
Decentralized Spatial Computing

Foundations of Geosensor Networks

Bearbeitet von
Matt Duckham

1. Auflage 2012. Buch. xxii, 322 S. Hardcover
ISBN 978 3 642 30852 9

Format (B x L): 15,5 x 23,5 cm
Gewicht: 678 g

Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Geologie und
Nachbarwissenschaften > Geoinformatik

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Duckham-Decentralized-Spatial-Computing/productview.aspx?product=10922511&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_10922511&campaign=pdf/10922511
http://www.beck-shop.de/trefferliste.aspx?toc=8170
http://www.beck-shop.de/trefferliste.aspx?toc=8170
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642308529_TOC_001.pdf


Formal Foundations 2

Summary: This chapter sets out a precise model of decentralized spatial information systems, like

geosensor networks. The model has three main levels, each of which builds on structures in the

previous level. First, a minimal, neighborhood-based model of geosensor networks provides the

most fundamental structures for sensing and communicating information about the environment.

Next, an extended spatial model of static geosensor networks provides additional quantitative and

qualitative structures to model spatial location. Third, a spatiotemporal model of dynamic geosensor

networks provides the capability to precisely model spatial and environmental change over time.

In addition, two auxiliary structures are also discussed: a model of the partial knowledge about

the decentralized system available to each individual node; and the most common communication

network structures, which constrain the movement of information in any decentralized spatial

information system.

S

etting the scene for decentralized spatial computing, the previous chapter

aimed to motivate our interest in the topic, frame the fundamental prob-

lems and concepts, and sketch the vision for the application of decentralized

spatial computing to solving real-world problems. In this chapter, we come

back down to earth (with a bump!) and examine the basic components of

decentralized spatial computation by defining in a precise and abstract way

the key computational elements of a geosensor network.

2.1 Introduction

A formal model of a geosensor network must provide assistance in represent-

ing and reasoning about the features of geosensor networks important in de-

centralized spatial computing. Equally important, a formal model also needs

to suppress unnecessary detail about the geosensor network. For example, in

domains such as network routing, hardware design, and operating systems,

M. Duckham, Decentralized Spatial Computing, DOI 10.1007/978-3-642-30853-6_2,

© Springer-Verlag Berlin Heidelberg 2013

33



34
Decentralized spatial computing

many technical details of geosensor networks are important, including the

specific details of:

• the characteristics and types of sensors available on the node;

• the processing speed, architecture, and capabilities of the microcontroller;

• the storage capacity and characteristics of the node’s memory;

• the communications protocol used to exchange information between

nodes; and

• the power requirements of specific node operations, such as the relative

energy budgets required for computation, communication, and sensing.

However, in designing decentralized spatial algorithms it is helpful to abstract

away from these technical details, especially as they are expected to develop

rapidly, changing with future technological advances. Instead, the features of

a geosensor network that are important to a decentralized spatial algorithm

include:

• the set of nodes and the structure of the communication network con-

necting the nodes;

• the geographic locations of the nodes in their environment (either relative

or absolute);

• the environmental parameters in each node’s vicinity (i.e., what each

node can sense); and

• the changes in all the above: nodes and the communication network,

locations in geographic space, and environmental parameters.

This chapter builds up to a detailed model of a geosensor network in

three stages. First we construct a basic model of a geosensor network which

contains only minimal spatial information about neighborhoods in the com-

munication network (§2.2). Then we add more sophisticated models of spatial

location (§2.3). Finally, we add time to the mix, allowing modeling of not only

where things are, but also of how they change (§2.4).

2.2 Neighborhood-Based Model

The most basic components of a geosensor network are:

• the nodes themselves, with their names or identities;

• the wireless communication network that connects and constrains the

movement of information between nodes (i.e., the network neighbor-

hood); and

• the values of environmental parameters that can be detected by sensors

at each node.

Thus in the basic neighborhood-based model we ignore temporal issues, such

as changes to the environment over time, and almost all spatial issues, such

as the coordinate locations of the nodes.



2.2. Neighborhood-Based Model
35

At this point, we shall use some structures and syntax borrowed from

discrete mathematics in order to precisely define the different components

of a geosensor network. As a result, some familiarity with basic discrete

mathematics structures (e.g., sets, relations, and functions) will be an ad-

vantage. Appendix A provides a brief discrete mathematics primer to these

key concepts. However, for more information the reader is referred to any

introductory discrete mathematics textbook (e.g., [53, 74]).

We can represent these basic components of a geosensor network for-

mally as:

1. a graph G = (V,E), which models the network and its connections;

2. a function s : V → C , which models what a node can sense; and

3. a function id : V → N, which models the identities or names of each

node in the network.

The set of vertices V of the graph represents nodes of the sensor network.

The set of edges E in the graph represents direct, one-hop communication

links between nodes. In this book we use the terms “node” and “link” to refer

to sensor nodes and communication links, while “vertex” and “edge” are used

to specifically refer to the formal, graph-based structures that are used to

model sensor nodes and communication links. The graph itself is termed the

communication graph. An undirected communication graph is used to model

the situation where all communication links are bidirectional. A directed

communication graph allows for the possibility that some communication

links are unidirectional (i.e., where direct communication from v1 to v2
does not imply direct communication from v2 to v1). As we shall see in

later chapters, for simplicity an undirected communication graph is often

assumed; however, in reality communication between nodes may not be

bidirectional.

