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Chapter 2
State Price Deflators and Stochastic Discounting

In this chapter, we describe stochastic discounting and valuation of random cash
flows in a discrete time setting. We therefore introduce a consistent multiperiod
pricing framework. This consistent multiperiod pricing framework is either based
on state price deflators or on equivalent martingale measures. The connection be-
tween these two pricing concepts is then described by the market price of risk idea
introduced in Sect. 2.4. Before we start with these stochastic valuation models, we
explain the fundamental notion and terminology from interest rate modeling.

2.1 Zero Coupon Bonds and Term Structure of Interest Rates

To introduce the term structure of interest rates notion, we consider for the time
being a continuous time setting. Thereafter we restrict to discrete time, see Sect. 2.2
onward. Throughout this book we work with one fixed reference currency.

2.1.1 Motivation for Discounting

What is discounting and why do we discount?
Discounting means attaching time values to assets and liabilities. Assume we put

$100 on a bank account, i.e. we lend out money to the bank. We expect that the
value of this bank deposit grows with an annual interest rate r , say r = 3 %. Hence,
we expect that in one year’s time from today we can withdraw $103 from the bank
account. If the bank account would not offer a positive interest rate r then we could
as well store the $100 at home. Thus, banks attract deposits by offering positive
interest rates.

This example shows that we have the expectation that money grows over time
and therefore currency has a time value. The amount and speed at which it grows
depends on economic factors such as growth of the economy, state of the economy,
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12 2 State Price Deflators and Stochastic Discounting

money supply and interest policy of the central bank, government expenditure, infla-
tion rate, unemployment rate, foreign exchange rates, etc. All these factors interact
in a non-trivial way and macro-economic theory tries to explain these interrelation-
ships. One should also be aware of the fact that the growth of money by an annual
interest rate r is very different from the real growth of money which determines the
purchasing power of capital. Economists therefore consider the nominal interest rate
r and the (expected) real interest rate which is the difference between the nominal
interest rate and the (expected) inflation rate, see for instance Gärtner [73], p. 204,
Romer [136], p. 73, or Fig. 7.2 in Ross et al. [137].

The aim of this book is to model growth of money and to value future (random)
cash flows. For example, we model how the value of $100 is growing over time
using stochastic interest rate models. In particular, if we put the deposit of $100 on
a bank account and the bank guarantees a fixed (deterministic) annual interest rate
of r = 3 %, then the final wealth of this investment in one year’s time from today
is $103. Therefore, we call $100 the discounted value of the final wealth $103, and
(1 + r)−1 = 100/103 = 97.09 % is termed the (deterministic) discount factor. As
discount factors are not known for all future periods, the future economic factors
being random variables based on our knowledge today, we are going to model fu-
ture interest rates and discount factors stochastically. This will lead to stochastic
discounting using so-called state price deflators which can be viewed as economic
indicators for the time value of money in stochastic term structure models.

2.1.2 Spot Rates and Term Structure of Interest Rates

Definition 2.1 A default-free zero coupon bond (ZCB) with maturity m ≥ 0 is a
contract that pays one unit of currency at time m. Its price at time t ∈ [0,m] is
denoted by P(t,m).

By convention we set P(m,m) = 1. Since money grows over time, see last sub-
section, we expect P(t,m) < 1 for t < m.

A ZCB is a so-called default-free financial instrument. That is, its issuer can-
not go bankrupt and hence always fulfills the ZCB contract (see also Example 2.8,
below). In general, there is no default-free bond on the financial market, typically,
bonds that are issued (by companies or governments) may default, i.e., there is a
positive probability that the issuer is not able to fulfill the contract. In such cases,
one speaks about credit risk that needs a special pricing component. This will be
investigated in Sect. 5.1.2, below.

For the time being we will work in a continuous time setting and we will assume
that ZCBs exist for all maturities m ≥ 0. These ZCBs will describe the underlying
dynamics of time value of money.
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Definition 2.2 Choose 0 ≤ t < m. The continuously-compounded spot rate for ma-
turity m at time t is defined by

R(t,m) = − 1

m − t
logP(t,m).

The simply-compounded spot rate for maturity m at time t is defined by

L(t,m) = 1

m − t

1 − P(t,m)

P (t,m)
= 1

m − t

(
P(t,m)−1 − 1

)
.

The annually-compounded spot rate for maturity m at time t is defined by

Y(t,m) = P(t,m)−
1

m−t − 1.

These are different notions to describe the ZCB price P(t,m) at time t ∈ [0,m).
We have the identities

P(t,m) = e−(m−t)R(t,m) = (
1 + (m − t)L(t,m)

)−1 = (
1 + Y(t,m)

)−(m−t)
. (2.1)

This provides the relationships

R(t,m) = 1

m − t
log

(
1 + (m − t)L(t,m)

) = log
(
1 + Y(t,m)

)
.

Our aim is to model these spot rates. This requires that we calibrate the spot rates
to actual financial market data and that we describe their stochastic development
in the future. For the calibration we will use two different sets of data. For long
times to maturity m − t (more than one year) we will use government bond prices
for the calibration (this is further described in Sect. 2.1.3 and Example 2.6, be-
low). For short times to maturity m− t (less than one year) the simply-compounded
spot rate L(t,m) is often calibrated with the LIBOR (London InterBank Offered
Rate). The LIBOR is fixed daily at London market and is used for (unsecured) short
term deposits that are exchanged between banks. That is, this is the rate at which
highly credited financial institutions offer and borrow money at the interbank mar-
ket. Therefore, in this book, we will use the LIBORs as approximation to short term
risk-free rates for model calibration. We would like to mention that especially in
periods of financial distress this needs to be done rather carefully. The spot rates
should describe ZCB prices of default-free financial instruments. Therefore, these
rates should not include any credit spread (default pricing component) and liquid-
ity spread. However, credit and liquidity risks may have a major impact on prices
during distress periods. The financial crisis of 2008 has demonstrated that also the
interbank market can become almost illiquid and highly credited financial institu-
tions may default. The high uncertainty at financial markets during distress periods
can, for instance, be seen between the different rates of Repo-Overnight-Indexes
(secured, see Example 3.9, below) and LIBOR curves (see also Figs. 3.1 and 3.2
below). We see a clear spread widening between these two curves between 2007
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and 2009. This indicates high default and liquidity risks and shows that secured
versus unsecured funds may behave rather differently in distress periods. As a con-
sequence, model calibration of default-free ZCBs needs to be done carefully, and it
is not always clear which data should be chosen for the calibration because typical
financial market data always contain default and liquidity components that need to
be isolated appropriately. This segmentation is heavily debated both in the financial
and in the actuarial community, see, for instance, Das et al. [50], Mercurio [109–
111], Danielsson et al. [48, 49] and Keller et al. [95]. We come back to these issues
in terms of model calibration in Example 3.9 and Sect. 4.3.2.3. Moreover, there is
an additional difficulty because typically we do not have observations for all ma-
turity dates. The latter becomes relevant especially for the valuation of long-term
guarantees in life insurance products, for more on this topic we refer to Sects. 2.1.3,
6.1 and 9.4.3, below.

