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Detection of Alternatively Spliced
or Processed RNAs in Cancer Using
Oligonucleotide Microarray

Marieta Gencheva, Lixin Yang, Gong-Biao Lin and Ren-Jang Lin

Abstract

Deregulation of gene expression plays a pivotal role in tumorigenesis, so the
ability to detect RNA alterations is of great value in cancer diagnosis and
management. DNA microarrays have been used to measure changes in mRNA
or microRNA level, but less often the change of RNA isoforms. Here we
appraise the utilization of microarray in detecting alternatively processed
RNAs, which have alternative splice forms, retained introns, or altered 30

untranslated regions. We cover the methodology and focus on cancer studies.
Recent development in parallel or deep sequencing used in transcriptome
analysis is also discussed.
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1 Introduction

Cancer is a genetic disease and it is the expression of genetic information, dictated
by intrinsic genetic content and by extrinsic influences, that ultimately determines
the disease status. Thus, knowing the entire gene activities of cancer cells would
have tremendous value to cancer diagnosis and treatment. Gene expression
changes are a key feature of cancer development. The changes can be at the level
of expression, but they can also be in the forms of RNA due to alternative RNA
processing. In this chapter, we illustrate the detection of form changes in RNA due
to alternative splicing or 30 end processing. We include studies that use genomic
tiling array to detect unspliced or partially spliced RNA. We also describe parallel
or deep sequencing techniques that are recently used to analyze gene expression,
and compare them with the microarray approaches.

2 Detection of Alternatively Spliced RNA

2.1 Exon-Junction Microarray

Exon junction microarray is composed of DNA oligos that span the exon–exon
junction of a splicing event. Only correctly spliced RNA will stably hybridize to
the junction oligo, and thus allowing detection of that splicing event. Exon
junction microarray is the first type of array specifically designed to detect alter-
natively spliced RNA isoforms. The first reported design is used to detect splice
events in S. cerevisiae and comprises three oligos per gene: one exon probe, one
intron probe, and one splice junction probe [1].

To detect exon skipping events in human cells, Shoemaker and colleagues use
an array that contains exon junction probes targeting all splice junctions
in *10,000 multi-exon genes [2]. This microarray is used to profile 52 human
tissues; they discover evidence of exon skipping in 74 % of those human multi-
exon genes, and they also detect a number of previously unidentified splice iso-
forms. Subsequent microarray designs include exon-body probes, together with
exon-junction probes [3–5]. These improved microarrays permit better measure-
ments of RNA isoform quantities. For example, to detect a cassette exon, a probe
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set typically consists of exon-body probes to detect the alternative exon and the
two flanking exons, as well as probes that monitor each of the three splice junc-
tions. Quantification in the exon-junction arrays depends on the optimal oligo
design and probe length, as well as on the data analysis algorithms [4–6]. The
design of the junction probe is particularly challenging, since flexibility in
choosing the oligo sequences is restricted.

Exon junction microarray is used to determine alternative splicing changes in
cell lines derived from Hodgkin lymphoma tumors at different disease stages [7].
Selected genes involved in apoptosis, cell signaling, proliferation, and regulation
of splicing are included in the array. Constitutive exons, alternative exons, and
splice junctions are monitored by oligonucleotide pairs, one has perfect match and
the other contains a single mismatch. Unsupervised clustering of the array data
illustrates a clear separation of Hodgkin cell lines and a normal B cell line, with
about 20–30 % of the splicing events showing a change in splice isoforms.

In collaboration with the Ares group, we employ exon-junction microarrays to
detect alternative splicing changes in two breast cancer cell lines, MCF7 and MDA-
MB-231 [8]. We elect to study 64 genes whose alternative splicing is well docu-
mented or linked to cancer. For a cassette exon, each alternative splicing event is
monitored by oligonucleotide probes, three targeting the splice junctions and three
exon-body probes targeting the alternative exon and the two adjacent constitutive
exons. For each cassette exon, a skipping index and an inclusion index are calcu-
lated, based on the ratio of the signal from junction probes and the signal from
constitutive exon probes. A cutoff of 1.5-fold change in the skipping or inclusion
indexes is used to detect alternative splicing events. We first compare the two breast
cancer cell lines to human mammary epithelial cells (HMEC) and detect a change
in splicing pattern in the cancer cell lines for a number of genes, including hnRNPA/
B, RBM9, FAS, and MYL6. We also identify differentially spliced isoforms between
MCF7 and MDA-MB-231 cell lines for HRMT1L1, APLP2, CD44, VEGF, ESR1,
and EEF1D. Our microarray study also shows that alternative splicing in tumor
xenograft is more closely related to splicing in three dimensional Matrigel cultures
than to splicing in two dimensional flat dish cultures.

