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Fourier series: convergence and summability

1.1. The basics: partial sums and the Dirichlet kernel

1.1.1. Definitions

We begin with a basic object in analysis, namely the Fourier series associated
with a function or a measure on the circle. To be specific, let T = R/Z be the
one-dimensional torus (in other words, the circle). We will consider various
function spaces on the torus T, namely the space of continuous functions
C(T), the space of Hölder continuous functions Cα(T) where 0 < α ≤ 1, and
the Lebesgue spaces Lp(T) where 1 ≤ p ≤ ∞. The space of complex Borel
measures on T will be denoted by M(T). Any μ ∈M(T) has associated with
it a Fourier series

μ ∼
∞∑

n=−∞
μ̂(n)e(nx) (1.1)

where e(x) := e2πix and

μ̂(n) :=
ˆ 1

0
e(−nx)μ(dx) =

ˆ
T
e(−nx)μ(dx).

The symbol ∼ in (1.1) is formal and simply means that the series on the right-
hand side is associated with μ. If μ(dx) = f (x) dx where f ∈ L1(T), then we
may write f̂ (n) instead of μ̂(n).

The central question which we wish to explore in this chapter is the following:
when does μ equal the right-hand side in (1.1), that is, when does it represent
f in a suitable sense? Note that if we start from a trigonometric polynomial

f (x) =
∞∑

n=−∞
ane(nx)
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2 Fourier series: convergence and summability

where all but finitely many an are zero, then we see that

f̂ (n) = an ∀n ∈ Z. (1.2)

In other words, we have the pointwise equality

f (x) =
∞∑

n=−∞
f̂ (n)en(x),

with en(x) := e(nx). Property (1.2) is equivalent to the basic orthogonality
relation ˆ

T
en(x)em(x) dx = δ0(n−m), (1.3)

where δ0(j ) = 1 if j = 0 and δ0(j ) = 0 otherwise.
It is therefore natural to explore the question of the convergence of the

Fourier series for more general functions. Of course, precise meaning of the
convergence of infinite series needs to be specified before this fundamental
question can be answered. It is fair to say that much modern analysis (including
functional analysis) arose out of the struggle with this question. For example,
the notion of the Lebesgue integral was developed in order to overcome the
deficiencies in the older Riemannian definition of the integral that had been
revealed through the study of Fourier series. The reader will note the recurring
theme of the convergence of Fourier series throughout both volumes of this
book.

1.1.2. Dirichlet kernel

It is natural to start from the most basic notion of convergence, namely that
of pointwise convergence, in the case where the measure μ is of the form
μ(dx) = f (x) dx with f (x) continuous or of even better regularity. The partial
sums of f ∈ L1(T) are defined as

SNf (x) =
N∑

n=−N

f̂ (n)e(nx) =
N∑

n=−N

ˆ
T
e(−ny)f (y) dy e(nx)

=
ˆ

T

N∑
n=−N

e(n(x − y))f (y) dy =
ˆ

T
DN (x − y)f (y) dy,

where DN (x) :=∑N
n=−N e(nx) is the Dirichlet kernel. In other words, we

have shown that the partial sum operator SN is given by convolution with the
Dirichlet kernel DN :

SNf (x) = (DN ∗ f )(x). (1.4)
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1.1 The basics: partial sums and the Dirichlet kernel 3

Figure 1.1. The Dirichlet kernel DN and the upper envelope min(2N + 1, |πx|−1)
for N = 9. See Exercise 1.1.

In order to understand basic properties of this convolution, we first sum the geo-
metric series defining DN (x) to obtain an explicit expression for the Dirichlet
kernel.

Exercise 1.1 Verify that, for each integer N ≥ 0,

DN (x) = sin((2N + 1)πx)

sin(πx)
(1.5)

and draw the graph of DN for several different values of N , say N = 2 and
N = 5; cf. Figure 1.1. Prove the bound

|DN (x)| ≤ C min

(
N,

1

|x|
)

(1.6)

for all N ≥ 1 and some absolute constant C. Finally, prove the bound

C−1 logN ≤ ‖DN‖L1(T) ≤ C logN (1.7)

for all N ≥ 2, where C is another absolute constant.
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4 Fourier series: convergence and summability

The growth of the bound in (1.7), as well as the oscillatory nature of DN as
given by (1.5), indicates that to understand the pointwise or almost everywhere
convergence properties of SNf may be a very delicate matter. This will become
clearer as we develop the theory.