Definition 2.3 The instantaneous spot rate (also called short rate) is, for t ≥ 0,
defined by

r(t) = lim
m↓t

R(t,m).

Throughout this text we assume that the ZCB prices are sufficiently smooth func-
tions so that all the necessary limits and derivatives exist. Note that we obtain from
the power series expansion of R(t,m)

r(t) = lim
m↓t

L(t,m).

Therefore, if we use the LIBORs as approximation to L(t,m), we can calibrate
the instantaneous spot rate r(t) by the study of the LIBOR for small time intervals
[t,m].

Definition 2.4 The term structure of interest rates (yield curve) at time t ≥ 0 is
given by the graph of the function

m �→ R(t,m), m > t.

The yield curve m �→ R(t,m) at time t determines the ZCB prices P(t,m) for
all maturities m > t and vice versa, see (2.1). At any point in time u < t future ZCB
prices P(t,m) are random and therefore need to be modeled stochastically. This
stochastic term structure modeling of R(t,m) and P(t,m), respectively, is our aim
in the subsequent sections and chapters.

Definition 2.5 The forward interest rate at time t , for s ≥ t , is defined by

F(t, s + 1) = − logP(t, s + 1) + logP(t, s) = − log
P(t, s + 1)

P (t, s)
.
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The instantaneous forward interest rate at time t , for maturity s > t , is defined by

f (t, s) = −∂ logP(t, s)

∂s
.

In the continuous time setting, we obtain from the instantaneous forward interest
rate f (t, ·) by integration, for m > t ,

P(t,m) = exp

{
−

∫ m

t

f (t, s) ds

}
.

Note that f (t, s), s > t , is observable at time t and hence so is P(t,m).
Analogously, in the discrete time setting, we obtain from the forward interest rate

F(t, ·) by summation, for m = t + k, k ∈ N,

P(t,m) = exp

{

−
m∑

s=t+1

F(t, s)

}

.

The instantaneous forward interest rate f (t, ·) is needed for continuous time interest
rate modeling and the forward interest rate F(t, ·) is needed for discrete time interest
rate modeling. Of course, for s ≥ t we have

F(t, s + 1) =
∫ s+1

s

f (t, u) du,

which says that the forward interest rate F(t, ·) can always be obtained from the
instantaneous forward interest rates f (t, ·).

2.1.3 Estimating the Yield Curve

In general, the yield curve is not observable at the financial market and therefore
needs to be estimated. This comes from the fact that there is no default-free ZCB
on the market. As described above we use highly credited financial instruments for
the estimation of the yield curve. Typically, this is the LIBOR for the short end of
the yield curve and government bonds for the long end of the yield curve. These
data are then used to fit a parametric curve. Popular parametric estimation methods
for yield curve modeling are the Nelson–Siegel [121] and the Svensson [149, 150]
methods. These methods are based on an exponential polynomial family with only
few parameters that need to be estimated from the observable financial instruments
(see Filipović [67]). Table 3.4 in Filipović [67] illustrates what method is used by
which country.

The Svensson [149, 150] method is an extension of the Nelson–Siegel [121]
method. It makes the following Ansatz for the instantaneous forward interest rate at
time t = 0. Set

β = (
β(0), β(1), β(2), β(3), γ (1), γ (2)

)
.
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We define the Svensson [149, 150] instantaneous forward interest rate for s ≥ 0 by

fS(0, s,β) = β(0) + β(1)e−γ (1)s + β(2)γ (1)se−γ (1)s + β(3)γ (2)se−γ (2)s .

If we set β(3) = 0 we obtain the Nelson–Siegel [121] formula that is given by

fNS

(
0, s,

(
β(0), β(1), β(2), γ (1)

)) = fS

(
0, s,

(
β(0), β(1), β(2),0, γ (1),1

))

= β(0) + β(1)e−γ (1)s + β(2)γ (1)se−γ (1)s .

Integration by parts leads to the Svensson yield curve m �→ RS(0,m,β) at time 0

RS(0,m,β) = 1

m

∫ m

0
fS(0, s,β) ds

= β(0) + (
β(1) + β(2)

)1 − e−γ (1)m

γ (1)m
− β(2)e−γ (1)m

+ β(3) 1 − e−γ (2)m

γ (2)m
− β(3)e−γ (2)m.

The Svensson yield curve RS(0,m,β) allows for flexible shapes under appropriate
parameter choices β (see e.g. Diebold–Li [57], Fig. 5, and Bolder–Stréliski [21],
Fig. 1). It has the following properties for γ (1), γ (2) > 0

lim
m→∞RS(0,m,β) = β(0) and lim

m→0
RS(0,m,β) = β(0) + β(1),

where the second limit follows by l’Hôpital’s rule. The parameter β(0) is the long
term rate and β(0) +β(1) is the instantaneous spot rate r(0) at time 0. The short term
factor β(1) is related to the slope of the yield curve. The mid term factors β(2) and
β(3) are related to the curvature of the yield curve with loadings determined by γ (1)

and γ (2), respectively, see Sect. 2.2 in Diebold–Li [57] and Bolder–Stréliski [21] for
more information on this topic.

For the estimation of parameter β , minimum least squares methods are used
with highly rated coupon bonds, for instance, reliable government bonds, see Müller
[119]. We demonstrate this in more detail. Government bonds and corporate bonds
are coupon bonds that are issued by a national government or by a corporation,
respectively. These coupon bonds have a fixed maturity date m, a fixed nominal
value v and they typically pay yearly a fixed coupon c > 0. Assume that we have
two different coupon bonds with identical maturity dates m, nominal values v and
coupons c. We denote their prices at time t = 0 by π(1)(0,m, c) and π(2)(0,m, c). In
most cases we observe that π(1)(0,m, c) 	= π(2)(0,m, c). One reason for this price
inequality is that the issuers of the two coupon bonds may have different default
probabilities. In case of default the holder of the coupon bond may lose both the
coupon c and the nominal value v. Henceforth, if issuer (1) has a higher default
probability than issuer (2), and all the other characteristics are the same, then we
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expect π(1)(0,m, c) < π(2)(0,m, c) which accounts for this higher default assess-
ment.

Because we would like to calibrate default-free ZCBs (and the corresponding
yield curve) we need to choose coupon bonds that are highly rated or, in other
words, which have a negligible default probability, and which are traded at deep
and liquid markets meaning that they have transparent and reliable market prices.
Typically, government bonds fulfill these requirements which makes them appropri-
ate for calibration. However, we would like to indicate that government bonds are
not always highly rated with reliable prices as, for instance, Greece, Ireland, Spain
and Portugal have shown in 2010–2012.