The use and design improvement of exon junction microarray for detecting
alternative splicing have since been described recently including lung cancer
studies [9], analysis of the human transcriptome [10], and ABC transporter
splicing in drug development [11].

2.2 Ligation-PCR Followed by Microarray Detection

A different method to detect alternatively spliced transcripts is to take advantage of
accurate and specific ligation of oligonucleotides hybridizing at the splice junction
[12]. The RASL assay (RNA-mediated annealing, selection, and ligation) does not
involve prior RNA purification or cDNA synthesis, but is based on detecting a
RNA splice junction by annealing to it in solution two oligos complementary to
the two respective exonic sequences which create the junction. The correctly
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annealed oligos are then ligated and become templates for PCR, which are
amplified using universal primers, labeled by either biotin or a dye. The products
of the RASL reaction are then hybridized to a fiber optic bead array. This approach
has great specificity of detecting a defined set of transcripts by virtually elimi-
nating the problems of cross-hybridization. The method is also more sensitive
compared to exon or splice junction arrays that rely on direct hybridization,
especially when monitoring small differences between different samples. RASL
can detect a well-expressed RNA transcript isolated from less than ten cells, as
well as to specifically amplify a transcript from a highly complex RNA mixture.

The RASL method is further improved by first converting mRNA to cDNA in a
method called DASL (cDNA-mediated annealing, selection, extension and liga-
tion) [13]. The oligo-annealing and ligation steps are also modified to include a
locus-specific oligonucleotide extension. Rather than ligating two oligos at the
splice junction as in the case of RASL, this approach permits a gap of 1–20 nt
between them, thus providing flexibility for choosing optimal sequences for the
oligos and resulted in increasing specificity. The assay is automated and used to
detect considerably degraded mRNAs from formalin-fixed and paraffin-embedded
tumor samples [14]. The assay is used to profile both transcript abundance and
alternatively spliced isoforms in prostate cancer tissues and cell lines [15]. The
study identifies a panel of 104 RNA isoforms, the majority of which displays
differential expression between normal and tumor prostate tissue and thus can be
used as biomarkers. In addition, many alternatively spliced genes linked to prostate
tumors are revealed, and differential splicing in MAPT, CACNA1D, and AMACR is
validated by RT-PCR. The DASL assay is commercialized by Illumina, which
assembles a DASL panel of 502 genes linked to cancer for monitoring gene
expression and alternative splicing [16]. The company also supports custom probe
panel creation and can profile up to 1,536 targets.

2.3 Exon Microarray

2.3.1 Design and Analysis of Exon Microarray
Since alternatively spliced RNAs have different combinations of exons, one could
use quantity changes of individual exons as indicators of alternative splicing. Exon
microarrays to detect individual exons in humans and other organisms have been
produced. For example, the Affymetrix human exon array contains 5.3 million
features (oligo probes) grouped into 1.4 million probe sets. One probe set is
typically designed to detect one exon, although some exons have more than one
probe set. The array can detect approximately 1.1 million exons or exon clusters,
which can be grouped into more than 300,000 different RNAs or transcript clus-
ters. Apart from targeting exons of well known genes, the array also includes
probes that map to exons and transcripts supported only by EST or gene prediction
algorithms; about half of the probes on the array are based on ESTs or GENE-
SCAN only and offering an opportunity to discover unannotated exons or novel
transcripts. The probes are grouped together according to supporting evidence and
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the user can choose to look at the signal from only well-annotated exons (core
exons, supported by RefSeq and full length GenBank mRNAs), the extended set
(ESTs, syntenic rat and mouse mRNAs), or the full set of probes (gene predic-
tions). Exons of less than 25 bases are not represented on the array due to
hybridization requirements, so some short exons as well as some alternative 5 or 30

splice sites are not interrogated by this array.
The exon array can also be used to derive gene level expression data, which is

important when analyzing alternative splicing. Since there are no mismatch probes
for background estimation, the exon array has to use a different algorithm to
estimate nonspecific hybridization by using genomic or antigenomic background
probes with defined GC content. Several groups have actually used the human
exon array to obtain reliable gene expression data comparable to those from
conventional gene arrays [17–20]. Gene expression estimates from the exon array
are further improved by selecting only probes with a reliable signal, while
removing probes that perform poorly or cross-hybridize to more than one target in
the genome [21, 22].