The only spatial information available in the neighborhood-based model

is that which is embedded in the communication graph (i.e., which nodes are

adjacent to which other nodes). This information may be represented using

the function nbr : V → 2V , where nbr(v) �→ {v′ ∈ V |(v, v′) ∈ E}. Note,

however, that the neighborhood function nbr contains no information that

is not already available from the communication graph G—nbr is merely a

notational convenience.

The function s, termed the sensor function, represents the data sensed

by nodes in the geosensor network. The codomain C for the function s
will depend on the sensors used. In many of our later discussions, the

codomain C is assumed to be simply the real numbers R. However, more

sophisticated sensors and sensor arrays can also easily be represented in the

neighborhood-based model. For example, imagine a sensor network where

nodes are equipped with sensors for temperature (measured in degrees

centigrade), humidity (measured from 0% to 100% relative humidity), and

light intensity (normally measured in lux, varying for example, from 0 lux

for total darkness to 100,000 lux or more for bright sunshine). This sensed



36 Decentralized spatial computing

data would be represented as the domain C = R × [0, 100] × R
+

. For a

particular node v ∈ V , writing s(v) = (−4.3, 67, 500) would indicate that

node v’s sensors detected a temperature of -4.3

◦
C (cold), relative humidity of

67% (comfortable), and light intensity of 500 lux (typical indoor conditions).

Finally, the function id : V → N, termed the identifier function, represents

the identities or names of the nodes in the geosensor network. Without loss

of generality, we model the set of names or identifiers as the natural numbers

N (i.e., {1, 2, 3, . . .}). For example, for some node v ∈ V , id(v) = 5 specifies

that v’s identifier is 5. In many (but not all) cases, we may wish model the

situation where each node has a unique identifier. This uniqueness constraint

can be represented by specifying that the id function is an injection (i.e., where

each element in N is mapped to by at most one v ∈ V ). In this book, we

assume the id function is injective unless otherwise stated. Although it is

important to distinguish between a node’s identity and the node itself in

many decentralized spatial algorithms, this book will occasionally refer to

the node v (instead of the identity of the node id(v)) in contexts where no

ambiguity exists.

Table 2.1 summarizes informally the different symbols used for a basic

geosensor network.

2.2.1 Example Neighborhood-Based Model

To illustrate, consider the graph G = (V,E) in Fig. 2.1. The communica-

tion graph G has 25 vertices, V = {a, b, . . . , x, y}, and 42 edges, E =
{{a, b}, {a, f}, . . . , {w, x}, {x, y}}. We imagine that the nodes can sense a

Boolean value, either black or white (indicated by the color of the nodes

in Fig. 2.1). Thus, the sensor function may be represented as s : V →
{black,white}, where s(x) �→ white if x ∈ {h, i, l,m, n, q} and s(x) �→ black

otherwise. Finally, an (injective) identifier function could be constructed to

map nodes to (unique) node identifiers 1, . . . , 25 as id : V → N, where

id(a) = 1, id(b) = 2, . . . , id(y) = 25.

The only spatial information available about the network concerns the

neighborhoods of nodes, a direct consequence of the communication graph.

For example, nbr(g) = {b, f, h, l} and nbr(o) = {j, n, t}.

2.3 Extended Spatial Model

Extending the neighborhood-based model of a geosensor network requires

a mechanism to represent more sophisticated aspects of the node’s spatial

location, beyond basic neighborhoods in the communication graph. Unfor-

tunately, this representation is complicated by the fact that there are many

different types of location information an individual node may possess.

The process of determining the locations of sensor nodes in a geosensor

network is termed localization. “Location” in this context does not necessarily



2.3. Extended Spatial Model
37

Formal definition Summary

G = (V,E) Communication graph.

V Set of nodes in a geosensor network. Lowercase letters v, v′,
v1, etc. are used to refer to individual nodes in V .

E Set of communication links between pairs of nodes in a

geosensor network. A particular communication link l from

v1 to v2 is written l = (v1, v2) (unidirectional) or l =
{v1, v2} (bidirectional).

nbr : V → 2V The neighborhood of a node, where nbr(v) refers to the set

of nodes that is in the neighborhood of v ∈ V (i.e., those

nodes within direct one-hop communication distance from

v).

s : V → R Sensor function sensing a particular environmental param-

eter. For example, s(v) = 10.3 indicates that the on-board

sensor of node v ∈ V senses environmental value of 10.3.

id : V → N Identifier function for nodes. For example, id(v) = 5 indi-

cates that a particular node v ∈ V has identifier (or “name”)

5.