We measure time in yearly units. The Svensson price at time t = 0 for a default-
free coupon bond with maturity date m ∈ N, nominal (principal, face) value v = 1
and yearly coupon c > 0 is given by

πS(0,m, c,β) =
m∑

t=1

c exp
{−t RS(0, t,β)

} + exp
{−m RS(0,m,β)

}
.

From this Svensson price we determine the yield-to-maturity rate yS(m, c,β) given
by the unique solution yS > −1 of

πS(0,m, c,β) =
m∑

t=1

c

(1 + yS)t
+ 1

(1 + yS)m
.

Since we have six components in parameter β , we choose N > 6 highly rated
coupon bonds with maturity dates mi , nominal values 1, coupons ci and observed
market yield-to-maturity rates y

(i)
M for i = 1, . . . ,N . The minimum least squares

estimator for β based on these observations is given by the solution

β̂S = arg min
β

N∑

i=1

(
y

(i)
M − yS(mi, ci,β)

)2
. (2.2)

This provides the estimated Svensson yield curve m �→ RS(0,m, β̂S) for the mini-
mum least squares estimator β̂S of β .

Depending on the purpose we could also minimize other l2-distances or other
loss functions. A slight modification of (2.2) is obtained by introducing weights
for different maturity dates mi . Another approach is to minimize the l2-distance
between other key figures like the Svensson prices πS(0,mi, ci,β) and the corre-
sponding observed market prices π

(i)
M . Depending on the purpose different statistics

may provide more appropriate results. If we perform the same estimation proce-
dure setting β(3) = 0 we obtain the Nelson–Siegel parameter estimate β̂NS and the
corresponding estimated Nelson–Siegel yield curve m �→ RNS(0,m, β̂NS).

Example 2.6 Swiss government bonds called “Eidgenossenschaft” are regarded as
highly rated. Therefore we use these to estimate the yield curve for the Swiss cur-
rency CHF. We choose yield-to-maturity rates of 10 different Swiss government
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Fig. 2.1 Estimated Svensson yield curve m �→ RS(0,m, β̂S) as of January 1, 2009, together with
the observed yield-to-maturity rates of 10 different Swiss government bonds

bonds according to their market values as of January 1, 2009 (see Fig. 2.1). If we
estimate the Svensson parameter β̂S by (2.2) we obtain the yield curve plotted in
Fig. 2.1. Note that it is not strictly increasing. Due to the financial distress situation
in 2008/2009 we obtain a non-monotonic development of the term structure of inter-
est rates for short maturities m. This reflects current market beliefs and uncertainties
about future interest rate developments.

We conclude with the following remarks. We have described how the parame-
ters of Nelson–Siegel and Svensson yield curves can be estimated. Of course, we
could also choose any other parametric curve, like cubic B-splines and exponential
polynomial families and fit those to the observed data. For more on such calibration
techniques we refer to Chap. 3 in Filipović [67] and Hagan–West [78].

In actuarial problems it is of special interest to have reliable estimates also at the
long end of the yield curve, i.e. for long times to maturity. For example, cash flows
of life insurance products can have a time horizon of 50 years. Since in practice
there are no market data available for such long times to maturity, extrapolation
methods are used for the long end of the yield curve. Currently, there does not exist
a general agreement how this should be done and research still aims to find a robust
and reliable method using different (economic) approaches.

2.2 Basic Discrete Time Stochastic Model

In the previous section, we have calibrated the yield curve m �→ R(t,m) at a fixed
point t in time. For predicting future values of assets and liabilities, we would like
to know how the yield curve evolves in the future. Therefore, we aim to model the
(stochastic) evolution of the yield curve. There are different modeling approaches:
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(i) economic approaches that model underlying macro-economic factors (like eco-
nomic growth, money supply and interest policy of the central bank, inflation rate,
unemployment rate, real activity, etc.) and then the yield curve evolution is linked to
these factors, (ii) purely statistical approaches that study yield curve time series, and
(iii) financial mathematical approaches that are based on consistent and arbitrage-
free pricing systems. We focus on the latter and give interpretations to the factors in
terms of economic variables whenever possible. Moreover, statistical methods are
used for model calibration. We insist on having consistent and arbitrage-free pricing
systems. This is especially important in markets where we have highly correlated
financial instruments as it is the case for ZCBs; we will come back to this below and
we also refer to Teichmann–Wüthrich [152].

We model the yield curve behavior in a discrete time setting.

2.2.1 Valuation at Time 0

Throughout we choose a fixed finite time horizon n ∈ N and a discrete time setting
with points in time t ∈ J = {0,1, . . . , n}. Our goal is to value discrete time cash
flows X = (X0, . . . ,Xn) at any point in time t ∈ J , where we interpret Xk to be
the payment done at time k ∈ J . In the sequel the notation J− = {0,1, . . . , n− 1}
will also be helpful.

Time Convention In more generality, we should assume that we have points in
time 0 = t0 < t1 < · · · < tn−1 < tn, where tk ∈R denotes the point in time (in yearly
units) when Xk is paid. In order to keep the notation simple, we assume that tk = k

for all k ∈ J , i.e. cash flows X = (X0, . . . ,Xn) are paid on a yearly grid where the
span of the grid will be denoted by δ = 1 (in years). On the other hand, if we work
on a yearly grid, we have only a few observations to calibrate the model parameters
from (e.g. 10 observations for the time period from 1999 until 2008). Therefore in
examples below, we switch to a monthly grid with span δ = 1/12, meaning that we
have time points

tk = k δ for k ∈ J .

If parameters relate to non-yearly grids (δ 	= 1), we indicate this with a subscript δ

in the parameters, see for instance Example 3.9, below.
We choose a (sufficiently rich) filtered probability space (Ω,F ,P,F) with prob-

ability measure P and filtration F = (Ft )t∈J on the measurable space (Ω,F ).
Thus, we have an increasing sequence of σ -fields Ft on the probability space
(Ω,F ,P) satisfying F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ F . The σ -field Ft plays the role
of the information available at time t ∈ J . We set F0 = {∅,Ω} and Fn = F .

The probability measure P plays the role of the real world probability measure,
also called objective probability measure or physical probability measure. It is the
measure under which the cash flows and price processes are observed. We denote
the expected value with respect to the real world probability measure P by E.
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Assumption 2.7 We assume that all cash flows X = (X0, . . . ,Xn) are F-adapted
random vectors on (Ω,F ,P,F) with all components Xk of X being integrable. We
write X ∈ L1

n+1(Ω,F ,P,F).

Notation X = (X0, . . . ,Xn) ∈ L1
n+1(Ω,F ,P,F) means that (i) Xk is Fk-

measurable for all k ∈ J , i.e. Xk is observable w.r.t. the information Fk available
at time k; (ii) the expected value of Xk under P exists for all k ∈ J .