2.3.2 Alternative Splicing in Cancer Detected by Exon Microarray
The exon array has been used to assess alternative splicing in cancer. A study
to compare colon tumors with normal tissues has been reported [17]. The authors
filter the data both at exon level and at gene level to eliminate outliers and retain
exons/transcripts with signal above background. Then they calculate a Splicing
Index (SI), which represents the log ratio of exon signals between normal tissue
and tumors after normalization to the gene signal. The SI index is used
in the MIDAS algorithm (ExACT program, http://www.affymetrix.com/products/
software/specific/exact.affx) to test the hypothesis that no alternative splicing
occurs for a given exon. This approach identifies a list of potentially differentially
spliced genes between normal and tumor colon tissues. Among the 43 genes
identified, 9 (ACTN1, VCL, CALD1, CTTN, TPM1, FN1, COL6A3, SLC3A2, and
ITGB4) are validated by RT-PCR. Five of these genes, ACTN1, VCL, CALD1,
CTTN, and TPM1, code for proteins linked to cytoskeleton organization. FN1 and
COL6A3 are important for the extracellular matrix and SLC3A2 has a function in
integrin signaling. For some of these genes, cancer-specific alternative splice
variants have been previously identified. For example TPM1, ACTN1, and ITGB4
show similar splicing pattern in colon tumors [23] and ITGB4 and TPM1 are
identified as differentially spliced in several tumors by computational analysis [24].

A more recent study uses human exon arrays to identify differences in alter-
native splicing in colon, bladder, and prostate cancer and reports seven genes as
differentially spliced: ACTN1, CALD1, COLA3, LRRFIP2, PIK4CB, TPM1, and
VCL [25]. The validation rate in this study was 67 % (7 out of 15 candidates
confirmed by RT-PCR) and the identified genes match the previous studies,
including the prevalence of genes involved in the cytoskeletal organization.

Cancer-specific alternative splice forms are identified using exon arrays in
tumors of the nervous system. One study [26] reports that ATP2B4, CaMKII,
NLGN4Y, UNC84A, BIN1, MPZL1, and NRCAM are differentially spliced in glial
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brain tumors. Glioblastoma samples are used in another study that discovers 14
glioma-specific alternative splicing changes, seven of them novel: A2BP1, BCAS1,
CACNA1G, CLTA, KCNC2, SNCB, and TPD52L2 [27].

The use of exon microarray in detecting alternative splicing has grown in the
past few years [28], including studies of breast cancer [29] and method refinements
[30].

2.3.3 Improvement in Data Analysis for Alternative Splicing
Discovery

The studies based on the Affymetrix exon array analysis tools achieve a relatively
low validation rate for detection of differentially spliced exons. Substantial
improvements of alternative splicing detection are achieved by two groups using
different type of array analysis. One develops a regression-based algorithm for
analyzing the array data (REAP), and achieves a validation rate of 60 % for
randomly chosen differential splicing events [31]. The other method, MADS
(microarray analysis of differential splicing), attempts to remove the major sources
of false positives in detecting alternative splicing [32]. The authors incorporate in
the analysis algorithm background correction of probes intensities, iterative probe
selection for gene expression index calculation, and a procedure to remove
sequence-specific cross-hybridization. The method leads to a detection of 25 %
more true positive differentially expressed exons compared to Affymetrix’s
ExACT algorithm, with a validation rate of 90 %. The study also compares the
sensitivity of the Affymetrix Exon 1.0 array to a custom spotted oligonucleotide
array with splice junction probes [33], and concludes that the latter is more sen-
sitive to small changes in alternative splicing.

