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1 Introduction

1.1 What is stochastic geometry?

Stochastic geometry (sometimes used synonymously with the older term geo-

metric probability) deals with random spatial patterns. Random point patterns

or point processes are the most basic and important such objects, hence point

process theory is often considered to be the main sub-field of stochastic geometry.

Stochastic geometry provides answers to questions such as the following.

• How can one describe a (random) collection of points in one, two, or higher

dimensions?

• How can one derive statistical properties of such a collection of points?

• How can one calculate statistical averages over all the possible realizations of

such a random collection?

• How can one condition on having a point at a fixed location?

• Given an empirical set of points, which statistical model is likely to produce

this point set?

• How can one describe more general random geometric objects such as a “ran-

dom line” or a “random triangle”?

Throughout this book, we will use point processes to model the distributions

of nodes (users, wireless terminals) in a wireless network where node locations

are subject to uncertainty. In Part II, we will also encounter random geometric

graphs to address the connectivity of wireless networks and random regions in

the context of coverage problems.

1.2 Point processes as spatial models for wireless networks

Loosely speaking, a point process is a random collection of points that reside in

some space. In this book, we will focus on the one-, two-, and three-dimensional

Euclidean spaces R, R2, and R3, since, in our applications, the points represent

the locations of wireless nodes in the real world.

Point process models permit statements about entire classes of wireless net-

works, instead of just about one specific configuration of the network. In some

cases, distributions over the point process can be calculated (for example for the
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Figure 1.1 Locations of 493 cellular base stations in an area of about 5 km2 in central
London.

interference), in others, spatial averaging is performed, which yields expected

values of certain performance metrics, such as the likelihood of transmission

success.

Figure 1.1 shows the locations of all cellular base stations in an area of 2.5 km×
2 km in a central part of London. It illustrates that even the base stations (let

alone the mobile users) themselves do not form a nice deterministic pattern or

lattice. A random approach to modeling these locations is thus sensible.

In some applications, nodes are naturally clustered (attracted to each other),

in others, they are separated (repelled from each other), and there exist models

for these cases. In many situations, such as when we model interference, the

relevant point process is the one of the transmitters only, not the point process

of all nodes. It is determined by the spatial configuration of nodes together with

the channel access (MAC) scheme, which performs a thinning procedure on the

set of all nodes to produce the set of transmitters.

Emerging classes of large wireless systems such as ad hoc and sensor networks

and cellular networks with coverage extensions such as relays or micro-base sta-

tions have been the subject of intense investigation over the last decade. Classi-

cal methods of communication theory are insufficient to analyze these new types

of networks for the following reasons. (i) The performance-limiting metric is

the signal-to-interference-plus-noise ratio (SINR) rather than the signal-to-noise

ratio (SNR). (ii) The interference depends on the path loss and fading charac-

teristics, which, in turn, are functions of the network geometry. (iii) The amount

of uncertainty present in large wireless networks far exceeds the amount present

in point-to-point systems: it is impossible for each node to know or predict the

locations and channels of all but perhaps a few other nodes.

Two main tools have recently proved most helpful in circumventing the above

difficulties: stochastic geometry and random geometric graphs. Stochastic
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1.3 Asymptotic notation 5

geometry allows one to study the average behavior over many spatial realizations

of a network whose nodes are placed according to some probability distribution.

Random geometric graphs capture the distance dependence and randomness in

the connectivity of the nodes. This book provides an introduction to these math-

ematical tools and discusses some important applications to problems in wireless

networking.

1.3 Asymptotic notation

We will make use of the standard asymptotic notation, summarized in Box 1.1.

While the notation f(x) = O(g(x)) is common, it is not strictly correct since it

implies a symmetry that does not exist. For example, O(x7) = O(ex) as x→∞,

but this does not imply that O(ex) = O(x7), since not every function bounded

by the exponential is bounded by the monomial (but the converse is true). A set-

theoretic notation is more rigorous, where O(g(x)) denotes the class of functions

which remain bounded when they are divided by g(x). The above statement then

reads O(x7) ⊂ O(ex), which is obviously not invertible.

Since “remains bounded” is weaker than “goes to zero” o(·) implies and is

stronger than O(·), i.e., f(x) = o(g(x))⇒ f(x) = O(g(x)), or o(g(x)) ⊂ O(g(x)).

Box 1.1 Asymptotic notation

Let x tend to a. We write

f(x) = O(g(x)) if the ratio f(x)/g(x) remains bounded

f(x) = o(g(x)) if the ratio f(x)/g(x) goes to 0

f(x) = ω(g(x)) if g(x) = o(f(x))

f(x) = Θ(g(x)) if f(x) = O(g(x)) and g(x) = O(f(x))

f(x) ∼ g(x) if the ratio f(x)/g(x) approaches 1.