Table 2.1. Summary of basic geosensor network model structures

imply the coordinate location. Positioning is the term for the special case

of localization that generates coordinate location (i.e., position). However,

localization may also involve less detailed quantitative information about the

relative distances or directions (bearings) between nodes, or even qualitative

information about a node’s proximity to other nodes or known locations. Lo-

calization is a highly active area for current research. In general, localization

techniques can be classified into passive or active techniques [119]. Active

techniques rely on the active transmission of signals (such as radio frequency

or ultrasound signals) from other nodes or beacons; passive techniques do not

require active transmission and instead detect “naturally” occurring signals

(cf. active and passive sensors in Table 1.1). Examples of active techniques

include lateration (computing location based on distances to known locations)

and angulation (computing location based on angles to known locations),

as well as proximity systems (which determine the closest neighbors). GPS,

for example, is a lateration-based, active positioning technique. Examples of

passive techniques include scene analysis (determining location from analysis

of digital camera images) and dead reckoning (determining displacement of



38 Decentralized spatial computing

Fig. 2.1. Example neighborhood-based model, with graph G = (V,E), where V = {a, b, . . . , x, y}
and E = {{a, b}, {a, f}, . . . , {w, x}, {x, y}}, sensor function s : V → {black,white}, and

identifier id : V → N, where id(a) = 1, id(b) = 2,. . .

mobile nodes, for example, through inertial tracking). For more information

about localization, see [54, 60, 119].

From the perspective of the spatial model of geosensor networks, there

are two top-level classes of spatial information generated by localization:

• absolute location is spatial information about the location of a sensor

node that is referenced to some external system. This most common

external reference system is a geodetic framework, where coordinate

location can be determined, termed a positioning system. However, other

external reference systems are possible, such as referencing to known

locations within a transportation network (such as known intersections

or kilometer posts, a process known as stationing).

• relative location is spatial information about the location of a sensor node

that is referenced to the locations of other nearby sensor nodes.

Table 2.2 summarizes five of the most common types of location infor-

mation available to sensor nodes in a geosensor network, giving their formal

definitions alongside an informal summary. Absolute location information

generally concerns either coordinate location (for example, in two or even

three dimensions), or close proximity to some known locations, termed

“anchor locations” (such as intersections in a transportation network). GPS,

for example, is potentially able to provide absolute coordinate location for

nodes. Alternatively, RFID (radio frequency identification) tags, attached to

mobile nodes, can provide absolute location in terms of proximity to RFID

readers at known locations.

Relative location information might include information about the dis-

tances from a node to its neighbors; the quantitative bearings from a node

to its neighbors; or qualitative bearings of a node’s neighbors, in terms of



2.3. Extended Spatial Model
39

the (counter)clockwise sequence of neighbors around a node (termed “cyclic

ordering”). Figure 2.2 summarizes diagrammatically these different types of

location information, in addition to relative neighborhood location, the most

basic type of spatial information assumed to be available to all geosensor

networks (see §2.2).

Type Method Definition Summary

Relative Neighborhood

distance

dist : E → R dist(v, v′) refers to distance between a node

v and its neighbor v′, where (v, v′) ∈ E
(Fig. 2.2d).

Neighborhood

bearing

bear : E → R bear(v, v′) refers to the bearing of node v′ from

node v, where (v, v′) ∈ E (Fig. 2.2e).

Cyclic

ordering

cyc : E → V cyc(v, v′) refers to the next neighbor of v in an

anticlockwise direction from v′ (Fig. 2.2f).

Absolute Coordinate

location

(position)

p : V → R
d p(v) refers to the coordinate location of node

v ∈ V (Fig. 2.2c). In most cases in this book,

we assume planar coordinates (i.e., d = 2).

Anchor

location

anch : V → A anch(v) refers to the anchor location of a node

(i.e., the nearest anchor). A is a set of anchors at

known locations (which may or may not include

nodes in V , Fig. 2.2b).

Table 2.2. Examples of common types of location information in geosensor networks (cf. Fig. 2.2)

As might be expected with spatial information, the different types of

location information listed in Table 2.2 and Fig. 2.2 are interconnected. In-

formation about the absolute (coordinate) locations of nodes and the neigh-

borhoods of a node can be combined to compute (using standard geometry)

information about the neighborhood distances and bearings of nodes. Fur-

ther, information about the neighborhood bearings can be used to compute

the cyclic ordering of nodes (the cyclic ordering is a less precise, qualitative

version of the quantitative neighborhood bearing).

2.3.1 Example Spatial Model

Building on the neighborhood-based model example in §2.2.1, consider now

the graph G = (V,E) in Fig. 2.3. The communication graph, sensor function,

and identifier function in Fig. 2.3 are identical to those in Fig. 2.1. However, the



40
Decentralized spatial computing

Fig. 2.2. Summary of common types of location information available to a node

nodes are no longer arbitrarily placed, but are arranged in a grid to emphasize

their spatial locations.

In a spatial model, we might have access to any or all the levels of spatial

information given in Table 2.2 (and potentially more). For example, assume

each edge is has length 1 unit. It then follows that:

• the neighborhood distance dist : E → R has assignment mapping

dist(v1, v2) �→ 1;

• the neighborhood bearing bear : E → R has assignment mapping:

bear(v1, v2) �→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if id(v2) < id(v1)− 1

90 if id(v2) = id(v1) + 1

180 if id(v2) = id(v1)− 1

270 if id(v2) > id(v1) + 1



2.4. Spatiotemporal Model
41

Fig. 2.3. Example spatial model, assuming an identical communication graph to that in Fig. 2.1, but

with planar coordinate embedding such that all edges have length 1 and node u is located at the

origin (0, 0)

• the (anticlockwise) cyclic ordering cyc : E → V has assignment mapping

cyc(a, b) = f , cyc(a, f) = b, cyc(b, a) = g, cyc(b, g) = c, cyc(b, c) = a,

and so forth.