1.1.3. Convolution

In order to study (1.4) we need to establish some basic properties of the con-
volution of two functions f, g on T. If f and g are continuous, say, then define

(f ∗ g)(x) :=
ˆ

T
f (x − y)g(y) dy =

ˆ
T
g(x − y)f (y) dy. (1.8)

It is helpful to think of f ∗ g as an average of translates of f by the measure
g(y) dy (or the same statement but with f and g interchanged). In particular,
convolution commutes with the translation operator τz, which is defined for
any z ∈ T by its action on functions, i.e., (τzf )(x) = f (x − z). Indeed, one
may immediately verify that

τz(f ∗ g) = (τzf ) ∗ g = f ∗ (τzg). (1.9)

In passing, we mention the important relation between the Fourier transform
and translations:

(̂τzμ)(n) = e(−zn)μ̂(n) ∀n ∈ Z.

In what follows, we will abbreviate almost everywhere or almost every by a.e.

Lemma 1.1 The operation of convolution as defined in (1.8) satisfies the
following properties.

(i) Let f, g ∈ L1(T). Then, for a.e. x ∈ T, one has that f (x − y)g(y) is L1

in y. Thus, the integral in (1.8) is well defined for a.e. x ∈ T (but not
necessarily for every x), and the bound ‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1 holds.

(ii) More generally, ‖f ∗ g‖r ≤ ‖f ‖p‖g‖q for all 1 ≤ r, p, q ≤ ∞,

1+ 1

r
= 1

p
+ 1

q
, f ∈ Lp, g ∈ Lq.

This is called Young’s inequality.
(iii) If f ∈ C(T), μ ∈M(T) then f ∗ μ is well defined. For 1 ≤ p ≤ ∞,

‖f ∗ μ‖p ≤ ‖f ‖p‖μ‖;

this allows one to extend f ∗ μ to arbitrary f ∈ Lp.
(iv) If f ∈ Lp(T) and g ∈ Lp′ (T), where 1 ≤ p ≤ ∞, and

1

p
+ 1

p′
= 1
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1.1 The basics: partial sums and the Dirichlet kernel 5

then f ∗ g, originally defined only a.e., extends to a continuous function
on T, and

‖f ∗ g‖∞ ≤ ‖f ‖p‖g‖p′ . (1.10)

(v) For f, g ∈ L1(T) one has, for all n ∈ Z,

f̂ ∗ g(n) = f̂ (n)ĝ(n).

Proof (i) is an immediate consequence of Fubini’s theorem since f (x − y)g(y)
is jointly measurable on T× T and belongs to L1(T× T). For (ii), first let
q = 1. Then (ii) can be obtained by interpolating between the case p = 1
covered in (i) and the easy bound for p = ∞. Alternatively, one can use
Minkowski’s inequality,

‖f ∗ g‖p ≤
ˆ

T
‖f (· − y)‖p|g(y)| dy ≤ ‖f ‖p‖g‖1,

which also implies (iii). The other extreme is q = p′, which is covered
by (iv). The remaining choices of q follow by interpolation relative to g. The
bound (1.10) is Hölder’s inequality. Part (iv) follows from the fact that C(T)
is dense in Lp(T) for 1 ≤ p <∞ and from the translation invariance (1.9).
Indeed, one may verify from the uniform continuity of functions in C(T)
and (1.9) that f ∗ μ ∈ C(T) for any f ∈ C(T) and μ ∈M(T). Since uniform
limits of continuous functions are continuous, (iv) now follows from the afore-
mentioned denseness of C(T) and (1.10).

Finally, (v) is a consequence of Fubini’s theorem and the homomorphism
property of the exponentials e(n(x + y)) = e(nx)e(ny). �

The following exercise introduces the convolution as an operation acting on
the Fourier coefficients of functions, rather than on the functions themselves.
This is in the context of the largest class of functions where the respective
Fourier series are absolutely convergent. This class of functions is necessarily
a subalgebra of C(T), called the Wiener algebra.

Exercise 1.2 Let μ ∈M(T) have the property that∑
n∈Z

|μ̂(n)| <∞. (1.11)

Show that μ(dx) = f (x) dx, where f ∈ C(T). Denote the space of all mea-
sures with this property by A(T) and identify these measure with their
respective densities. Show that A(T) is an algebra under multiplication and
that

f̂g(n) =
∑
m∈Z

f̂ (m)ĝ(n−m) ∀n ∈ Z,
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6 Fourier series: convergence and summability

where the sum on the right-hand side is absolutely convergent for every
n ∈ Z and indeed is absolutely convergent over all n. Moreover, show that
‖fg‖A ≤ ‖f ‖A‖g‖A where ‖f ‖A := ‖f̂ ‖�1 . Finally, verify that if f, g ∈
L2(T) then f ∗ g ∈ A(T).

