
1 Overview of power amplifier
modelling

1.1 Introduction

This chapter presents an overview and comparative assessment of the various ap-
proaches to RF power amplifier (PA) modelling that have received widespread at-
tention by the scientific community. The chapter is organised into three sections:
power amplifier modelling basics, system-level power amplifier models and circuit-
level power amplifier models.

Section 1.2 on power amplifier modelling basics provides the basic knowledge
to support the subsequent PA model classification and analysis. First, physical
and behavioural modelling strategies are addressed and then behavioural models
are classified as either static or dynamic with varying levels of complexity. Then, a
distinction is made between the heuristic and systematic approaches, hence creating
a theoretical framework for comparing different behavioural model formats with
respect to their formulation, extraction and, in most cases, predictive capabilities.

In Section 1.3, dedicated to system-level power amplifier models, PA represen-
tations intended to be used in system-level simulators are considered. These are
analytic signal- or complex-envelope-based techniques; they do not represent the
RF carrier directly and RF effects are not specifically included. They are single-
input–single-output (SISO) low-pass equivalent models, whose input and output
constitute the complex functions needed to represent the bidimensional nature of
amplitude and phase modulation.

The final section, on circuit-level power amplifier models, provides an overview
of behavioural models intended for use in conventional PA circuit simulators. These
models handle the complete input and output RF modulated signals, which are real
entities, at two different time scales, one, very fast, for the RF carrier and another,
much slower, for the modulating envelope. So, in contrast with system-level models,
they also take into account the signals’ harmonic content and, possibly, the input
and output mismatches. For that, they need to represent the voltage and current,
or incident and reflected power waves, of the PA input and output ports, thus
becoming two-input–two-output model structures.

Although there is an abundant literature on the various different PA behavioural
modelling approaches, there are only a few works dedicated to their analysis and
comparison. A widely known reference in this field is the book of Jeruchim et al.
[1]. More recently, a book edited by Wood and Root [2] and the papers of Isaksson
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2 Overview of power amplifier modelling

et al. [3] and of Pedro and Maas [4] have appeared. This introduction draws from
all these four references but follows the last most closely.

1.2 Power amplifier modelling basics

Power amplifiers have a major effect on the fidelity of wireless communications
systems, which justifies the large number of studies undertaken to understand their
limitations and then to optimise their performance. Although some earlier studies
simply consisted of empirical observations of PA input–output behaviour, later
works have applied scientific theories to account for the observed behaviour and,
hence, to justify the resulting PA models [1–8]. Seen from the more general context
of system identification, PA models can be divided into two major groups according
to the type of data needed for their extraction: physical models and empirical
models [9].

Physical models require knowledge of the electronic elements that constitute the
PA, their relationships and the theoretical rules describing their interactions. They
use nonlinear models of the PA active device and of the other, passive, components
(these models may themselves be of a physical or empirical nature) to form a
set of nonlinear equations relating the terminal voltages and currents. Using an
equivalent-circuit description (typically having an empirical nature) of the PA, these
models are appropriate to circuit-level simulation and provide a result accuracy
that is, nowadays, limited almost only by the quality of the active device model.
Unfortunately, such precision has a high price in simulation time and the need for
a detailed description of the PA internal structure.

When such a PA equivalent circuit is not available, or whenever a complete
system-level simulation is desired, PA behavioural models are preferred. Since
they are solely based on input–output (behavioural) observations, their accuracy
is highly sensitive to the adopted model structure and the parameter extraction
procedure. So, it is no surprise that distinct model topologies and different obser-
vation data sets may lead to a large disparity in model applicability and simulation
results. In fact, though such a behavioural-modelling approach may guarantee the
accurate reproduction of the data set used for its extraction, or, possibly, of some
other set pertaining to the same excitation class, it is not obvious that it will also
produce useful results for a different data set, a different PA of the same family
or a PA based on a completely different technology. That is, in contrast with the
physical-modelling alternative, the generalisation of the predictive capability of a
behavioural model should always be viewed with circumspection.

1.2.1 Nonlinear system identification background

In order to establish a theoretical framework with which to analyse the various
approaches to PA behavioural modelling, it is convenient to recall some basic results
of system identification theory.
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1.2 Power amplifier modelling basics 3

In that framework, our power amplifier is described either by a nonlinear function
or a system operator; it is assumed to be either static or dynamic respectively. In the
static case its output y(t) can be uniquely defined as a function of the instantaneous
input x(t), and the model reduces to

y(t) = f(x(t)) (1.1)

or

y = f(x), (1.2)

since the dependence with time is, in this case, immaterial.
When the PA presents memory effects to either the modulated RF signal or the

modulating envelope, it is said to be dynamic. The output can no longer be uniquely
determined from the instantaneous input. It now depends also on the input past
and/or the system state. The relation between y(t) and x(t) cannot be modelled
simply by a function but becomes an operator that maps a function of time x(t)
onto another function of time y(t). Thus the input–output mapping of our PA is
represented by a forced nonlinear differential equation,

f

(
y(t),

d y(t)
d t

, . . . ,
dp y(t)
d tp

, x(t),
d x(t)

d t
, . . . ,

dr x(t)
d tr

)
= 0. (1.3)