If we additionally add the assumption of a planar coordinate system, with

node u at the origin, we may further specify the position of each node as:

• the planar positioning function p : V → R
2

has assignment mapping

p(a) = (0, 5), p(b) = (1, 5), p(c) = (2, 5), . . . , p(y) = (5, 0).

Note that as long as we have the highest level of information, the planar

positioning function p, all the other levels of relative location information

may be deduced from p.

2.4 Spatiotemporal Model

The two models discussed so far have been atemporal, in the sense that they

are static and make no reference to change over time. As we shall see in

later chapters, in some situations it reasonable to use such simplified models.

However, in general, geosensor networks monitor changing phenomena and

may themselves be subject to change. It is possible to identify three main

types of change that are important to decentralized spatial computing:

• Environmental dynamism: Geosensor networks are usually tasked with

monitoring geographic environments that change; static environments

are both rare in the world (try to think of a place that does not change)

and by definition not especially interesting to monitor with geosensor

networks (a single survey or a photograph would be enough to record a

static environment).



42
Decentralized spatial computing

• Node mobility: Nodes in a geosensor network may not be static, and may

instead change their position over time. Node mobility may occur through

movement of a host to which a node is attached (e.g., nodes attached to

people, vehicles, animals, etc.) or through more purposeful mobility (e.g.,

robotic nodes capable of motorized movement or opportunistic mobility

using the movement of the wind or waves).

• Node volatility: Nodes in a geosensor network may be volatile in the sense

that they may activate, deactivate, or reactivate over time. Changes in

activation may be deliberately controlled by the nodes or the network

(e.g., duty cycling) or may be by-products of other processes (e.g., nodes

deactivate due to technical failures or depletion of energy resources, or

nodes are activated by new nodes being introduced into the network).

Mobility can be seen as a special case of volatility, where volatile nodes

may deactivate but immediately reactivate in a new location.

As a result, in most cases, it is important additionally to be able to model

changes in the environment and the geosensor network. Informally, this is

achieved by extending each of the structures described in the previous two

sections, covering the neighborhood-based and extended spatial models, with

time-varying capabilities. Table 2.3 summarizes the extended time-varying

structures. Environmental dynamism can be modeled using a time-varying

sensor function (s : V × T → R) which represents the different data

generated by each node’s sensors over time. The only structure we assume

cannot change is the identifier function; node identities are assumed to persist

through time.

2.4.1 Example Spatiotemporal Model

Figure 2.4 shows an example of a spatiotemporal model of a geosensor net-

work, building on the structures in §2.2.1 and §2.3.1. In this simple example we

model only environmental dynamism: the communication graph and nodes

are assumed to be static. Thus, the sensed value for node c, for example,

changes from time t2 to t3: s(c, t1) = black, s(c, t2) = black, s(c, t3) = white.

More sophisticated spatiotemporal models must additionally deal with

change over time in the absolute or relative locations of nodes (mobility)

and/or in the active set of nodes (volatility). For example, Fig. 2.5 shows

a spatiotemporal model with two mobile nodes, with absolute locations

referenced to intersections in a traffic network (anchors). Thus, in contrast to

earlier figures, the network in Fig. 2.5 is the transportation network, not the

communication network. The changing location of the mobile node v1, for

example, is given by: anch(v1, t1) = n9, anch(v1, t2) = n10, anch(v1, t3) =
n15.



2.4. Spatiotemporal Model
43

Atemporal structure Temporal extension Informal summary

s : V → R s : V × T → R s(v, t) refers to the value sensed

by node v at time t.

p : V → R
n p : V × T → R

n p(v, t) refers to the coordinate lo-

cation of node v at time t.

anch : V → Vanch anch : V × T → Vanch anch(v, t) refers to anchor loca-

tion of node v at time t.

nbr : V → V nbr : V × T → V nbr(v, t) refers to the set of neigh-

bors of node v at time t.

dist : E → R dist : E × T → R dist(v, v′, t) refers to the distance

between v and its neighbor v′ at

time t.

bear : E → R bear : E × T → R bear(v, v′, t) refers to the bearing

of neighbor v′ from v at time t.

cyc : E → nbr(v) cyc : E × T → V cyc(v, v′, t) refers to the next

neighbor of v in an anticlockwise

direction from v′ at time t.

G = (V,E) G(t) = (V,E(t)) For mobile (but not volatile)

geosensor networks, G(t) refers

to the communication graph at

time t, E(t) refers to the set of

links in G at time t.

G = (V,E) G(t) = (V (t), E(t)) For volatile (including volatile

and mobile) geosensor networks,

G(t) refers to the communication

graph at time t, E(t) refers to the

set of links in G at time t, and

V (t) refers to set of nodes at time

t.

