can be expressed as

�a = ± f2α
′′ (2.8)

The sign in Eq. 2.8 is determined by the direction of the displacement of the laser
beam in the vertical direction; it is positive when the shift is in the upward direction
and negative if the laser beam gets deflected below the knife-edge. In the following
discussion, Eq. 2.8 is considered with a positive sign.

Let I f be the final illumination on the screen after the light beam has deflected
upwards by an amount �a due to the inhomogeneous distribution of refractive index
in the test cell. Hence

I f = Ik
ak + �a

ak
= Ik

(
1 + �a

ak

)
(2.9)

The change in light intensity on the screen �I is given by

�I = I f − Ik

The contrast thus generated by the schlieren measurement is expressed as

contrast = �I

Ik
= I f − Ik

Ik
= �a

ak
(2.10)

Using Eq. 2.8

contrast = �I

Ik
= α′′ f2

ak
(2.11)

Equation 2.11 shows that the contrast in a schlieren system is directly proportional to
the focal length of the second concave mirror i.e. f2. Larger the focal length, greater
will be the sensitivity of the system.

Combining Eqs. 2.6 and 2.11, the governing equation in a schlieren system is
obtained as

�I

Ik
= f2

ak

L∫

0

∂n

∂y
dz (2.12)

Equation 2.12 shows that the schlieren technique records the path integrated gradient
of refractive index over the length of the test section. If the field is 2D (in the x − y)
plane, the quantity ∂n/∂y is independent of the z coordinate and

�I

Ik
= f2

ak

∂n

∂y
L (2.13)
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The quantity on the left-hand side can be obtained by using the initial and final
intensity distributions on the screen. In the experiments discussed in the present
monograph, the knife-edge is adjusted in such a way that it cuts off approximately
50 % of the original light intensity, i.e. ak = a0/2 where a0 is the original dimension
of the laser beam at the knife-edge. The exact value of a0 cannot be measured. Its
value is of the order of microns and can be confirmed only by validation against
benchmark experiments. With ak = a0/2, we get

�I

Ik
= 2 f2

a0

∂n

∂y
L (2.14)

Equation 2.14 represents the governing equation for the schlieren process in terms
of the ray-averaged refractive index field. Since �I is calculated purely in terms of
the angle α, the model presented above requires that changes in light intensity occur
due to beam deflection alone, rather than its physical displacement.

The above derivation can be repeated for a knife-edge held vertical so that
x-derivatives of refractive index can be imaged on the screen. This approach makes
the paraxial approximation in that the derivatives in x and y directions are taken
to have independent influences on beam deflection. It is expected to hold under the
small angle approximation adopted in this chapter.

If the working fluid is a gas, the first derivative of the refractive index field with
respect to y can be expressed in terms of density using Eq. 2.2 as

∂ρ

∂y
= ρ0

n0 − 1

∂n

∂y
(2.15)

Equation (2.15) relates the gradient in the refractive index field with the gradients of
the density field in the fluid medium inside the test cell. The governing equation for
schlieren measurement in gas can be rewritten as

�I

Ik
= f2

ak

n0 − 1

ρ0

∂ρ

∂y
L (2.16)

Assuming that the pressure inside the test cell is practically constant, we get

�I

Ik
= − f2

ak

n0 − 1

ρ0

p

RT 2

∂T

∂y
L (2.17)

Equations 2.16 and 2.17 respectively relate the contrast measured using a laser
schlieren technique with the density and temperature gradients in the test section.
With the dependent variables such as T defined away from a solid surface or with
proper boundary conditions, these equations can be integrated to determine the quan-
tity of interest. For a KDP solution arising in crystal growth applications [4–6],
Eq. 2.3 governs the relationship between species concentration (expressed as a mole
fraction N ) and refractive index. The concentration gradient is now obtained as
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Fig. 2.6 Original schlieren images a–d of convective field as recorded by the CCD camera and the
corresponding time-averaged image e, from [9]

∂ N

∂y
= 9n

2αKDP(n2 + 2)2

∂n

∂y
(2.18)

where αKDP is the polarizability of the KDP material in water (=4.0 cm3/mole) and
N is the molar concentration of the solution. Combining Eqs. 2.12 and 2.18 and
integrating from a location in the bulk of the solution (where the gradients are neg-
ligible), the concentration distribution around the growing crystal can be uniquely
determined.