More formally:

f(x) = O(g(x)) as x→ a ⇐⇒ lim sup
x→a

∣∣∣∣f(x)g(x)

∣∣∣∣ <∞.

It is important to always indicate the limit point.

Example 1.1 Examples of asymptotic notation:

• lnx = O(x), x4 = O(ex), sinx = O(1) as x→∞;

• x2 = O(x), sinx = O(x) as x→ 0;

• Taylor expansion (at x = 0): ex = 1+x+O(x2), ex−1 = x+o(x), ex−1−x =

o(x3/2), ex = 1 + x+Θ(x2).
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6 Introduction

1.4 Sets and measurability

1.4.1 Borel sets and σ-algebra

Here we give a brief overview of the set-theoretic concepts used in the book and

define measurability. Starting with the half-open intervals of R, given by

[u, v) = {x ∈ R : u ≤ x < v},

we obtain the Borel sets by taking the complement and countable unions and

intersections of such intervals. The collection of all Borel sets forms the Borel

σ-algebra or σ-field, denoted by B. It contains all the singletons {x} since

{x} =
∞⋂

n=1

[
x, x+

1

n

)

and thus also all closed and open intervals since (u, v) = [u, v) \ {u} and [u, v] =

[u, v) ∪ {v}. In fact, B can also be defined starting with closed or open intervals

instead of the half-open ones. The restriction to countable unions and intersec-

tions is important, otherwise all subsets of R could be constructed simply by

taking the union of the corresponding singletons.

The concept of the Borel σ-algebra is easily extended to the d-dimensional

space Rd, denoted by Bd, by starting with (hyper)rectangles whose coordinate

sets belong to B. It further generalizes to all metric spaces (sets equipped with

a distance or metric defined between their elements).

If a set consists of a countable number of singletons, it is a countable (finite

or countably infinite) set. Conversely, all open sets are infinite sets, as are all

half-open intervals of R.

Letting b(o, r) � {x ∈ Rd : ‖x‖ ≤ r} be the (closed) ball of radius r centered at

the origin o, a set A ⊆ Rd is bounded if there is a ball b(a, r) such that A ⊂ b(a, r).

It is compact if it is also closed. Since Bd includes all closed sets it is a superset of

the compact sets. Most sets encountered in this book will be Borel or compact.

The Cartesian product of sets is denoted by ×.

1.4.2 Measurability

While we will not concern ourselves with the intricacies of measurability, we need

to clarify what “measurable” means. Generally, an ordered pair (A,A) forms a

measurable space if A is a σ-algebra of subsets of A. An important example is

(Rd,Bd) as defined before.

A function f : Rd �→ R is Bd-measurable if and only if the pre-image of B ∈ B
is an element of Bd, i.e.,

f−1(B) � {x ∈ R
d : f(x) ∈ B} ∈ Bd.
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Problems 7

More generally, if (N ,N) is another measurable space, f : N �→ R isN-measurable

if and only if the pre-image of B ∈ B is an element of N, i.e.,

f−1(B) � {ϕ ∈ N : f(ϕ) ∈ B} ∈ N.

This is the notion of measurability that we will employ in the context of point

processes, where N denotes the space of point patterns.

A measure ν is a function A �→ R ∪ {∞}, where A is a σ-algebra, with the

property of countable additivity, i.e.,

ν

(
n⋃

i=1

Ai

)
=

n∑
i=1

ν(Ai)

for all pairwise disjoint Ai ∈ A and n ∈ N ∪ {∞} and satisfying ν(∅) = 0.

A fundamental measure is the Lebesgue measure, denoted by νd in the

d-dimensional case or | · | if the number of dimensions is clear from the con-

text. For intervals, it is defined as their length, i.e., ν1((u, v]) = v − u, and in

higher dimensions, it is the area or (hyper)volume. For example, in two dimen-

sions, the area of a disk of radius 2 is |b(o, 2)| = 4π. The Lebesgue measure is a

diffuse measure since it gives zero mass to every singleton and thus any count-

able set. Other measures we will use frequently are probability measures, Dirac

measures, and counting measures. The product of measures is denoted by ⊗.

Problems

1.1 Which of the following are true?

As x ↓ 0:
(a) coshx = o(1)

(b) sinx = o(1)

(c) x−1 = O(log x).

As x→∞:

(d) O(2x) = O(2ax)

(e) eΘ(1) = Θ(ex)

(f) O(log x) = O(log(xa))

(g) f1(x) = O(g1(x)), f2(x) = O(g2(x)) ⇒ f1(x)f2(x) = O(g1(x)g2(x)).