Example 2.8 (Default-free zero coupon bond) The cash flow of the default-free
ZCB with maturity date m ∈ J is given by

Z(m) = (0, . . . ,0,1,0, . . . ,0) ∈R
n+1,

where the “1” is at the (m + 1)-st position. Of course, Z(m) ∈ L1
n+1(Ω,F ,P,F)

holds true. Note that Z(m) is a default-free ZCB meaning that the cash flow Xm = 1
at time m is paid with probability 1 (P-a.s.).

Definition 2.9 An (n + 1)-dimensional random vector X = (X0, . . . ,Xn) is called

(a) non-negative (X ≥ 0) iff Xk ≥ 0, P-a.s., for all k ∈ J ;
(b) positive (X > 0) iff X ≥ 0 and there exists k ∈ J such that P(Xk > 0) > 0;
(c) strictly positive (X � 0) iff Xk > 0, P-a.s., for all k ∈ J .

Observe that the default-free ZCB introduced in Example 2.8 satisfies Z(m) > 0.
We build a valuation framework for F-adapted stochastic cash flows X. This is

done based on Bühlmann [30, 31] and Wüthrich et al. [168] using so-called state
price deflators. The motivation goes as follows. Assume Q is a positive, continu-
ous and linear (valuation) functional with normalization Q[Z(0)] = 1 on the Hilbert
space L2

n+1(Ω,F ,P,F) of F-adapted and square integrable cash flows X. Then,
Riesz’ representation theorem says that there exists a P-a.s. unique, F-adapted and
strictly positive random vector ϕ = (ϕ0, . . . , ϕn) ∈ L2

n+1(Ω,F ,P,F) with ϕ0 ≡ 1
such that

Q[X] = E

[ ∑

k∈J

ϕk Xk

]
for all X ∈ L2

n+1(Ω,F ,P,F),

for details see Theorem 2.5 in Wüthrich et al. [168]. Thus, on the Hilbert space of
square integrable cash flows there is a one-to-one correspondence between valuation
functionals Q and random vectors ϕ. The assumption of square integrability is often
too restrictive for pricing insurance cash flows. Therefore, we relax this assumption
which provides the following comprehensive valuation framework.

Definition 2.10 (State price deflator) Assume ϕ = (ϕ0, . . . , ϕn)∈L1
n+1(Ω,F ,P,F)

is a strictly positive random vector with normalization ϕ0 ≡ 1. Then ϕ and its com-
ponents ϕk , k ∈ J , are called state price deflator (actuarial mathematics), financial
pricing kernel (financial mathematics) or state price density (economic theory).
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We choose a fixed state price deflator ϕ ∈ L1
n+1(Ω,F ,P,F). The set of F-

adapted cash flows which can be priced relative to the state price deflator ϕ is given
by

Lϕ =
{

X ∈ L1
n+1(Ω,F ,P,F); E

[ ∑

k∈J

ϕk |Xk|
∣∣∣
∣F0

]
< ∞

}
. (2.3)

In particular, (2.3) characterizes all risks (cash flows) that can be insured according
to the choice ϕ. For other cash flows no unlimited insurance cover can be offered un-
der ϕ. For instance, there is no unlimited insurance cover against earthquake events
or for nuclear power accidents available at the insurance market (which should be
reflected by an appropriate choice of the state price deflator ϕ).

This then allows to define the value of cash flow X ∈ Lϕ at time 0 w.r.t. the state
price deflator ϕ as follows

Q0[X] = E

[ ∑

k∈J

ϕk Xk

∣
∣
∣
∣F0

]
. (2.4)

Throughout we assume that a fixed state price deflator ϕ ∈ L1
n+1(Ω,F ,P,F)

is given. Then we value the cash flows X ∈ Lϕ relative to ϕ using (2.4).

At this point, we could analyze the properties of the subset Lϕ ⊂ L1
n+1(Ω,F ,

P,F), i.e. the properties of insurable cash flows relative to ϕ. However, the only
property that we will need is that X,Y ∈ Lϕ implies X + Y ∈ Lϕ which is clear.

Remarks and Outlook

• We recall the properties of state price deflators ϕ = (ϕ0, . . . , ϕn): (i) F-adapted;
(ii) integrable components ϕk ; (iii) strictly positive; and (iv) normalized.

• We have fixed a state price deflator ϕ ∈ L1
n+1(Ω,F ,P,F) for the valuation of

(insurance) cash flows X ∈ Lϕ . In general, there are infinitely many state price
deflators and the crucial question is: which one should be chosen?

Bühlmann et al. [34] and Föllmer–Schied [71], Chap. 5, start with a financial
market model that describes price processes of financial assets. Trading strategies
on these financial assets generate the corresponding cash flows. On these cash
flows one then constructs the pricing functional Q and ϕ, respectively, so that one
obtains a valuation framework free of arbitrage which explains the price forma-
tion at the financial market. This argumentation is based on cash flows generated
by traded financial instruments. Our valuation framework extends this viewpoint
in the sense that it allows to value also (non-traded, non-hedgeable) insurance
cash flows. Basically, market risk aversion and legal constraints determine ap-
propriate state price deflators ϕ which in turn provide the insurable cash flows
X ∈ Lϕ and the corresponding prices via (2.4).
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• The L2-framework as introduced in Bühlmann et al. [34] gives a nice connection
between the valuation functional Q and the state price deflator ϕ using Riesz’
representation theorem. Föllmer–Schied [71] use for the same valuation purpose
a different approach in the sense that they directly target for the equivalent martin-
gale measure, see Theorem 5.17 in Föllmer–Schied [71]. This will be the subject
of Sect. 2.3, below.

• In Sect. 2.2.3 we introduce valuation at time t > 0. In Chaps. 3 and 4 we give
explicit models for state price deflators and we explain how these models are
used for yield curve prediction. In Chap. 5 we describe the financial market and
explain how this fits into our valuation framework. This will be crucial for the
valuation of insurance liabilities which is the main topic of Part II of this book.

2.2.2 Interpretation of State Price Deflators

Assume that a fixed state price deflator ϕ ∈ L1
n+1(Ω,F ,P,F) is given.

The state price deflator component ϕk transports (random) cash amounts Xk at
time k to values in time 0. This transportation is a stochastic transportation. This
means that ϕk plays the role of a stochastic discount factor. Consider a cash flow
Xk = (0, . . . ,0,Xk,0, . . . ,0) ∈ Lϕ . Its price at time 0 is given by

Q0[Xk] = E[ϕkXk|F0].

This highlights the stochastic discounting mechanism of the state price deflator ϕk

applied to the cash flow Xk paid at time k.
In general, the cash flows X ∈ Lϕ are not uncorrelated from the state price de-

flator ϕ, i.e.