3 Detection of Alternatively Processed RNA
Using Genomic Tiling Microarray

3.1 The Design of Genomic Tiling Microarray

Genomic tiling arrays aim to interrogate transcripts from a whole genome, using
regularly spaced oligonucleotide probes in an unbiased way except for repetitive
sequences (reviewed in [34–36]). Three companies offer tiling arrays, with different
resolution and hybridization protocols. The Affymetrix protocol uses biotin labeling
and one-color assay, while Agilent and NimbleGen produce tiling arrays that use
dual-color hybridization and longer oligo probes (60-mer for Agilent, and 50–75-
mer for NimbleGen, both tiled at about 100-bp intervals). The Affymetrix tiling
arrays are probably the most popular to date and offer the highest resolution.
Its human tiling array consists of 25-mer probes with approximately a 10-bp gap
between adjacent probes (Fig. 1a). The array has two variants. The GeneChip
Human Tiling 1.0 R Array Set includes perfect match (PM) and mismatch
(MM) probes in 14 arrays, each having over 6.5 million probes. The GeneChip
Tiling 2.0R Array Set has seven arrays, for which the mismatch probes are omitted.
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Affymetrix has developed Tiling Analysis Software (TAS) for analyzing the arrays,
which can perform quantile normalization of the array signal, sliding window
analysis of the signal intensities, and subsequent region definition according to user-
defined parameters for length and threshold (minimum run and maximum gap).
Figure 1b illustrates the steps in a typical experiment involving Affymetrix tiling
arrays, and Fig. 1C demonstrates the signal visualization for a single gene, vimentin
(VIM), taken from an experiment performed in our group (see Sect. 3.3).

3.2 Tiling Microarray Used in the Transcriptome Mapping
and the ENCODE Project

The tiling array is unique among the different microarray designs in the fact that it
systematically interrogates transcription outside known or predicted genes. Initial
experiments to assess transcription across human chromosomes 21 and 22 using
tiling arrays are performed with 11 tumor tissues and fetal cell lines and reveal
surprising complexity [37, 38]. About an order of magnitude more of the genomic
sequence is detected as transcripts than what has been assumed on the basis of
annotated and predicted exons. This finding is confirmed and extended by using a
tiling array of 36-mer probes at a resolution of 46 base pairs on the average,
covering the entire human genome [39]. The study detects numerous transcrip-
tionally active regions (TARs) in addition to unannotated genes, antisense tran-
scription, and previously undetected exons of known genes. A study using arrays

Fig. 1 Design and analysis of a genomic tiling array. (a) Probes of 25-mer on a genomic tiling
array are spaced at 35 base pairs on the average, with a gap of about 10 bp between adjacent
probes. (b) Flowchart for tiling array analysis. (c) Expression of VIM in HEK293 cells transfected
with wild type DHX16 cDNA, detected by Affymetrix human tiling array. Exons are represented
as boxes and introns as lines. The graph above the gene shows the normalized signal from
individual oligo probes as vertical lines, on a log2 scale
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with a high resolution of five base pairs further provides evidence of an extensive
network of overlapping transcripts with almost half of all transcribed sequences
not polyadenylated [40]. The massive unannotated transcription is not unique to
human cells, since similar findings are documented in mouse [41], fly [42], and
Arabidopsis [43].

Tiling arrays are also used in the ENCODE project [44] to assess transcription
of *1 % of the human genome. The ENCODE tiling array has *750,000 25-mer
PM and MM oligo probes, spaced at 21-bp intervals. The ENCODE study detects
transcription fragments (TxFrags) from 14.7 % of the nucleotides represented on
the arrays, with 63 % of the TxFrags residing in intronic or intergenic regions. By
a combination of 50RACE and tiling array hybridization, more than 60 % of the
annotated protein-coding genes show evidence of new alternative exons in their
introns, and 68 % exhibit a potential new transcription start site upstream of their
first annotated exon [45]. The distal 50 exons often overlap with adjacent genes,
thus creating chimeric transcripts. Many of the novel exons are expressed in a
tissue-specific manner, which underlines the importance of whole-genome tran-
scriptome studies in disease models.

3.3 Detection of Unspliced or Partially Spliced RNA
by Tiling Microarray

While alternative cassette exons and many 5 or 30 alternative splice sites can be
detected by exon or exon-junction arrays, unspliced or partially spliced transcripts
are best followed by probes that cover the intron regions. The genomic tiling
arrays thus provide an opportunity to systematically assess intron retention events
arising from perturbation of the splicing machinery. Such types of splicing
changes may be important for cancer, since miss-splicing is linked to cancer [46,
47]. While alternative splicing involving exon skipping is underrepresented in
tumor cells than in normal cells, intron retention events are at a higher level [48].

Detection of introns by tiling arrays is reported by comparing wild-type S.
cerevisiae and a mutant strain deficient in processing of excised introns [49]. The
study confirms previously predicted introns and discovers new intron-containing
genes. A recent study also uses tiling arrays to investigate the effect of nonsense-
mediated decay and nuclear exosome on the intron content in S. cerevisiae [50].
The study shows that about a third of the yeast introns increase upon inactivation
of the nonsense-mediated decay pathway, an effect which is not observed when
analyzing yeast intron content by other types of microarrays. The sensitivity of the
tiling array detection in this experiment is comparable to Northern blot data.