Table 2.3. Extending static definitions to allow for change over a totally ordered set T of discrete

times (including informal descriptions for particular time t ∈ T )



44
Decentralized spatial computing

Fig. 2.4. Example spatiotemporal model for modeling environmental dynamism (s : V × T →
{black,white}) using a static communication graph, G = (V,E), for times T = {t1, t2, t3}

2.5 Partial Knowledge

The formal structures introduced above provide an overarching framework

for representing geosensor networks with a range of different characteristics.

However, let us now turn away from overarching frameworks and instead

consider the individual nodes. The information available to a particular node

will typically differ from that in the structures already introduced in two very

important respects:

1. Partial knowledge: By default, a node in a geosensor network is expected

to have information only about its own state. Any information about the

state of other nodes in the system must be explicitly communicated to

that node. Thus, we must be able to represent the situation where nodes

have only partial knowledge of the state of the entire network.

2. Uncertain knowledge: Uncertainty is an endemic feature of geospatial

information. Thus, we must also be able to represent the situation where

a node’s knowledge of its geographic environment may in some ways

diverge from the “ideal.”

The issue of uncertain knowledge is vital, but will be held in abeyance

until Part III, Chapter 8, when we shall address this issue directly. Until then

we shall make the simplifying assumption that nodes have ideal location and

environmental sensors which can make perfect observations of geographic

space.



2.5. Partial Knowledge
45

Fig. 2.5. Example spatiotemporal model of mobile nodes (anch : V ×T → A), using the static nodes

A = {n1, . . . , n25} of a transportation network as anchors, and times T = {t1, t2, t3}

The issue of partial knowledge, however, does need to be addressed

directly at this point. Some of the most frequent mistakes in decentralized

spatial algorithm design arise from mistakes in distinguishing between in-

formation that is local to an individual node and that which is global to the

entire system. Only information local to a node (such as that node’s sensor

data or its location) can be directly accessed by that node. All other data must

be explicitly communicated to a node. Thus, one of the keys to successful

decentralized algorithm design is carefully and rigorously to identify a node’s

local information—its partial knowledge of the entire system.

The formal model set out above makes no distinction between local and

global information. Functions are defined at the global level: for example,

the sensor function s : V → C is defined globally, across all nodes in

the network. An individual node v ∈ V can only access a small part of

that function directly, the piece of information that relates to its own sensor

function, s(v).
To distinguish between a global function and a node’s local knowledge

about that function requires some additional notation. For some global func-

tion f : V → C we will use the overdot notation, f̊ (read “my” f or “local” f ),

to refer to an arbitrary (unspecified) node’s local knowledge of that function.

Thus, for any function f with domain V , f̊ is interpreted to mean f(◦) for

some node ◦ ∈ V that is clear from the context.



46 Decentralized spatial computing

This approach can be directly extended to those functions with a domain

that is a product set (such as spatiotemporal algorithms). Any function with

a product set as its domain, such as g : V × T → C , can be rewritten as an

equivalent chain of single-argument functions, such as g : V → (T → C) (a

transformation known as “Currying”). Thus, we may write g̊(t) (“my g of t”)

in place of g(◦, t) for some arbitrary ◦ ∈ V and time t ∈ T 1

.

For example, where we might write globally s(◦) = 10, inside a decen-

tralized algorithm we instead write s̊ = 10 (“my s is 10”). Similarly, in a

spatiotemporal algorithm, instead of writing the global statement “s(◦, t) =
10” to indicate that node ◦ ∈ V senses the value 10 at time t, we will use the

corresponding local function inside a protocol, s̊(t) = 10. Finally, in a spatial

algorithm d̊ist(v) = 12 may be used in place of dist(◦, v) = 12
In this way, direct references to global functions can be avoided in the

specification of algorithms, which helps to ensure that only local information

is used in the algorithm. Information that is not part of the local knowledge

of a node must be explicitly communicated to that node before it can be used.

2.6 Neighborhood Structure

One final important component of our formal foundations remains only

partially defined: the precise neighborhood structure of the communication

graph. In “computing somewhere” the neighborhood structure is a key con-

straint on the movement of information. The communication graph G =
(V,E) specifies for each node v ∈ V those nodes that are are capable of direct

communication with v (given by nbr(v), defined as the set {v′|{v, v′} ∈ E};

see §2.2). This section examines more closely some of the most common

neighborhood structures that can constrain communication in a geosensor

network, or indeed in any decentralized spatial information system.

2.6.1 Unit Disk Graph (UDG)

In a geosensor network the constraints on the movement of information

are imposed by the communication network structure, which in turn is

constrained by the relative locations of the nodes. Our model has so far

considered the spatial locations of the nodes and the structure of the net-

work separately. However, because of the limited communication range of

nodes (see §1.2.2), the structure of the communication network connecting

1
More specifically, given the function g : V → (T → C), the result of applying the

function g to ◦, g(◦), yields a function h : T → C . In turn, this function h can be

applied to some time t, h(t). Informally, Currying ensures that any functions with

multiple arguments can be decomposed into a chain of single argument functions,

each applied in sequence.



2.6. Neighborhood Structure
47

geosensors is in practice inherently dependent on the spatial location of the

nodes.