Q0[X] = E

[ ∑

k∈J

ϕk Xk

∣∣
∣∣F0

]
	=

∑

k∈J

E[ϕk|F0] E[Xk|F0]. (2.5)

Therefore the evaluation of Q0[X] needs to be done carefully. Assume that the state
price deflator ϕ describes stochastic risk factors from the financial market and X is
an insurance cash flow that describes the payouts to the insured. Then the valuation
functional Q0 allows for the modeling of financial guarantees and options in the
insurance cash flow X. Since these financial options and guarantees depend on the
same risk drivers as the state price deflator we typically have correlation between X
and ϕ and arrive at inequality (2.5). If the state price deflator ϕ is uncorrelated with
the insurance cash flow X then the valuation can be done separately by taking the
appropriate expected values in (2.5). This then leads to replicating portfolios for ex-
pected liabilities, represented in terms of ZCB prices given by P(0, k) = E[ϕk|F0],
see also Example 2.11, below. These replicating portfolios and inequality (2.5) are
further elaborated in Chap. 7.



2.2 Basic Discrete Time Stochastic Model 23

Example 2.11 (Default-free zero coupon bond price) For the value at time 0 of the
default-free ZCB with maturity m ≤ n we obtain

P(0,m) = Q0
[
Z(m)

] = E[ϕm|F0]. (2.6)

Hence, Q0[Z(m)] describes the F0-measurable ZCB price at time 0, see also Def-
inition 2.1. Therefore, P(0,m) also transports cash amounts at time m to values in
time 0. Note that P(0,m) is F0-measurable, whereas ϕm is an Fm-measurable ran-
dom variable. This means that the discount factor P(0,m) is known at the beginning
of the time period [0,m], whereas ϕm is only known at the end of the time period
[0,m]. As long as we deal with deterministic cash flows X, we can work either with
ZCB prices P(0,m) or with state price deflators ϕ to determine the value of X at
time 0. But as soon as the cash flows are stochastic we need to work with state price
deflators ϕ since X and ϕ may be influenced by the same risk factors and therefore
may be dependent, see (2.5) and (8.11).

We close this subsection with the following remark. The standard assumption
will be that the components ϕk of the state price deflator ϕ are integrable, see Defi-
nition 2.10. Below we will consider several different explicit models for state price
deflators. Typically, we will start with an (n + 1)-dimensional F-adapted random
vector for ϕ and the integrability condition is then proved by checking whether we
obtain finite ZCB prices (2.6).

2.2.3 Valuation at Time t > 0

In the previous subsections, we have only defined valuation at time t = 0. We now
extend the valuation to any time point t ∈ J which then leads to price processes
(Qt [X])t∈J for the cash flows X ∈ Lϕ . This extension should be done such that
we obtain consistent or arbitrage-free price dynamics.

Definition 2.12 Assume a fixed state price deflator ϕ ∈ L1
n+1(Ω,F ,P,F) is given.

We define the price processes (Qt [X])t∈J for cash flows X ∈ Lϕ as follows:

Qt [X] = 1

ϕt

E

[ ∑

k∈J

ϕk Xk

∣∣
∣∣Ft

]
, for t ∈ J . (2.7)

Qt [X] denotes the value/price of the cash flow X at time t ∈ J . This price is
well-defined because ϕt is strictly positive, P-a.s., and it is Ft -measurable. More-
over, Definition 2.12 is in line with (2.4) at time 0 due to ϕ0 ≡ 1. Note that this price
process (Qt [X])t∈J depends on the given choice of the state price deflator ϕ.
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An important statement is given in the following proposition:

Proposition 2.13 Assume that a fixed state price deflator ϕ ∈ L1
n+1(Ω,F ,P,F) is

given and that the price processes (Qt [X])t∈J of X ∈ Lϕ are defined by (2.7). The
deflated price processes (ϕtQt [X])t∈J are (P,F)-martingales.

Proof Integrability follows by assumption. Since Ft ⊂ Ft+1 for t ∈ J− we have
from the tower property of conditional expectations (see Williams [159])

E
[
ϕt+1Qt+1[X]∣∣Ft

] = E

[
E

[ ∑

k∈J

ϕkXk

∣
∣
∣
∣Ft+1

]∣
∣
∣
∣Ft

]

= E

[ ∑

k∈J

ϕkXk

∣
∣
∣
∣Ft

]
= ϕtQt [X].

This finishes the proof of the proposition. �

Interpretation of Proposition 2.13 Proposition 2.13 is crucial for obtaining eco-
nomically meaningful pricing systems. It tells us that deflated price processes form
(P,F)-martingales for a fixed ϕ. These martingale properties for a given state
price deflator are a necessary and sufficient condition for the pricing system to be
arbitrage-free, i.e. it eliminates certain gains without any downside risk. This is the
key assumption for having meaningful pricing systems and in the literature it refers
to the fundamental theorem of asset pricing (FTAP). We will come back to the FTAP
in more detail in Remarks 2.21 below.

Definition 2.14 (Consistency) Choose a state price deflator ϕ ∈ L1
n+1(Ω,F ,P,F).

If the deflated price process (ϕtQt [X])t∈J is a (P,F)-martingale then (Qt [X])t∈J
is called consistent w.r.t. ϕ (or ϕ-consistent).

Remark The if-statement in Definition 2.14 might look strange at first sight because
all price processes defined by (2.7) are ϕ-consistent (see Proposition 2.13). The
reason for stating Definition 2.14 in the above form is that below we also define
price processes differently from (2.7) and then we first need to check the consistency
condition.

Example 2.15 (Default-free zero coupon bond prices) We calculate the price of the
default-free ZCB with maturity m ≤ n at time t ≤ m. Definition 2.12 provides the
Ft -measurable and ϕ-consistent price

P(t,m) = Qt

[
Z(m)

] = 1

ϕt

E[ϕm|Ft ]. (2.8)

Example 2.16 (Risk-free spot rates) In our discrete time setting the shortest time
period is defined by the span δ = 1 of the yearly grid size. This implies that the
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one-period risk-free asset at time t is given by the ZCB with maturity date t + 1. Its
ϕ-consistent price at time t is given by

P(t, t + 1) = Qt

[
Z(t+1)

] = 1

ϕt

E[ϕt+1|Ft ].

The annual risk-free return at time t is described by the Ft -measurable continuously-
compounded spot rate

R(t, t + 1) = − logP(t, t + 1) = − logE

[
ϕt+1

ϕt

∣∣
∣∣Ft

]
,

or by the Ft -measurable annually-compounded (or simply-compounded) spot rate

Y(t, t + 1) = L(t, t + 1) = P(t, t + 1)−1 − 1 = E

[
ϕt+1

ϕt

∣∣∣∣Ft

]−1

− 1.

Or in other words, the one-period risk-free investment at time t has price

P(t, t + 1) = e−R(t,t+1) = (
1 + Y(t, t + 1)

)−1 = 1

ϕt

E[ϕt+1|Ft ].

Note that R(t, t + 1) relates to the annual return of the bank account (see (2.12)
below). That is, if we invest one unit of currency at time t into the bank account we
get a risk-free value of P(t, t + 1)−1 = exp{R(t, t + 1)} one period later (at time
t + 1). It is important to realize that this “one period later” is strongly related to
the choice of the grid size (yearly grid here). If we have a monthly grid, i.e. if we
choose span δ = 1/12, then the value of the bank account grows as exp{δR(t, t +δ)}
because we have reinvestment possibilities after every month. This is a first example
that shows limitations of a discrete time framework, namely that the risk-free return
of the bank account is only defined relative to span δ (and the smallest time interval
is not well-defined if we are allowed to refine the grid size).