Equations 2.16 and 2.17 show that the schlieren measurements are primarily based
on the intensity distribution as recorded by the CCD camera. Since calculations are
based on an intensity ratio, it is not necessary to record absolute intensity values.
This step requires the camera to be a linear device that converts intensity to voltages
stored in the computer. The linearity requirement can be fulfilled by ensuring that the
camera does not get saturated with light intensity. A second implication of Eq. 2.14 is
that original light intensities are required and schlieren images should not be subject
to image processing operations. In practice, the camera sensors may show pixel-level
scatter and it is common to average intensities over a 3 × 3 pixel template. In fluids,
a perfectly steady convective field may not be attained and temporal fluctuations are
possible. In such instances, a certain amount of time-averaging is performed before
starting data analysis. Figure 2.6 shows one such set of four schlieren images recorded
as a time sequence and their averaged image. The images show the convective plume
in the form of high intensity regions above a crystal growing from its aqueous solution
and are discussed in detail in [9].

2.2.2.1 Window Correction

For imaging the temperature or concentration field by laser schlieren, optical win-
dows are often used to contain the fluid region within. Such windows must be used
while working with liquids, but may be required in gases as well if the influence
of the environment is to be minimized. The optical windows employed are of finite
thickness (say, 5 mm) and the index of refraction of its material (for example, BK-7)
is considerably different from that of the liquid within and the ambient air. The light
beam emerging out of the test section with an angular deflection undergoes refraction
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Fig. 2.7 Schematic drawing
of the path of the light beam
and the corresponding angles
of deflection as it passes
through the growth chamber.
Angles shown are exaggerated
for clarity

again before falling on the second concave mirror. The contribution of refraction at
the confining optical windows can be accounted for by applying a correction factor
to Eq. 2.14 as discussed below.

Consider the growth of a KDP crystal from its supersaturated solution in water
as shown in Fig. 2.7. The laser beam strikes the second optical window fixed on the
growth chamber at an angle after undergoing refraction due to variable concentration
gradients in the vicinity of the growing KDP crystal. The optical windows have an
index of refraction equal to nwindow (around 1.509). The refractive index of the KDP
solution (nKDP) at an average temperature of 30 ◦C is 1.355, and for air nair is close
to unity. Let α′′ be the angular deflection of the beam purely due to the presence of
concentration gradients in the vicinity of the growing crystal, Fig. 2.7. The beam
strikes the second optical window at this angle. Let β be the angle at which light
leaves the inner surface of the second optical window. Using Snells law, we get

nKDP

nwindow
= sin β

sin α′′ (2.19)

Since α′′ is quite small in most applications, sin α′′ ≈ α′′ and

sin β ≈ β =
(

nKDP

nwindow

)
α′′ (2.20)

Let δ be the final angle of refraction with which the laser beam emerges into the
surrounding air. For the optical window-air combination

(
nwindow

nair

)
= sin δ

sin β
(2.21)
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Hence

sin δ =
(

nwindow

nair

)
=

(
nKDP

nwindow

)
α′′ (2.22)

or

sin δ ≈ δ =
(

nKDP

nair

)
α′′ (2.23)

In experiments with optical windows, schlieren image analysis discussed in the pre-
vious sections would have to be carried out by first computing α′′ from the recorded
angle δ.

2.2.3 Gray-Scale Filter

The knife-edge of a conventional schlieren system is an excellent device for improv-
ing light intensity contrast in the optical image, but suffers from certain drawbacks.
For example, gradients parallel to the knife-edge do not contribute to image forma-
tion. When the light beam is deflected below the knife-e.g., the gradient information
is lost. Higher order effects such as a focus formed beyond the knife-edge may arise
in measurements. Intensity modulation can also occur from diffraction of light at
the sharp e.g., resulting in stray interference patterns superimposed on the schlieren
image. Many of these drawbacks can be addressed by using a gray-scale (graded)
filter. The filter is a photographic film on which a computer generated gray-scale is
printed. The filter width may match that of the knife-edge. The vertical extent of
the filter can be tuned to the deflections of light anticipated on the filter plane. The
grayscale values of light intensity may vary from 0 to 255 (for a camera with 8-bit
resolution) or a part of the range. The initial setting of the filter with respect to the
undisturbed light spot is also an adjustable quantity. If the spot falls at the center
of the filter, positive as well as negative beam deflections can be determined. The
knife-edge can be thought of as a special construction of a gray-scale filter with two
shades of 0 and 255 with a sharp cutoff.