Our group has used the Affymetrix human tiling array to detect transcripts
affected by a human DExH-box spliceosomal protein, DHX16 [51]. RNA samples
from cells expressing wild type DHX16 and from cells expressing a dominant
negative mutant were removed of ribosomal RNA, labeled, and hybridized to probes
on the array. The data were analyzed using TAS to integrate neighboring oligo
signals and to identify RNA fragments or intervals. In this analysis, we included only
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intervals with a minimum length of 100 nucleotides, since an average human intron
is longer than 4,000 nt and few introns are shorter than 100 nt [52]. We detected a
number of genes showing clear evidence of intron retention in the transcripts. RPL19
is an example of a gene whose transcripts retain introns in the mutant-expressing
cells (Fig. 2). The array data indicate that many of those genes have elevated signal
from the majority of their introns, a pattern which is possible to detect with the
unbiased tiling array. Thus, genomic tiling microarray is effective in identifying
gene transcripts that retain introns when splicing is impaired.

3.4 Detection of Alternatively Processed RNAs
in Breast Cancer Using Tiling Array

We also used the aforementioned Affymetrix genomic tiling microarray to com-
pare RNA samples from breast tumors and from normal tissues [53]. Breast tumors
were biopsies from patients and normal breast tissues were taken from plastic
surgery of normal individuals for cosmetic purpose. In this analysis, we included
intervals with a minimum length of 50 bases, since the median of human exons is
only 124 bases [54]. Intervals representing increase in breast tumors by more than
2-fold with a p value less than 0.01 were further analyzed.

Most of the up-regulated intervals were coincided with annotated mRNA exons.
For example, KPNA2 has 11 exons; five of the exons were identified as up-regulated
intervals (Fig. 3a). The remaining six exons of KPNA2 had probes showing sig-
nificant increase in signals. KPNA2, karyopherin alpha2, is a potential prognostic
marker in breast tumors and predicts poor survival in breast cancer patients [55, 56].

Fig. 2 Comparing RNA from mutant and wild type DHX16-expressing cells using genomic
tiling microarray. HEK293 cells were transfected with a dominant negative DHX16 mutant
cDNA (DN) or with a wild type DHX16 cDNA (WT). RNA was extracted and analyzed on tiling
microarray. Shown here is the genomic region containing RPL19 gene, which is transcribed from
left to right. Log2 of the signal ratio between DN and WT are shown as vertical lines above the
gene. Signals that are lower in DN have lines pointing downward. Intervals with a 2-fold increase
are depicted with thick bars
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A few upregulated intervals fell into introns of known genes. For example, an
intronic interval was found in intron 2 of the IFI27 gene. Further analysis indicates
that this intragenic interval is part of a novel transcript with a long exon 2 that ends
within the intron 2 of the standard, longer transcript (Fig. 3b). Another interval was
found in the intron of FOXA1 gene, which is shown to be an alternative exon
(Fig. 3c). IFI27, interferon alpha-inducible protein 27, is up-regulated in a number
of epithelial cancers, although its association with breast cancer is less clear [57, 58].
FOXA1, forkhead-box A1, is expressed in breast cancer, although its value in
prognostic prediction is still being investigated [59, 60].

Fig. 3 Comparing the tiling microarray signals between breast tumors and the normal tissues.
Four genes are depicted: (a) KPNA2, (b) IFI27, (c) FOXA1, and (d) ADAM12. The exons and
introns are depicted as in Fig. 1; KPNA2 and IFI27 are transcribed from left to right, while the
other two genes are right to left. The vertical lines above the gene represent log2 of the signal
ratio between tumors and normal tissues, with a horizontal line representing 2-fold up-regulation.
Intervals with a ratio greater than 2 (R [ 2) are shown as bars below the ratio lines and intervals
with a p value less than 0.01 (p \ 0.01) are shown above the ratio lines
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Several intergenic intervals were found to locate near the 30 end of a protein-
coding gene. These RNA segments could represent a 30 extension of the nearby
gene or a complete separate transcript. For example, RefSeq database shows
transcripts of the ADAM12 gene having two different 30 ends (Fig. 3d). The tiling
array data indicated that the short form was not well expressed in breast tumor.
Moreover, the intervals found 30 to the ADAM12 gene, upon further analysis,
represent a transcript that is longer than the long form. ADAM12, a disintegrin and
metalloprotease 12, is associated with several cancers including breast [61, 62],
however, this ‘‘extra’’ long transcript has never been described.