The most basic network structure used to represent this dependency

is the unit disk graph (UDG). The UDG begins by assuming nodes have a

uniform communication range, c (the “unit distance”). The UDG is then the

communication graph that is formed by creating edges to connect all nodes

that are within unit distance c (i.e., that are within direct communication

range). Figure 2.6 illustrates an example UDG for a set of nodes and an

arbitrary unit distance c.

Fig. 2.6. Example unit disk graph (UDG), highlighting the unit distance communication range of one

particular node (gray circle)

For a given set of nodes V , node positions p : V → R
2
, and unit distance

c, the UDG is formally defined as:

UDG = (V, {{u, v}|(u, v) ∈ V and 0 < δ(p(u), p(v)) ≤ c})

where δ(a, b) is the Euclidean distance between two points a and b.
It is important to note at this point that the UDG is a model of the

communication graph that results from the physical constraints of limited

power radio frequency communication. Consequently, the UDG is often

assumed as the default structure for a network, even in cases where nodes

have no capability for localization or other knowledge of their coordinate

location (i.e., the locator function p : V → R is not known to the nodes). In

other words, the UDG is assumed to result from the nodes’ actual position

in geographic space, even in cases where they have no knowledge of that

position.

Two implicit assumptions behind the UDG are:

• communication is bidirectional; and

• the communication range is uniform across the network.



48 Decentralized spatial computing

In practice, neither of these assumptions may hold. Environmental condi-

tions, as well as varying energy resources of nodes, will often result in

different nodes in a network having different communication distances. In

turn, this leads to unidirectional communication, where the fact that a node

can transmit directly to another does not imply that it can receive messages

communicated from that node. Of course, where the varying communication

ranges of different nodes are known or can be estimated, a (directed) commu-

nication graph can still be constructed to represent that situation.

The UDG represents a common baseline assumption about communi-

cation in a geosensor network, and is used as the foundation of several

other neighborhood structures, discussed further in the following sections.

All of these other network structures are spanning subgraphs of the UDG. A

spanning subgraph is a graph that contains all the vertices but a subset of

edges of another graph. More formally, for a graph G = (V,E) a spanning

subgraph is a graph G′ = (V,E′) such that E′ ⊆ E. This property is

important because a communication graph that is not a spanning subgraph

of the UDG necessarily contains one or more edges that are not contained

within the UDG (and so connects nodes that are too far apart to communicate

directly).

Topology control

A natural question that follows the discussion of the UDG is “What happens

if we adjust the unit distance?” In the extreme case where the unit distance

c is very large, we obtain the complete graph of the vertices V (the graph

where an edge exists between every pair of nodes). As already discussed,

such situations are not especially interesting in the context of decentralized

spatial computing, since they present no constraints on the movement of

information (any node can communicate directly with any other node).

Further, the fundamental resource constraints of geosensor networks means

that they are also in practice not commonly encountered.

Moving to the other extreme, for any graph there exists a unique mini-

mum unit distance c such that the communication graph remains connected

(i.e., there exists a path connecting any pair of nodes, and as a result it

would be possible to multi-hop information from any node to any other

node). In this case, the unique minimum unit distance is termed the critical

transmission range (CTR). The UDG resulting from using the CTR as the

unit distance is called the minimum radius graph (MRG). The MRG for the

node set in Fig. 2.6 is illustrated in Fig. 2.7. Any further reduction in the unit

distance c will lead the graph to become disconnected.

As a result of the direct relationship between the distance of communi-

cation and the power required to communicate (see §1.2.2), topology control

has clear practical implications for geosensor networks. At least in theory,

the MRG provides a mechanism for setting globally a minimum energy



2.6. Neighborhood Structure
49

Fig. 2.7. Minimum radius graph (MRG) for the nodes from Fig. 2.6. The node highlighted in gray will

become disconnected by any further reductions in the unit distance c

level for wireless transceivers that still ensures nodes can engage in (multi-

hop) communication. In practice, the simplifying assumptions of the UDG

(discussed above), and the desire for improved robustness in communication

by allowing for some redundancy in communication paths, means that a

network would normally aim to operate with a unit distance c that is some

way above the CTR.

2.6.2 Plane and Planar Graphs

The structure of the UDG is determined spatially, based on the coordinate

locations of the nodes and the unit distance. However, many of the algorithms

we will look at in later chapters require further spatial structure. In particular,

a common requirement concerns the planarity of the communication graph.

A planar graph is a graph that can be embedded in the plane in such a way

that no edges cross (i.e., edges only intersect at nodes). A plane graph is a

planar graph plus a particular planar embedding the ensures that no edges

cross. In short, a planar graph could be drawn on a sheet of paper without

any crossing edges; a plane graph (or a planar map) is a specific drawing of

a planar graph that has no crossing edges. The graphs in Figs. 2.6 and 2.7

are clearly not plane (they have several crossing edges), and in fact are non-

planar (i.e., it is impossible to redraw the figure in a way that preserves all

nodes and connections but removes crossing edges).

Four of the most important plane graph structures commonly used with

geosensor networks are explored in the following subsections. As already

highlighted, each of these structures is a spanning subgraph of the UDG.

Delaunay triangulations

A triangulation is a maximal plane graph: a plane graph where no edge

can be added between existing nodes without making the graph non-planar.