In schlieren measurements with lenses, the diverging light beam from the spot
formed over the knife-edge falls on a screen and the image recorded by the camera.
In a Z-type configuration, the camera may be focussed on the light spot falling on
the knife-edge. However, such an arrangement can lead to camera saturation. It is
preferable to allow image formation on a screen and record the image at parallel inci-
dence. In a graded filter arrangement, the filter itself acts as the screen and the camera
records the image directly from it. In this approach, the filter needs to be calibrated
for light intensity as a function of beam displacement at the filter location. This step
is conveniently carried out when the test cell is undisturbed and the filter, mounted
on a vertical traverse, moves relative to the spot of light. Under test conditions, the
change in intensity at a point is mapped to beam displacement via the calibration
curve. When a white light source such as a xenon lamp is used, an additional lens
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may be used to collimate light from the spot formed at the filter plane and deliver it
to the CCD camera.

Variations in the absorptivity of the photographic film (or the material used as a
graded filter) can influence intensity measurement. An alternative is to use a color
filter along with a color CCD camera. Here, color measured in terms of hue, dispenses
with intensity, and material imperfections do not give rise to additional errors in
measurements. A color filter used instead of the gray-scale, generates color images of
the convective field. This approach, called rainbow schlieren is discussed in Chap. 3.

2.3 Background Oriented Schlieren

Background oriented schlieren (BOS) is a technique in which image variations of
a distinct background are analyzed to determine density variations in a flow field.
The index of refraction of a transparent medium has a direct correspondence to the
density of the fluid. Therefore, density gradients cause index of refraction gradients.
Rays of light passing through a test section are bent, to an extent that depends on the
density gradient in the experimental test cell. This process alters the perception of
the background image. The dependence of image formation on the refractive index
field in BOS is similar to the basic schlieren setup, but BOS can be implemented in
a much simpler apparatus as discussed below.

2.3.1 Experimental Details

The schematic drawing of a BOS setup is shown in Fig. 2.8. While the basic schlieren
configuration often needs several high-quality lenses and mirrors guide the light
beam, BOS needs only an illuminated background image, a CCD camera, and a
computer with image acquisition software. The absence of precision optical compo-
nents makes BOS a cheaper alternative. It also allows BOS to be more easily scalable
to whatever size and precision is needed to accurately capture the density field in and
around a given test model. A classical schlieren is preferably operated in a darkroom
environment, since any ambient light can contaminate the image. In contrast, a BOS
can operate with additional light sources, as the BOS technique is based on the vir-
tual displacement of the background image, not just the intensity of light reaching
the camera. In order for BOS to generate meaningful images, the background image
must have high contrast and must be sensitive to small displacements. A randomized
grid of small black dots on a white background serves this purpose well.

http://dx.doi.org/10.1007/978-1-4614-4535-7_3
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Fig. 2.8 Schematic diagram of the background oriented schlieren setup

2.3.2 Data Analysis

Figure 2.9 is a schematic drawing that explains the principle behind imaging by a
BOS system. Here, z represents the coordinate along the light path, f is the focal
length of the camera lens, Zc is the distance from the camera to the phase object
field, and Z B is the distance from the phase object to the background image. The
local image displacement χ can be expressed by integrating the local refractive index
gradients along the light path as:

χ = f Z B

ZC + Z B − f

∫

�z

1

n0

∂n

∂r
dz, (2.24)