Recently, genomic tiling microarray was used to detect aberrant processing of
RNA transcripts at cryptic polyadenylation sites in introns when U1 snRNP was
knockdown [63].

4 Transcriptome Analysis by Direct Sequencing

Whole genome direct sequencing of transcripts has emerged as a powerful alter-
native to microarray analysis [64–69]. It is based on a new generation of massive
parallel sequencing technologies. Currently three deep sequencing platforms have
gained popularity. The first platform was introduced by 454 Life Sciences
(available trough Roche) and relies on pyrosequencing by synthesis. The 454
platform can read 200–400 bases from each molecule and can achieve 1 million
reads per run. Illumina offers a bead-based sequencing by synthesis employing
reversible fluorescent terminators. The technology was developed by Solexa and
can achieve *3 billion bases per run, with read length of 35–70 bases. A rela-
tively new system is SOLiD (Applied Biosystems), based on massive, parallel
sequential ligation technology. SOLiD can map 4–6 billion bases per run, with a
read length of 50 bases. Although the length of the reads in all three cases is short
compared to the Sanger sequencing, the new technologies provide very high
accuracy and ultra-high throughput, making the sequencing of whole transcrip-
tome fast and increasingly affordable.

Analysis of transcripts by sequencing has important advantages compared to
microarrays. First, sequencing can discover new isoforms without prior knowledge
of the exact sequence. Second, sequencing bypasses hybridization and thus elimi-
nates problems associated with background and cross-hybridization, a major cause
of signal variability in microarray analysis [70, 71]. Third, transcript detection
achieved by deep sequencing and RNA-Seq protocol is shown to be quantitative
with a linear range over five orders of magnitude [65, 66]. Furthermore, it is reported
that about 40 million reads of *25 bases are sufficient to accurately detect splice
isoforms for transcripts with high- or moderate expression [65]. Detecting alterna-
tively spliced RNAs, for nearly all of the multi-exon RefSeq human genes with an
accuracy of detection comparable to quantitative PCR have also been reported [66].

Massive parallel sequencing has been used to detect cancer-specific transcripts in
two comprehensive studies of pancreatic cancer and glioblastoma [72, 73]. In both
studies, deep sequencing on an Illumina/Solexa platform is combined with SAGE to
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quantitate gene expression. This approach identifies 541 genes differentially
expressed in prostate cancers compared to normal cells. On average, these genes
have 88-fold higher expression in primary pancreatic tumors. In the case of glio-
blastoma, 143 genes are determined to be expressed at 10-times the level in normal
brain. Many of these genes encoded proteins which are secreted or expressed on the
cell surface, thus making them potential diagnostic markers or therapy targets.

5 Summary and Conclusion

In this chapter, we evaluate microarrays that are used to detect alternatively
spliced or processed RNA. Ligation of junction-hybridizing oligos followed by
PCR and array detection is most sensitive, although the number of splicing events
it can simultaneously measure is somewhat limited. Exon junction microarray can
measure splice variants with a potential to be genome-wide; however, its accuracy
can be affected by the hybridization behaviors of the restricted exon junction
probes. All-exon microarray has already reached genome-wide scale and is
commercially available; however, there is still a need to develop an algorithm for
analyzing most if not all alternatively splicing events reliably.

No microarray is specifically designed to discern RNA with intron retention or
alternative 30 processing in human cells. We describe here our studies using genomic
tiling microarray from Affymetrix for these purposes. Although novel alternatively
spliced RNA is detected in our studies, the recognition relies on visual examination
of the intervals on Integrated Genome Browser and additional molecular assays. The
suitability of using genomic tiling microarray for alternative splicing studies
remains to be further evaluated. Parallel or deep sequencing has shown great
promise in identifying novel transcripts and obtaining quantitative information.
However, the storage and computation power needed to handle the massive data
generated from sequencing still post a major challenge to its general applications.

The role of alternative or aberrant splicing in cancer is quite evident [74], but
more investigations are warranted [75]. The 30 untranslated region is critical for the
translation, stability, localization of the RNA, and microRNA regulation [76, 77],
and the length regulation of 30 UTR in cancer has just gained momentum [78].
Thus, detecting and studying alteration in splicing/processing shall remain a focus
in cancer biology.
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