50 Decentralized spatial computing

There are many different possible maximal plane graphs for a set of vertices

in the plane. One special maximal plane graph, the Delaunay triangulation,

has the defining property that a circumcircle through the vertices of any

triangle contains no other vertices. Figure 2.8 illustrates this property. More

intuitively, this property ensures the Delaunay triangulation has the “fattest”

triangles of all triangulations. The Delaunay triangulation is an important

structure in GIScience, with a great many applications and articles in the

literature.

Fig. 2.8. The Delaunay triangulation has the defining property that a circumcircle through the

vertices of any triangle contains no other vertices. The dashed circumcircle contains vertex w, and

so the edge uv is not in the Delaunay triangulation

Unfortunately, the Delaunay triangulation (or indeed any maximal plane

subgraph) is not guaranteed to be a subgraph of the UDG. Any maximal plane

graph may have arbitrarily long edges. (Imagine, for example, a set of vertices

in the shape of a crescent: any triangulation of these points will necessarily

require an edge between the two extreme tips of the crescent). In the context

of geosensor network, arbitrarily long edges translate into arbitrarily large

amounts of power required to transmit directly between two nodes.

For a given set of vertices, the unit Delaunay triangulation (UDT) is

the intersection of the UDG and the Delaunay triangulation (i.e., the graph

formed by the edges that are contained in both the UDG and the Delaunay

triangulation of the vertices). Figure 2.9 shows the UDT derived from the

UDG in Fig. 2.6. Note that there are many possible edges that could be added

to the graph in Fig. 2.9 without leading to a non-planar result: in fact the UDT

is not a triangulation at all!

Gabriel graph

The Gabriel graph (GG) has the property that an edge exists between two

nodes u, v ∈ V only if there is no node w ∈ V such that the angle formed

by uwv is greater than 90

◦
. Equivalently, this condition is more easily framed

using Pythagoras’ theorem rather than trigonometry, as follows (where E
UDG

is the set of edges in the UDG for a given unit distance):



2.6. Neighborhood Structure
51

Fig. 2.9. Example unit Delaunay triangulation (UDT) (cf. Fig. 2.6)

GG = (V,{(u, v) ∈ E
UDG

| for all w ∈ V,

δ(p(u), p(w))2 + δ(p(w), p(v))2 ≥ δ(p(u), p(v))2}).

Figure 2.10 illustrates this definition graphically. Figure 2.11 shows the GG

derived from the UDG in Fig. 2.6.

Fig. 2.10. The Gabriel graph has the property that a pair of nodes u and v may only be connected by

an edge if there exists no other node w such that the angle formed by uvw is greater than 90

◦
(i.e.,

there exists no w located in the dashed circle)

Relative neighborhood graph

The relative neighborhood graph (RNG) has the property that two nodes

u, v ∈ V will not be connected by an edge if there exists a node w ∈ V
where w is closer to u and to v than u and v are to each other. Formally,

RNG = (V,{(u, v) ∈ E
UDG

| for all w ∈ V,

δ(p(u), p(w)) ≥ δ(p(u), p(v) or δ(p(w), p(v)) ≥ δ(p(u), p(v)})

where E
UDG

is the set of edges in the UDG for a given unit distance.

Figure 2.12 illustrates this definition graphically. Like the GG, the RNG is a



52 Decentralized spatial computing

Fig. 2.11. Example Gabriel graph (GG), highlighting examples of (a) an edge maintained from the

UDG; and (b) an edge removed from the UDG (cf. Fig. 2.6)

spanning subgraph of the UDG. As could be deduced by comparing Figs. 2.10

and 2.12, the RNG is also a spanning subgraph of the GG (since any edge

excluded by the GG condition will also be excluded by the more restrictive

RNG condition). Figure 2.13 shows the RNG derived from the UDG in Fig. 2.6.

Fig. 2.12. The relative neighborhood graph has the property that any pair of nodes u and v will not

be connected by an edge if there exists a node w that is closer to both u and v than u and v are to

each other (i.e., there exists no w located in the highlighted lune)

2.6.3 Trees

A tree is is a graph where any pair of vertices is connected by exactly one

path (sequence of adjacent nodes). Figure 2.14 shows an example of a tree

that is a spanning subgraph (subtree) of the UDG. For a graph such as the

UDG in Fig. 2.6 there are many possible spanning subtrees (approximately 1×
1030—a “nonillion”—to be more precise; the exact number can be computed

using a result in graph theory called matrix tree theorem). In fact, the tree

shown in Fig. 2.14 is a special, uniquely defined tree, called the minimum

spanning tree (MST). The minimum spanning tree has the property that it



2.6. Neighborhood Structure
53

Fig. 2.13. Example relative neighborhood graph (RNG), highlighting examples of a, an edge main-

tained from the UDG; and b an edge removed from the GG (cf. Figs. 2.6 and 2.11)

is the spanning tree in the graph that has the minimum possible total edge

length (i.e., adding up the lengths of all the edges in the graph in Fig. 2.14

results in a total length less than any other spanning tree of the UDG in

Fig. 2.6). The minimum spanning tree also happens to be a spanning subtree

of the RNG (and by implication the GG).