Here, n, refractive index field is a function of the cross-sectional plane coordinates
(x, y). The 2D image displacement value χ(x, y) can be used to determine the par-
tial derivatives ∂ρ/∂x and ∂ρ/∂y by using Lorentz–Lorenz relationship, as in image
analysis used for the basic schlieren arrangement. BOS employs a computer gen-
erated dot pattern screen, placed behind the test cell. The object field (namely, the
test cell) defined by its density variation is placed between the camera and the dot
pattern. For BOS, two image sets are recorded. One dot pattern image is acquired
without density effects. The second dot pattern image is acquired with the density
gradient prevailing in the test cell. The displacements of the dots are calculated using
an image displacement correlation algorithm. The software often used for this type
of processing is readily adapted from particle image velocimetry (PIV), which is
commonly used experimental fluid mechanics laboratories. The initial image may
carry uniformly distributed dots or otherwise, and may be tailored to the application
being studied. The second image can be a time sequence of images, if the phenom-
enon of interest is unsteady. While the displacement of particles in a series of PIV
images corresponds to velocities, the displacement of background dots in BOS im-
ages correspond to the density variation. The spatial resolution of measurement is
determined by the dot size. As opposed to basic schlieren, BOS measures, not small
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Fig. 2.9 Schematic drawing that explains the image formation in background oriented schlieren

angles but small displacements, and can be advantageous in certain contexts. Beam
displacement errors (related to the shadowgraph effect) need to be accounted for
during image analysis. An additional set of references on BOS is provided at the end
of the chapter.

The cross-correlation algorithm used for determining displacement is shown
schematically in Fig. 2.10. Let I1 and I2 be the interrogation regions of the ini-
tial and the final images being cross-correlated. The images are defined in terms of
intensities at pixel indices (i, j) with the pixel sizes being �x and �y in the two di-
rections. These indices run over i = 1 . . . M and j = 1 . . . M . The cross-correlation
function R12 between this pair of images is numerically evaluated as

R1,2(i, j) =
M∑

l=1

N∑
m=1

I1(l, m)I2(l + i − 1, m + j − 1), i = 1 . . . M; j = 1 . . . N

In practice, the cross-correlation function is evaluated using Fourier transforms to
exploit the efficiency of the fast Fourier transform (FFT) algorithm. Let the 2D Fourier
transforms of these images be respectively given as Î1 and Î2, while ∗ indicates
complex conjugate. The symbol I FT is used for the inverse Fourier transform of its
argument. In terms of Fourier transforms, the cross-correlation function is written as

R12 = IFT{ Î1 × Î2
∗}

Here, IFT is inverse Fourier transform and can also be evaluated using the FFT
algorithm. Such calculations can be carried out using commercially available image
analysis software. Displacement information associated with the interrogation spot
is contained in the spatial coordinates (in integer multiples of the pixel size �x and
�y) where the cross-correlation function attains its maximum. Displacement can
now be related to beam deflection and hence, refractive index gradients prevalent in
the physical domain.
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Fig. 2.10 Pictorial represen-
tation of the cross-correlation
algorithm for displacement
calculation

2.4 Shadowgraph Technique

Shadowgraph has been extensively used in experimental fluid mechanics and heat
transfer but as a tool for flow visualization. Shadowgraph employs an expanded col-
limated beam of light from a laser that traverses the field of disturbance. If the dis-
turbance is one of varying refractive index, the individual light rays passing through
the test section are refracted and bent out of their original path. This causes a spatial
modulation of the light-intensity distribution with respect to the original intensity on
the screen. The resulting pattern is a shadow of the refractive index field prevailing in
the region of the disturbance. Figure 2.11 shows the schematic drawing of the shad-
owgraph arrangement [11]. A He–Ne laser (15–35 mW power, continuous wave) is
expanded and collimated to a suitable diameter by a beam expander. The collimated
beam passes through the test section being investigated. The beam emerging from
the exit window falls on a screen resulting in the shadowgraph image. The images
may be recorded as individual frames or a video sequence by a suitable camera. A
sample shadowgraph of a slightly heated water jet is shown in Fig. 2.12. Here, the
initial instability as well as the breakdown of ring vortices to small-scale turbulence
are visible.