Note that the Wiener algebra has a unit, namely the constant function 1. It
is clear that if f has an inverse in A(T) then this is 1/f , which in particular
requires that f �= 0 everywhere on T. A remarkable theorem due to Norbert
Wiener states that the converse holds, too; that is, if f ∈ A(T) does not vanish
anywhere on T then 1/f ∈ A(T). We present this result in Section 4.3 as
an easy corollary to Gelfand’s theory of commutative Banach algebras; see
Corollary 4.27.

One of the most basic as well as oldest results on the pointwise convergence
of Fourier series is the following theorem. We shall see later that it fails for
functions that are merely continuous.

Theorem 1.2 If f ∈ Cα(T) with 0 < α ≤ 1 then ‖SNf − f ‖∞ → 0 as
N →∞.

Proof One has, with δ ∈ (0, 1
2 ) to be determined,

SNf (x)− f (x) =
ˆ 1

0
(f (x − y)− f (x))DN (y) dy

=
ˆ
|y|≤δ

(f (x − y)− f (x))DN (y) dy

+
ˆ

1/2>|y|>δ

(f (x − y)− f (x))DN (y) dy.

(1.12)

Here we have exploited the fact thatˆ
T
DN (y) dy = 1.

We now use the bound from (1.6), i.e.,

|DN (y)| ≤ C min

(
N,

1

|y|
)
.

Here and in what follows, C will denote a numerical constant that can change
from line to line. The first integral in (1.12) can be estimated as follows:ˆ

|y|≤δ

|f (x)− f (x − y)| 1

|y| dy ≤ [f ]α

ˆ
|y|≤δ

|y|α−1 dy ≤ C[f ]αδ
α, (1.13)

with the usual Cα semi-norm

[f ]α = sup
x,y

|f (x)− f (x − y)|
|y|α .
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1.1 The basics: partial sums and the Dirichlet kernel 7

To bound the second term in (1.12) one needs to invoke the oscillation of
DN (y). In fact, we have

B :=
ˆ

1/2>|y|>δ

(f (x − y)− f (x))DN (y) dy

=
ˆ

1/2>|y|>δ

f (x − y)− f (x)

sin(πy)
sin((2N + 1)πy) dy

= −
ˆ

1/2>|y|>δ

hx(y) sin

(
(2N + 1)π

(
y + 1

2N + 1

))
dy

where

hx(y) := f (x − y)− f (x)

sin(πy)
.

Therefore, with all integrals understood to be in the interval (− 1
2 ,

1
2 ),

2B =
ˆ
|y|>δ

hx(y) sin((2N + 1)πy) dy

−
ˆ
|y−1/(2N+1)|>δ

hx

(
y − 1

2N + 1

)
sin((2N + 1)πy) dy

=
ˆ
|y|>δ

(
hx(y)− hx

(
y − 1

2N + 1

))
sin((2N + 1)πy) dy

−
ˆ

[−δ,−δ+1/(2N+1)]
hx

(
y − 1

2N + 1

)
sin((2N + 1)πy) dy

+
ˆ

[δ,δ+1/(2N+1)]
hx

(
y − 1

2N + 1

)
sin((2N + 1)πy) dy.

These integrals are estimated by putting absolute values inside. To do so we
use the bounds

|hx(y)| < C
‖f ‖∞

δ
,

|hx(y)− hx(y + τ )| < C

( |τ |α[f ]α
δ

+ ‖f ‖∞
δ2

|τ |
)
,

if |y| > δ > 2τ .
In view of the preceding discussion, one obtains

|B| ≤ C

(
N−α[f ]α

δ
+ N−1‖f ‖∞

δ2

)
, (1.14)

provided that δ > 1/N . Choosing δ = N−α/3 one concludes from (1.12), (1.13),
and (1.14) that

|(SNf )(x)− f (x)| ≤ C
(
N−α2/3 +N−2α/3 +N−1+2α/3

)
(1.15)

for any function with ‖f ‖∞ + [f ]α ≤ 1, which proves the theorem. �
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8 Fourier series: convergence and summability

Figure 1.2. The Fejér kernel KN and the upper envelope min(N, (N (πx)2)−1) for
N = 9.

The reader is invited to optimize the rate of decay derived in (1.15). In other
words, the challenge is to obtain the largest β > 0 in terms of α such that the
bound in (1.15) becomes CN−β for any f with ‖f ‖∞ + [f ]α ≤ 1.