1.2 LetX1, X2, . . . , Xk be independent and identically distributed (iid) random

variables with cumulative distribution function (cdf) F (x). What is the cdf of

the minimum mini{Xi}?
1.3 Let X be a Poisson random variable with parameter Y , where Y is itself

a Poisson random variable with parameter μ. Show that the generating function

of X + Y is

GX+Y (x) � E(xX+Y ) = exp{μ(xex−1 − 1)}.
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8 Introduction

1.4 Let X1, . . . , XN be N iid random variables with cdf F (x), where N is

Poisson with mean μ. Calculate the cdf G(x) of the maximum of the N random

variables.

1.5 Let Z be the distance between two points picked independently (uniformly)

at random in a disk of radius a. Show that E(Z2) = a2.

1.6 Let a, b, and c be iid exponential. Show that the probability that the

polynomial ax2 + bx+ c has real roots is 1/3.

1.7 A goose lays N eggs, where N is Poisson with mean λ. Each egg hatches

with probability p, independently of the other eggs. Let K be the number of

baby geese. Find E(K |N), EK, and E(N |K).
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2 Description of point processes

2.1 Description of one-dimensional point processes

There are several ways to describe a collection of points (x1, x2, . . .) in one dimen-

sion. Here are four of them, assuming the points lie on R+.

1. Direct characterization of the points (or arrival times if the axis is a time

axis) xi.

2. Using the increasing step function A(t) =
∑∞

i=1 1(xi ∈ [0, t)).

3. Using the interarrival intervals Si = xi+1−xi, i ∈ N. Here it is assumed that

the points are ordered, i.e., x1 ≤ x2 ≤ . . .. In the case of renewal processes,

the increments Si are independent.

4. Counting the number of points falling in a set B ⊂ R:

N(B) =
∞∑
i=1

1(xi ∈ B).

Method 1 may be convenient if the total number of points n is finite and fixed

and if the points are distributed independently and identically, i.e., if the random

variables x1, x2, . . . , xn are iid. Method 2 is a special case of method 4, with B

restricted to an interval [0, t). From A(t), N(B) can be calculated (in much the

same way as the complete distribution of a random variable can be obtained

from just the distribution function). Such cumulative functions are common in

networking to count the number of packets that have arrived up to time t. Since

method 3 relies on an ordering of the points, it is restricted to the one-dimensional

case. Processes with independent interarrival intervals are the subject of study

in the field of renewal theory. The most important case is where the Si are expo-

nentially distributed. This interarrival interval distribution results in a Poisson

process.

An important dichotomy in point process theory is whether a point process is

permitted to have multiple points at the same location. If not, it can be expressed

as a random set {x1, x2, . . .}; if yes, the point process is not a random set, and

a random measure formalism as in method 4 is usually employed. We discuss

these dual views of point processes in detail in the next section, before exploring

point processes in general dimensions.
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10 Description of point processes

2.2 Point process duality

We first give a formal definition of a point process.

definition 2.1 (Point process) A point process is a countable random col-

lection of points that reside in some measure space, usually the Euclidean space

Rd. The associated σ-algebra consists of the Borel sets Bd, and the measure is

the Lebesgue measure.

Such a point process can be described using two formalisms, a random set

formalism (Box 2.1) and a random measure formalism (Box 2.2).

Box 2.1 Random set formalism

In this formalism, the point process is regarded as a countable random set

Φ = {x1, x2, . . .} ⊂ Rd consisting of random variables xi ∈ Rd as its elements.

Box 2.2 Random measure formalism

In this formalism, a point process is characterized by counting the number of

points falling in sets B ⊂ Rd. The number of points in B is denoted by N(B).

Hence N(B) is a random variable that assumes values from the non-negative

integers N0. N is called a (random) counting measure.

Similarly to the particle–wave duality in physics, we may speak of a duality

in point process theory: On the one hand, point processes can be characterized

as random sets, on the other hand, they can be regarded as random counting

measures.

If Φ is given, N is obtained by

N(B) = #{Φ ∩B}.

Conversely, Φ is retrieved from N by

Φ = {x ∈ R
d : N({x}) = 1}.

Hence there is a one-to-one mapping between Φ and N .

By considering the point process as a set Φ = {x1, x2, . . .}, we have implicitly

assumed that only one point can exist at a given location, since a set can only

contain one instance of each element. Such a point process is called simple. The

random measure formalism is more general; it permits the characterization of

point processes that may have multiple co-located points.1 It is used to formally

define simple point processes.

1 In principle, point processes could be viewed also as multisets, which are sets where

elements are allowed to appear more than once.
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