The discussion related to intensity distortions by a screen in the context of schlieren
carries over to the shadowgraph. With a laser as a light source, the screen can diminish
light intensity and prevent camera saturation. When a distributed light source is used,
the screen can be replaced by a lens arrangement that conveys all the available light
to the CCD array. The advantage here is that the camera can focus on any plane
beyond the test cell and the sensitivity of measurement suitable altered.
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Fig. 2.11 Schematic drawing of the shadowgraph technique

Fig. 2.12 a Initial image of
the laser beam before flow is
turned on. b Shadowgraph of
a slightly heated water jet at
a Reynolds number of 693
based on nozzle diameter and
averaged fluid speed. Ring
vortices initially formed and
their progressive breakdown
to turbulent structures are
visible

2.4.1 Governing Equation and Approximations

Quantitative data can be extracted from shadowgraph images using the formulation
discussed below [7, 11].

Consider a medium with refractive index n that depends on all the three space
coordinates, namely n = n(x, y, z). We are interested in tracing the path of light
rays as they pass through this region. Starting with the knowledge of the angle and
the point of incidence of the ray at the entrance plane, we would like to know the
location of the point on the exit window, and the slope of the emergent ray [1, 7].
Let the ray be incident at point pi (xi , yi , zi ) while the exit point is pe(xe, ye, ze).
According to Fermat’s principle, the optical path length (OPL) traversed by the light
beam between these two points has to be an extremum. For a geometric segment ds
along the path, the corresponding OPL is n(x, y, z)ds. The total OPL between the
two points pi and pe is

OPL =
pe∫

pi

n(x, y, z)ds
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As per Fermat’s principle

δ

⎛
⎝

pe∫

pi

n(x, y, z)ds

⎞
⎠ = 0 (2.25)

Parameterizing the light path by z, the ray is fully defined by functions x(z) and y(z).
Equation 2.25 can be rewritten as

δ

⎛
⎝

ze∫

zi

n(x, y, z)
√

x ′2 + y′2 + 1dz

⎞
⎠ = 0 (2.26)

where the primes denote differentiation with respect to z. Application of the varia-
tional principle to Eq. 2.26 generates the following two, coupled, Euler–Lagrange
equations:

x ′′(z) = 1

n
(1 + x ′2 + y′2)

(
∂n

∂x
− x ′ ∂n

∂z

)
(2.27)

y′′(z) = 1

n
(1 + x ′2 + y′2)

(
∂n

∂y
− y′ ∂n

∂z

)
(2.28)

Here (for x)

x ′(z) = dx

dz
and x ′′(z) = d2x

dz2

Equations 2.27 and 2.28 are second-order nonlinear ordinary differential equations
for x(z) and y(z). The four constants of integration required to solve these equations
come from the boundary conditions at the entry plane of the chamber. These are
the co-ordinates xi = x(zi ) and yi = y(zi ) of the entry point as well as the local
derivatives x ′

i = x ′(zi ) and y′
i = y′(zi ). The solution of the two differential equations

yields two orthogonal components of the deflection of the light ray at the exit plane
along with its slope and curvature. In most experiments, the light beam entering the
apparatus is parallel (at normal incidence) and the respective slopes are zero, namely
x ′

i = 0 and y′
i = 0. Let the length of the experimental chamber containing the fluid

be D and the screen located at a distance L beyond the exit plane. The z-coordinates
of individual light rays at entry, exit, and on the screen are given by zi , ze and zs

respectively. Since the incident beam is normal to the entrance plane, there is no
refraction at the first optical window. While the derivatives of all the incoming light
rays at the entry plane are zero, the displacements xs − xi and ys − yi of a light ray
on the screen (xs, ys) with respect to its entry position (xi , yi ) are

xs − xi = (xe − xi ) + L × x ′(ze) (2.29)

ys − yi = (ye − yi ) + L × y′(ze) (2.30)
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Here, the coordinates xe, ye, and x ′(ze), y′(ze) are given by the solutions of Eqs. 2.27
and 2.28. The first term accounts for refraction within the physical domain, while
the second term is the passage of light in normal ambient, taken to be undisturbed,
along a straight line. These equations define image formation on the screen in a
shadowgraph process and provide a route toward indirect determination of refractive
index distribution from the Euler–Lagrange equations.