1.2. Approximate identities, Fejér kernel

1.2.1. Cesáro means of partial sums

The difficulties with the Dirichlet kernel (see Figure 1.1), such as its slow 1/|x|
decay, can be regarded as a result of the “discontinuity” in D̂N = χ[−N,N]: this
indicator function on the lattice Z jumps at ±N . Therefore we may hope to
obtain a kernel that is easier to analyze – in a sense that will be made precise
below by means of the notion of approximate identity – by substituting for DN

a suitable average whose Fourier transform does not exhibit such jumps.
An elementary way of carrying this out is given by the Cesàro mean, i.e.,

σNf := 1

N

N−1∑
n=0

Snf.
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1.2 Approximate identities, Fejér kernel 9

Setting

KN := 1

N

N−1∑
n=0

Dn,

where KN is called the Fejér kernel, one therefore has σNf = KN ∗ f .

Exercise 1.3 Let KN be a Fejér kernel with N a positive integer.
(a) Verify that K̂N looks like a triangle (see Figure 1.3), i.e., for all n ∈ Z,

K̂N (n) =
(

1− |n|
N

)+
. (1.16)

(b) Show that

KN (x) = 1

N

(
sin(Nπx)

sin(πx)

)2

. (1.17)

(c) Conclude that

0 ≤ KN (x) ≤ C N−1 min(N2, x−2). (1.18)

We remark that the square and thus the positivity in (1.17) are not entirely
surprising, since the triangle in (1.16) can be written as the convolution of two
rectangles (the convolution is now at the level of the Fourier coefficients on the
lattice Z). Therefore we should expect KN to have the form of the square of a
version of DM , where M is about half the size of N , suitably normalized.

The properties established in Exercise 1.3 ensure that the KN form what is
called an approximate identity.

Definition 1.3 The family {
N }∞N=1 ⊂ L∞(T) forms an approximate identity
provided that
(A1)

´ 1
0 
N (x) dx = 1 for all N ,

(A2) supN

´ 1
0 |
N (x)| dx <∞,

(A3) for all δ > 0 one has
´
|x|>δ

|
N (x)| dx → 0 as N →∞.

The term “approximate identity” derives from the fact that 
N ∗ f → f as
N →∞ in any reasonable sense; see Proposition 1.5. In other words, 
N ⇀ δ0

in the weak-∗ sense of measures. Clearly, the so-called box kernels


N (x) = Nχ[|x|N<1/2], N ≥ 1,

satisfy (A1)–(A3) and as a family consistitute the most basic example of an
approximate identity. Note that the set {DN }N≥1 does not form an approximate
identity. Finally, we remark that Definition 1.3 applies not just to the torus T
but equally well to the line R, the tori Td , or the Euclidean spaces Rd .
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10 Fourier series: convergence and summability

N N−N −N

Figure 1.3. The Dirichlet and Fejér kernels as Fourier multipliers.

Next, we verify that the KN belong to this class.

Lemma 1.4 The Fejér kernels {KN }∞N=1 form an approximate identity.

Proof We clearly have
´ 1

0 KN (x) dx = 1 and KN (x) ≥ 0, so that (A1) and (A2)
hold. Condition (A3) follows from the bound (1.18). �

1.2.2. Convergence properties of approximate identities

Now we establish the basic convergence property of families that form approx-
imate identities.

Proposition 1.5 For any approximate identity {
N }∞N=1 one has the following.
(i) If f ∈ C(T) then ‖
N ∗ f − f ‖∞ → 0 as N →∞.

(ii) If f ∈ Lp(T), where 1 ≤ p <∞, then ‖
N ∗ f − f ‖p → 0 as
N →∞.

(iii) For any measure μ ∈M(T), one has


N ∗ μ ⇀ μ, N →∞,

in the weak-∗ sense.

Proof We begin with the uniform convergence. Since T is compact, f is
uniformly continuous. Given ε > 0, let δ > 0 be such that

sup
x

sup
|y|<δ

|f (x − y)− f (x)| < ε.

Then, by Definition 1.3,

|(
N ∗ f )(x)− f (x)| =
∣∣∣∣ˆ

T
(f (x − y)− f (x))
N (y) dy

∣∣∣∣
≤ sup

x∈T
sup
|y|<δ

|f (x − y)− f (x)|
ˆ

T
|
N (t)| dt +

ˆ
|y|≥δ

|
N (y)|2‖f ‖∞ dy

< Cε,

provided that N is large.
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