Fig. 2.14. Example minimum spanning tree (MST) (cf. Fig. 2.6)

Trees are commonly used because they provide a convenient neighbor-

hood structure for wireless sensor networks. A rooted tree has one designated

node as its root. Because a tree by definition contains no cycles (since every

pair of nodes is connected by exactly one path), edges in a rooted tree have

a natural orientation (towards or away from the root). As we shall see, this

feature can be helpful in decentralized computation, as it provides a natural

structure for aggregating and centralizing data.



54
Decentralized spatial computing

2.7 Chapter in a Nutshell

The formal foundations set out in this chapter are founded on three inter-

connected models (Fig. 2.15). At the core, the formal foundations depend on

the neighborhood-based model of nodes, their sensors, and their communi-

cation network. Building on this core, the extended spatial model depends

on the neighborhood-based model, and introduces more sophisticated rep-

resentations of the spatial locations of nodes. In turn, the spatiotemporal

model depends on the neighborhood-based or the extended spatial model,

further extending the core by representing change in the network and in the

environment over time.

In addition, two auxiliary models are added. First, we define a model of

the partial knowledge of a node, restricting the information available at each

node to that which it senses directly or which is explicitly communicated to

that node. Second, a neighborhood model provides more details about the

different neighborhood structures that may be used to constrain communica-

tion between nodes. A third auxiliary model, allowing for uncertainty in the

information sensed by a node, will be added later (Chapter 8).

Fig. 2.15. Summary of formal model structure

These foundations deliberately suppress the technical or application de-

tails of sensor networks. The aim is to provide a basis for discussing de-

centralized spatial computing independently of changing node architectures

and software, sensor technologies, batteries and energy harvesting, routing

protocols, and application requirements.

Importantly, the formal foundations are the basis for all subsequent chap-

ters in the book. Not all these structures are required at all times. Indeed,

the models are designed to be deployed in stages, supporting increasingly

sophisticated design and analysis of decentralized spatial algorithms. In some

decentralized spatial information systems, only the extended spatial model



2.7. Chapter in a Nutshell
55

(and by implication the neighborhood-based model) are required. But, based

on the extended spatial model, any combination of the remaining two core

models can be “plugged in” depending on the specific application require-

ments.

It is worth highlighting that there are several features our basic model has

not yet addressed, including:

• Node heterogeneity, where nodes possessing different spatial and environ-

mental sensing capabilities are combined in the same network. Homo-

geneous networks are assumed in Parts I and II of this book, with an

exploration of the important issues connected with node heterogeneity

discussed in Chapter 9.

• Three-dimensional networks, such as might be deployed for monitoring

marine environments, vegetation structure, or the atmosphere. Although

it is straightforward to include 3D coordinate locations in the posi-

tioning of nodes, many of the later structures in this chapter (such as

planar graphs) rely on a two-dimensional representation of geographic

space. Extending algorithms to monitor environments in three spatial

dimensions (for example, additionally incorporating information about

the vertical profile of changes in sea temperature and salinity across a

coral reef) remains an important challenge for future work.

• Asynchronous networks, where different sensors cannot be relied upon to

sample at the same time or frequency. Extended models of spatiotemporal

networks that can allow for asynchronous sensing are discussed in Chap-

ter 9.

Armed with our formal foundations, we are almost ready to start explor-

ing the design and analysis of decentralized spatial algorithms, capable of

processing spatial information with no centralized control. However, before

that, we must first turn our attention to the computational characteristics of

decentralized spatial computing. These algorithmic foundations are the topic

of the next chapter.

Review questions

2.1 Under a certain condition, it will always be the case that for a communi-

cation graph G = (V,E), v ∈ nbr(v′) assuming v′ ∈ nbr(v). What is this

condition? (Hint: see §2.2).

2.2 Table 2.2 provides five examples of common methods for specifying lo-

cation in geosensor networks. What other examples of different methods

for specifying relative and absolute location information can you think

of?

2.3 Using a Web search, try to find different technologies for localization

that are capable of generating the information required for the different

methods for specifying location in Table 2.2 and in your answer to



56 Decentralized spatial computing

question 2.2 above. (Hint: to start you off, GPS is one example of a

technology for generating coordinate location—but there are others!)

2.4 In §2.3, the different methods for specifying location are categorized into

two types: absolute and relative. However, one might also classify loca-

tion information as quantitative (concerned with the measurable aspects

of space) and qualitative (referring to discrete and meaningful categories

or “qualities”). Reclassify the different methods for specifying location in

Table 2.2 and in your answer to question 2.2 above into quantitative and

qualitative location information.

2.5 Node mobility can be seen as a special case of node volatility. Explain in

your own words why this is so. (Hint: see §2.4).

2.6 The Yao graph is another graph structure. In a Yao graph, the space

around each node is partitioned into sectors of fixed opening angle (e.g.,

60

◦
). Each node is then connected to its the unique nearest neighbor (if

any) in each of these sectors [120]. Is the Yao graph a spanning subgraph

of the UDG? Check your answer by sketching a Yao graph for the nodes

in Fig. 2.6.

2.7 We have stated that the relative neighborhood graph is a (spanning)

subgraph of the Gabriel graph. Construct a proof (or find and understand

an existing proof) that this must always be the case (i.e., that the RNG is

necessarily a subgraph of the GG).