In this discrete time setting we define the span-deflator by ϕ̆0 = 1 and for t ∈ J−

ϕ̆t+1 = ϕt+1

ϕt

. (2.9)

The span-deflator ϕ̆t+1 is Ft+1-measurable and transports cash amounts (stochas-
tically) from time t + 1 to time t . The continuously-compounded spot rate is then
given by

R(t, t + 1) = − logP(t, t + 1) = − logE[ϕ̆t+1|Ft ].
Moreover, for given span-deflator ϕ̆ = (ϕ̆t )t∈J we rediscover the state price defla-
tor ϕ = (ϕt )t∈J by considering the products

ϕt =
t∏

s=0

ϕ̆s . (2.10)
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In many models the state price deflator ϕ has a product structure (2.10) and in these
cases it is natural to directly model the span-deflator ϕ̆. For further discussions of
span-deflators we refer to Bühlmann et al. [34] and Wüthrich et al. [168].

2.3 Equivalent Martingale Measure

The price processes (Qt [X])t∈J are expressed in the fixed reference currency cho-
sen at the beginning, see start of Sect. 2.1 and Definition 2.1. Under the assumption
that the price processes are consistent w.r.t. the given state price deflator ϕ we have
martingales (ϕtQt [X])t∈J under the real world probability measure P, see Propo-
sition 2.13 and Definition 2.14. Theoretically, we can choose any strictly positive
price process as reference unit. The choice of such a reference unit is called choice
of numeraire. There is one specific numeraire which we are going to discuss and
analyze in this section, the so-called bank account numeraire.

2.3.1 Bank Account Numeraire

If we choose as basis for discounting on the yearly grid the one-year risk-free assets
described by the ZCB prices P(t, t + 1) at times t ∈ J−, see Example 2.16, we
obtain the discrete time bank account numeraire. Let us describe how this is done.
We define the one-year risk-free returns by the continuously-compounded spot rates
as

rt
def.= R(t, t + 1) = − logP(t, t + 1). (2.11)

In contrast to the instantaneous spot rate r(t) in continuous time (see Definition 2.3)
we denote the continuously-compounded spot rate (in discrete time for one period)
with a subscript rt . Note that rt is Ft -measurable, i.e. known at the beginning of the
time period (t, t + 1]. Then, in this yearly discrete time setting, we define the value
of the bank account (money market account) at time t ∈ J by

Bt = exp

{
t−1∑

s=0

rs

}

= exp

{
t−1∑

s=0

R(s, s + 1)

}

> 0, (2.12)

where an empty sum is defined to be zero, i.e. B0 = 1. Bt describes the value at
time t of an initial investment of one unit of currency at time 0 into the bank ac-
count (one-year risk-free rollover, see Example 2.16). The value of the bank account
Bt is known at time t − 1, that is, it is previsible or so-called locally riskless, see
Föllmer–Schied [71], Example 5.5. For these bank account values (Bt )t∈J we can

construct an equivalent probability measure P
∗ ∼ P such that the (B−1

t )t∈J dis-
counted price processes are (P∗,F)-martingales, see Proposition 2.18 below. This
equivalent probability measure P∗ for the bank account numeraire (Bt )t∈J is called
equivalent martingale measure, risk-neutral measure or pricing measure.
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Remark on Time Convention In this discrete time setting the choice of the grid
size is crucial. If we choose a monthly grid δ = 1/12, the bank account is defined
by

B
(δ)
t = exp

{
t−1∑

s=0

δ R
(
sδ, (s + 1)δ

)
}

> 0. (2.13)

This is the value at time tδ of an initial investment of one unit of currency at time
0 into the bank account. Note that B

(δ)
1 = exp{δ R(0, δ)} = P(0, δ)−1 which shows

that the units were chosen correctly.
If we invest one unit of currency at time 0 into the ZCB with maturity m = 1

(one year) then this value differs from the value of a similar investment into the
bank account on the monthly grid δ = 1/12, i.e. in general

P(0,1)−1 	= B
(δ)
1/δ. (2.14)

This highlights the difficulties if one works in a discrete time setting, namely that
the shortest possible time interval for investments may not be well-defined if one
is allowed to refine the grid size. Therefore, we first choose δ > 0 and then build
our theory around this choice. These difficulties can be avoided by going over to
a continuous time setting. No doubt, continuous time models are mathematically
much more demanding, however they often do not have richer economic properties.
Therefore, we decided to work in a discrete time setting. We would like to mention
that discrete time models have some limitations (compared to continuous time mod-
els). Below we will meet situations where we need a continuous time framework to
obtain the full flavor of the problem.

2.3.2 Martingale Measure and the FTAP

In this subsection we construct the equivalent martingale measure P
∗ for the bank

account numeraire (Bt )t∈J and we explain how its existence is related to the fun-
damental theorem of asset pricing (FTAP).

Lemma 2.17 Assume a fixed state price deflator ϕ ∈ L1
n+1(Ω,F ,P,F) is given.

The process (ξt )t∈J defined by ξt = ϕtBt is a strictly positive (P,F)-martingale
with expected value 1.

Proof By definition we have ϕ � 0 and ϕ ∈ L1
n+1(Ω,F ,P,F) which implies strict

positivity of ξt for all t ∈ J . Note that Bt+1 is Ft -measurable. Henceforth, for
t ∈ J− we have that

E[ξt+1|Ft ] = Bt+1 E[ϕt+1|Ft ] = Bt+1 ϕt P (t, t + 1) = ϕtBt = ξt ,
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which proves the martingale claim. Moreover, this implies for all t ∈ J− (recall the
normalization ϕ0 ≡ 1 and P(0,1) = B−1

1 )

E[ξt+1|F0] = E[ξ1|F0] = B1 E[ϕ1|F0] = B1P(0,1) = 1 = ξ0,

see (2.8). This completes the proof. �

Lemma 2.17 states that the price process (Bt )t∈J of the bank account is con-
sistent w.r.t. ϕ with initial value 1 (initial investment). Moreover, this price process
(Bt )t∈J is strictly positive which implies that we can use it as a numeraire, see
Sect. 11.2. Thus, (ξt )t∈J is a density process, see (11.1) below, and we can use it to
define an equivalent probability measure P∗ ∼ P via the Radon–Nikodym derivative

dP∗

dP

∣
∣
∣
∣Fn = ξn = ϕn Bn > 0.

In the following we denote the expected value w.r.t. P∗ by E
∗. For A ∈ Fn we

have P
∗[A] = E

∗[1A] = E[ξn1A], and for the calculation of conditional expecta-
tions w.r.t. P∗ and Ft , t ∈ J , we refer to Lemma 11.3 below. Lemma 11.5 then
immediately gives the following proposition.