The formulation given above can be simplified under the following assumptions:

Assumption 2.1 Assume that the light rays at normal incidence on the entrance
plane undergo only infinitesimal deviations inside the inhomogeneous field, but have
a finite curvature on leaving the experimental apparatus. The derivatives x ′(zi ) and
y′(zi ) are zero, whereas x ′(ze) and y′(ze) at the exit plane are finite values. The
assumption is justified in contexts where the medium is weakly refracting. Equations
2.27– 2.30 can now be simplified as

x ′′(z) = 1

n

(
∂n

∂x

)
(2.31)

y′′(z) = 1

n

(
∂n

∂y

)
(2.32)

xs − xi = Lx ′(ze) (2.33)

ys − yi = Ly′(ze) (2.34)

Rewriting Eqs. 2.33 and 2.34 as

xs − xi = L

ze∫

zi

x ′′(z)dz (2.35)

ys − yi = L

ze∫

zi

y′′(z)dz (2.36)

and using Eqs. 2.31 and 2.32, Eqs. 2.35 and 2.36 become

xs − xi = L

ze∫

zi

∂(log n)

∂x
dz (2.37)

ys − yi = L

ze∫

zi

∂(log n)

∂y
dz (2.38)
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Fig. 2.13 Jacobian J (xi , yi ; xs , ys) of the mapping function connecting the original area (xi , yi )

to the deformed area (xs , ys)

Note that the ray displacements are obtained as an integration over the length of the
apparatus, and are path integrals in this respect.

Assumption 2.2 The assumption of infinitesimal displacement inside the growth
chamber can be extended and taken to be valid even for the region falling between
the screen and the exit plane of the chamber. As a result, the coordinates of the ray
on the screen can be written as

xs = xi + δx (xi , yi ) (2.39)

ys = yi + δy(xi , yi ) (2.40)

The deviation of light rays from their original path in the physical medium results
in a change of intensity distribution on the screen as compared to the original, when
the physical region is undisturbed. Shadowgraph measures this change in the intensity
distribution and relates it to the refractive index distribution. The intensity at point
(xs, ys) on the screen is a result of several beams moving from locations (xi , yi ) and
getting mapped onto the point xx , ys on the screen. Since the initial spread of the
light beam is deformed during its passage through the apparatus, the light intensity
at point (xs, ys) is

Is(xs, ys) =
∑

(xi ,yi )

I0(xi , yi )∣∣∣ ∂(xs ,ys )
∂(xi ,yi )

∣∣∣
(2.41)

Here Is is the intensity on the screen in the presence of an inhomogeneous refractive
index field, and Io is the original undisturbed intensity distribution. The denominator
in the above equation is the Jacobian J (xi , yi ; xs, ys) of the mapping function that
connects (xi , yi ) with (xs, ys), as shown in the Fig. 2.13. Geometrically it represents
the ratio of the area enclosed by four adjacent rays after and before passing through
the test section. In the absence of any disturbance, a small rectangle maps onto a
an identical rectangle of equal area and the Jacobian is unity. The summation in the
above equation extends over all the rays passing through points (xi , yi ) at the entry
of the test section that are mapped onto the small quadrilateral (xs, ys) on the screen
and contribute to the light intensity within.
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Assumption 2.3 Under the assumption of infinitesimal displacements, the deflec-
tions δx and δy are small. Therefore, the Jacobian can be assumed to be linearly
dependent on them. Neglecting higher powers of δx and δy and also their product,
Jacobian can be expressed as

∣∣∣∣∂(xs, ys)

∂(xi , yi )

∣∣∣∣ ≈ 1 + ∂(xs − xi )

∂x
+ ∂(ys − yi )

∂y
(2.42)

Substituting in Eq. 2.41, we get

I, (xs, ys)

[
1 + ∂(xs − xi )

∂x
+ ∂(ys − yi )

∂y

]
=

∑
(xi ,yi )

I0(xi , yi ) (2.43)

Simplifying further

I0(xi , yi ) − Is(xs, ys)

Is(xs, ys)
= ∂(xs − xi )

∂x
+ ∂(ys − yi )

∂y
(2.44)

Using Eqs. 2.37 and 2.38 for (xs − si ) and (ys − yi ) and integrating over the dimen-
sions of the experimental apparatus, we get

I0(xi , yi ) − Is(xs, ys)

Is(xs, ys)
= (L × D)