Proposition 2.18 Assume a fixed state price deflator ϕ ∈ L1
n+1(Ω,F ,P,F) is

given and that the price processes (Qt [X])t∈J of X ∈ Lϕ are defined by (2.7). The

bank account numeraire discounted price processes (B−1
t Qt [X])t∈J are (P∗,F)-

martingales.

Proposition 2.13 says that ϕ deflated price processes (ϕtQt [X])t∈J are martin-
gales w.r.t. the real world probability measure P, which is exactly the consistency
property w.r.t. ϕ, see Definition 2.14. The slightly unpleasant feature of the state
price deflator ϕ is that ϕt is only observable at time t . Often, a discount factor that
is previsible, i.e. Ft−1-measurable, is advantageous. The bank account numeraire
(Bt )t∈J exactly provides this previsible discount factor. For this previsible discount
factor we need to consider price processes under the so-called equivalent martingale
measure P

∗ ∼ P (according to Proposition 2.18), i.e. bank account numeraire dis-
counted price processes (B−1

t Qt [X])t∈J are (P∗,F)-martingales. This gives the
nice property

B−1
t−1 Qt−1[X] = E

∗[B−1
t Qt [X]∣∣Ft−1

] = B−1
t E

∗[Qt [X]∣∣Ft−1
]
,

i.e. the discount factor B−1
t is already observable at time t − 1 (previsible, locally

riskless).
In financial mathematics one usually works under the bank account numeraire

and P
∗ since many derivations of price processes are easier and more straightfor-

ward under P
∗. However, for actuarial purposes one always needs to keep track

of the real world probability measure P because insurance benefits and parameter
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choices can only be understood and modeled under P. We will always use the rep-
resentation that is practically more useful for the explicit problems considered.

Under the assumptions of Proposition 2.13, we obtain the following two corol-
laries from Lemma 11.4. The first corollary tells us how we can calculate the price
of a ZCB at time t ≤ m under the real world probability measure P or under the
equivalent martingale measure P

∗:

Corollary 2.19 The price of the ZCB with maturity m ≤ n at time t ≤ m is given by

P(t,m) = 1

ϕt

E[ϕm|Ft ] = 1

B−1
t

E
∗[B−1

m

∣
∣Ft

] = E
∗
[

exp

{

−
m−1∑

s=t

rs

}∣
∣
∣
∣
∣
Ft

]

.

The second corollary shows us how we can calculate the price of a general cash flow
Xk at time t ≤ k ∈ J under the probability measures P and P

∗, respectively:

Corollary 2.20 The price of a cash flow Xk = (0, . . . ,0,Xk,0, . . . ,0) ∈ Lϕ at time
t ≤ k is given by

Qt [Xk] = 1

ϕt

E[ϕk Xk|Ft ] = E
∗
[

exp

{

−
k−1∑

s=t

rs

}

Xk

∣∣∣∣∣
Ft

]

.

That is, if we choose an Fk-measurable contingent claim Xk , we can easily calcu-
late its price at time t ≤ k under the valuation functional Qt . This can either be done
under the real world probability measure P using the F-adapted state price deflator
ϕ for stochastic discounting or under the equivalent martingale measure P

∗ using
the previsible bank account numeraire (Bt )t∈J for discounting.

In the next remark we are putting the existence of an equivalent martingale mea-
sure P∗ into the general pricing context. This gives the link to the literature in finan-
cial mathematics and to the concept of no-arbitrage. Due to its seminal importance
the FTAP deserves more than (just) a remark, so for an adequate and comprehensive
treatment we refer to the literature cited in Remarks 2.21.

Remarks 2.21 (Fundamental theorem of asset pricing, FTAP)

• In Definition 2.12 we have defined the price processes (Qt [X])t∈J such that
ϕ deflated price processes become (P,F)-martingales or equivalently that the
(B−1

t )t∈J discounted price processes become (P∗,F)-martingales, see Propo-
sition 2.18. These martingale properties are crucial and imply that we have a
“consistent pricing system” which corresponds to one implication of the FTAP
(see Sect. 1.6 in Delbaen–Schachermayer [56], Theorem 2.2 in Cairns [38] or
Theorem 5.17 in Föllmer–Schied [71]).

The FTAP (see Delbaen–Schachermayer [55]) says that the existence of an
equivalent martingale measure is equivalent to the appropriately defined no-
arbitrage condition. This implies that the existence of an equivalent martingale
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measure rules out appropriately defined arbitrage opportunities (see also Sect. 6.C
in Duffie [59]). In general, this is the easier implication of the FTAP and this is
also the one that we are using here (having a consistent pricing system). The ar-
gument roughly shows that if we have initial value 0, then we can prove, using
the numeraire invariance theorem, that this implies that we cannot have certain
gains without any downside risk.

The opposite question, however, is much more delicate. In the general con-
tinuous time setting, Delbaen–Schachermayer [55] gave the argument that if no-
arbitrage is defined the right way then it implies the existence of an equivalent
martingale measure. In the discrete and finite time horizon model the same ar-
gument was first given by Dalang et al. [47], an elegant proof was provided by
Schachermayer [142], and derivations based on the Esscher transform are found
in Rogers [132] and Bühlmann et al. [34].

As a consequence, in the literature many authors use the existence of an equiv-
alent martingale measure P

∗ as being equal to the no-arbitrage assumption.
• As mentioned above, the existence of an equivalent martingale measure rules out

appropriately defined arbitrage. In general, there are infinitely many equivalent
martingale measures which implies non-uniqueness of prices. If there is only one
equivalent martingale measure then the market is called complete, for instance
the Black–Scholes model leads to an arbitrage-free and complete market model
in continuous time (see e.g. Björk [13], Sect. 7.2).

• Note that we have only assumed the existence of a state price deflator ϕ on
(Ω,F ,P,F). Under this assumption we have defined a consistent pricing sys-
tem via martingales. However, this does not tell us anything about financial
risks (of asset prices) and technical risks (of insurance claims), nor does it
tell us anything about how we should organize the hedging and risk bearing.
At the current stage the filtration F contains all available economic, financial
and insurance technical information. Moreover, we assume that ϕ is F-adapted
and hence enables to deflate according to financial market information as well
as for probability distortion of insurance technical risks. This will be the key
construction in Chap. 6 where we decouple financial and insurance technical
risks.

• We mention once more that working in a discrete and finite time setting
has the advantage that the mathematics become simpler and we can concen-
trate on the intuitive properties behind the models. The drawback is that the
smallest time interval is not well-defined. This may cause problems when
we define the risk-free asset, see Example 2.16 and (2.14). In the context
of hedging of financial risks we go over to a continuous time model, see
Sect. 9.3.5.