(
∂2

∂x2 + ∂2

∂y2

)
log n(x, y) (2.45)

Here, n(x, y) is to be interpreted as an average value of refractive index over a length
L in the z-direction. Equation 2.45 is the governing equation of the shadowgraph
process under the set of linearizing approximations 1–3. In concise form the above
equation can be rewritten as

I0 − Is

Is
= (L × D)∇2log n(x, y) (2.46)

2.4.2 Numerical Solution of the Poisson Equation

The linearized governing differential equation of the shadowgraph process (Eq. 2.46)
is a Poisson equation. In measurements, the left side of this equation is recorded as
the shadowgraph image. The Poisson equation relates light intensity variation in the
shadowgraph image to the refractive index field of the physical medium. In order
to solve for refractive index, the following numerical procedure can be adopted.
First, the Poisson equation is discretized over the physical domain of interest by
a finite-difference method. The resulting system of algebraic equations is solved
for the shadowgraph image under consideration to yield a depth-averaged refractive
index value for each node of the grid. A mix of Dirichlet and Neumann conditions
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are usually available to serve as boundary conditions. This approach is considerably
simpler than solving the inverse problem indicated in Eqs. 2.27 and 2.28.

In order to assess the validity of assumptions 1–3, the importance of higher order
optical effects in shadowgraph imaging need to be examined. This step is accom-
plished by determining the extent of bending of light rays in a field of known refractive
index. A possible approach is to solve the Poisson equation for the refractive index
field and then evaluate ray displacements from Eqs. 2.27 and 2.28 where refractive
index appears as a parameter. A useful guideline for linearity to hold is that the Jaco-
bian, constructed using four adjacent points and interpreted as per Fig. 2.13 remains
within ±5 % of unity.

2.5 Closure

Image formation in interferometry, schlieren, and shadowgraph relies on refractive
index changes in the physical domain. Interferometry has a larger number of optical
elements. Since it is based on differential measurement of phase, it is sensitive to
alignment. Schlieren has fewer optical components and is less sensitive and shad-
owgraph, being the simplest configuration, is the least sensitive to factors, such as
alignment, vibrations, and other extraneous factors. Interferograms are quite vivid,
since fringes are isotherms (iso-concentration lines) and unambiguously represent
the temperature (concentration) field. The discusson in Chap. 1 shows that the analy-
sis of interferograms is quite straightforward. Schlieren and shadowgraph images
reveal regions of high concentration gradients in the form of heightened (or dimin-
ished) brightness. Temperature and concentration can be recovered in schlieren by
integrating the intensity distribution. In shadowgraph, a Poisson equation needs to
be solved, subject to suitable boundary conditions. Thus, a shadowgraph experiment
is the easiest to perform while the analysis of shadowgraph data is the most compli-
cated. Schlieren, in this respect, falls between interferometry and shadowgraph with
modest demands on experimental complexity and data reduction.

The three refractive index-based techniques yield images that are integrated values
of temperature/concentration (or their derivative in a cross-sectional plane) in the
direction of propagation of the light beam. If the spatial extent of the disturbed zone
in the domain is small, the information contained in the image is small. In the context
of interferometry, the consequence could be the appearance of too few fringes in the
infinite fringe setting and small fringe deformation in the wedge fringe setting. In
schlieren and shadowgraph, weak disturbances show up as small changes in intensity
and hence, contrast. The difficulty can be alleviated in schlieren by using large focal
length optics so that small deflections are amplified. In shadowgraph, image quality
can be improved by moving the screen away from the test cell. The sensitivity of
interferometric measurements can be improved by using techniques such as phase
shifting but they require additional optical components and revised analysis tools.
Additional difficulties with interferometry are the need for maintaining identical
experimental conditions in the test section and the compensation chamber, careful

http://dx.doi.org/10.1007/978-1-4614-4535-7_1
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balancing of the test and the reference beams, and limitations arising from the fact
that quantitative information is localized at the fringes.

This discussion shows that configuring the interferometer as an instrument for
process control poses the greatest challenge, schlieren, and shadowgraph being rel-
atively simpler. Schlieren may be considered as an optimum while comparing the
ease of analysis with the difficulty of instrumentation.
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