We conclude that state price deflated price processes (ϕtQt [X])t∈J need to
be (P,F)-martingales and bank account numeraire discounted price processes
(B−1

t Qt [X])t∈J need to be (P∗,F)-martingales. P is called real world prob-
ability measure and P

∗ is called equivalent martingale measure.
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2.4 Market Price of Risk

The goal of this section is to describe the difference between the real world probabil-
ity measure P and the equivalent martingale measure P

∗ introduced in the previous
section. In doing so we give the foundations for explicit state price deflator con-
structions. The basic idea is to consider the span-deflator introduced in (2.9). We try
to identify its dynamics under both probability measures P and P

∗. This consider-
ation is then closely related to the consideration of the continuously-compounded
spot rate (rt )t∈J− = (R(t, t + 1))t∈J− . We target for models that have an appeal-
ing structure and which allow to calculate ZCB prices in closed form. One particular
family of models will lead to so-called affine term structures, which are of the form

P(t,m) = 1

ϕt

E[ϕm|Ft ] = exp
{
A(t,m) − rt B(t,m)

}
, (2.15)

for appropriate functions A(·, ·) and B(·, ·). Affine term structures have the advan-
tage that they allow for simple analytical calculations. Therefore, many contribu-
tions in the literature describe affine term structures, see e.g. Vasicek [155], Cox et
al. [44], Dai–Singleton [46] and Filipović [67].

Spot Rate Dynamics Under the Real World Probability Measure Assume that,
under P, the continuously-compounded spot rate process (rt )t∈J− satisfies: r0 > 0
(fixed) and for t = 1, . . . , n − 1

rt = f (t, rt−1) + g(t, rt−1) εt , (2.16)

where f and g are sufficiently well-behaved real- and R
N -valued functions, re-

spectively. Moreover, (εt )t∈J is an N -dimensional F-adapted process and εt+1 is
independent of Ft under P for t ∈ J−. Note that εt and g are N -dimensional and
their product in (2.16) is meant in the inner product sense on R

N . We define the
range of rt by Zt , i.e., for all t ∈ J− we have rt ∈ Zt , P-a.s.

Remark Observe that we choose an F-adapted random sequence (εt )t∈J . How-
ever, ε0 and εn from this sequence are not used for the spot rate (rt )t∈J− modeling.
But choosing the full sequence for t ∈ J sometimes simplifies the notation.

Definition of the State Price Deflator Next we choose an R
N -valued function

λ(t + 1, z) that is sufficiently well-behaved for t ∈ J− and z ∈ Zt . The function
λ plays the role of the market price of risk. It models the aggregate market risk
aversion and expresses the difference between the real world probability measure
P and the equivalent martingale measure P

∗. Here we do an exogenous choice for
the market price of risk λ. However, in a fully-fledged economic model the market
price of risk should by induced endogenously by a market equilibrium condition.

Choose an F-adapted N -dimensional process (δt )t∈J such that δt+1 is inde-
pendent of Ft under P. The process (δt )t∈J is often called deflator innovation.
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Assume that for all t ∈ J− and z ∈ Zt the expected value

E
[
exp

{
λ(t + 1, z) δt+1

}]

is finite. We define the span-deflator by ϕ̆0 ≡ 1 and for t ∈ J− we choose

ϕ̆t+1 = ct exp
{−rt + λ(t + 1, rt ) δt+1

}
,

for an appropriate Ft -measurable variable ct > 0, P-a.s. Note that the span-deflator
has the property

rt = − logP(t, t + 1) = − logE

[
ϕt+1

ϕt

∣
∣
∣
∣Ft

]
= − logE[ϕ̆t+1|Ft ]. (2.17)

This gives the normalizing requirement for ct . Namely, a straightforward calculation
provides

ct = E
[
exp

{
λ(t + 1, rt ) δt+1

}∣∣Ft

]−1
.

This leads us to the following definition

h(t + 1, z) = logE
[
exp

{
λ(t + 1, z) δt+1

}∣∣Ft

]
< ∞, P-a.s. (2.18)

Then we define the F-adapted state price deflator ϕ by

ϕt =
t∏

s=0

ϕ̆s = exp

{

−
t∑

s=1

[
rs−1 + h(s, rs−1)

] +
t∑

s=1

λ(s, rs−1) δs

}

. (2.19)

The general model assumption now is that the distributions of δt and εt and the func-
tions f , g and λ are chosen such that ϕ is a state price deflator in L1

n+1(Ω,F ,P,F):
F-adapted is clear; normalization ϕ0 ≡ 1 follows because an empty sum is defined
to be equal to 0; strict positivity follows from h < ∞ and λδs > −∞, P-a.s.; the
L1-property depends on an appropriate choice of the functions f , g and λ and the
stochastic processes (δt )t∈J and (εt )t∈J . We refrain from explicitly giving suf-
ficient conditions for the L1-property at the current stage. Below we will define
explicit models and then we will provide these conditions for every model consid-
ered.

Note that (εt , δt ) does not necessarily have a multivariate Gaussian distribution.
However, Gaussian assumptions often lead to closed form solutions. Moreover, we
did not assume anything on the dependence structure between δt and εt . Often they
are assumed to be identical, see (3.5), but the theory holds true in more general-
ity.

Definitions (2.16) and (2.19) provide a framework for explicit models for state
price deflators ϕ. In the next chapter we provide such explicit models. These
are often of the affine term structure type (2.15).
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Equivalent Martingale Measure Finally, we calculate the equivalent martingale
measure P

∗ ∼ P. The density process (ξt )t∈J is given by (see also Lemma 2.17)

ξt = ϕt Bt =
t∏

s=1

ϕ̆s exp{rs−1} =
t∏

s=1

exp
{−h(s, rs−1) + λ(s, rs−1) δs

}

=
t∏

s=1

E
[
exp

{
λ(s, rs−1) δs

}∣∣Fs−1
]−1 exp

{
λ(s, rs−1) δs

}
. (2.20)

This gives the desired (P,F)-martingale (ξt )t∈J with P-expected value 1. Note
that for λ ≡ 0 we obtain ξt ≡ 1 and the two probability measures P and P

∗ coin-
cide. From this we can see that the market price of risk λ describes the “difference”
between the real world probability measure P and the equivalent martingale mea-
sure P∗. The fact that P and P

∗ coincide for λ ≡ 0 implies in this case that ϕt = B−1
t .

Outlook In this chapter we have introduced the valuation framework for (insur-
ance) cash flows X. This was done by choosing a state price deflator ϕ, Defini-
tion 2.12 then leads to consistent price processes according to Definition 2.14. In
Part II we are going to separate these cash flows and their valuation into a financial
part and an insurance technical part by introducing the valuation portfolio. This will
require the explicit introduction of a financial market, which will become important
for the understanding of asset-and-liability management of insurance cash flows X.

In the next chapters, we give explicit models for state price deflators. This is
done in the spirit of this section. We start with Gaussian distributions for δt and εt

and later on we extend this to other distributional models. These models will also
provide the corresponding term structures of interest rates.