This states that the output and its time derivatives (in general, the system state)
may be nonlinearly related to the input and its time derivatives. Since our PA
behavioural models have to be evaluated in a digital computer, i.e. a finite-state
machine, it is convenient to adopt a discrete-time environment, in which the time
variable becomes a succession of uniform time samples of convenient sampling pe-
riod Ts ; thus the time and the continuous time signals may be translated as t → sTs ,
x(t) → x(s) and y(t) → y(s), s ∈ Z. In this way, the solution of the nonlinear differ-
ential equation in Equation (1.3) can be expressed in the following recursive form
[10]:

y(s) = fR(y(s − 1), . . . , y(s − Q1), x(s), x(s − 1), . . . , x(s − Q2)). (1.4)

Here y(s), the present output at time instant sTs , depends in a nonlinear way,
dictated by fR, the nonlinear function, on the system state (herein expressed by
y(s − q), q = 1, . . . , Q1), the present input x(s) and its past values, x(s − q). This
nonlinear extension of infinite impulse response digital filters [10] (nonlinear IIR)
is assumed to be the general form for recursive PA behavioural models.

System identification results have shown that, under a broad range of conditions
[10–12] (basically operator causality, stability, continuity and fading memory), such
a system can also be represented with any desirable small error by a non-recursive,
or direct, form, where the relevant input past is restricted to q ∈ {0, 1, 2, . . . , Q},
the so-called system memory span [10]:

y(s) = fD(x(s), x(s − 1), . . . , x(s − Q)) (1.5)

in which fD(·) is again a multidimensional nonlinear function of its arguments. This
nonlinear extension of finite impulse response digital filters [10] (nonlinear FIR),
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4 Overview of power amplifier modelling

is again the general form that a direct, or feedforward, behavioural model should
obey.

Various forms have been adopted for the multidimensional functions fR(·) and
fD(·), although two of these have received particular attention in nonlinear system
identification. This is due to their formal mathematical support and because they
lead directly to a canonical realisation and so to a certain model topology. These two
forms are polynomial filters [10–14] and artificial neural networks (ANNs) [15–17].

In the first case, fD(·) is replaced by a multidimensional polynomial approxima-
tion, so that Equation (1.5) takes the form

y(s) = PD (x(s), x(s − 1), . . . , x(s − Q))

=
Q∑

q=0

a1(q)x(s − q) +
Q∑

q1 =0

Q∑
q2 =0

a2(q1 , q2)x(s − q1)x(s − q2) + · · ·

+
Q∑

q1 =0

. . .

Q∑
qN =0

aN (q1 , . . . , qN )x(s − q1) · · ·x(s − qN ). (1.6)

This form shows that the nonlinear system is approximated by a series of multilinear
terms. Although simple in concept, this ‘polynomial FIR’ model architecture is
known for its large number of parameters.

The function fR(·) can also be replaced by a multidimensional polynomial lead-
ing to recursive polynomial IIR structures. These provide similar approximation
capabilities for many fewer parameters than the direct topology. However, the poly-
nomial IIR is significantly more difficult to extract than the direct topology; this
has impeded its application in the PA modelling field.

Indeed, the comparative ease of extraction of the polynomial FIR, in comparison
with other PA models, provides its particular and attractive advantage. Since the
output is linear in respect of the model parameters, i.e. the kernels an (q1 , . . . , qn ),
and dependent only on multilinear functions of the delayed versions of the input,
it can be extracted in a systematic way using conventional linear identification
procedures.

If fD(·) or PD(·) is approximated by a Taylor series then this FIR filter is known
as a Volterra series or Volterra filter [10–14]. This Volterra series approximation
is particularly interesting as it produces an optimal approximation (in a uniform-
error sense) near the point where it is expanded. Therefore it shows good modelling
properties in the small-signal, or mildly nonlinear, regimes. However, it shows catas-
trophic degradation under strong nonlinear operation.

In fact, fD(·) can be replaced by any other multidimensional polynomial. For
example, the Wiener series is orthogonal for white Gaussian noise as an excitation
signal [13, 14]; other orthogonal polynomials have been proposed for other excita-
tions [10, 13, 18, 19]. In these cases, the respective series produce results that are
optimal (in a mean-square-error sense) in the vicinity of the power level used and
for the particular type of input used in the model extraction. These representations
are, therefore, amenable to the modelling of strong nonlinear systems when the
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1.2 Power amplifier modelling basics 5

excitation bandwidth and statistics can be considered close to those used in extrac-
tion experiments. A presentation of Wiener series expansions and their orthogonal-
ity under white Gaussian noise excitation is given in Section 3.11.

Such polynomial FIR filters can be realised in the form indicated in Figure 1.1.
The multiplicity of nth-order cross products between all delayed inputs may be
noted; it is to these that the nonlinear filter owes its notoriously complex, although
general, form. In a similar way, polynomial IIR filters can be realised. A bilinear,
recursive, nonlinear IIR filter implementation is shown in Figure 1.2 [4].
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Figure 1.1 Examples of canonical forms of nonlinear FIR filters. (a) Canonical FIR
filter of first order, (b) canonical FIR filter of third order. The operator Z−1 indicates a
unit delay tap (see subsection 5.2.1).

When fR(·) and fD(·) are approximated by ANNs, Equations (1.4) and (1.5)
take the following pairs of forms [15]:

uk (s) =
Q 1∑
q=1

wyk (q)y(s − q) +
Q 2∑
q=0

wxk (q)x(s − q) + bk ,

y(s) = bo +
K∑

k=1

wyo(k)f(uk (s))

(1.7)
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6 Overview of power amplifier modelling
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Figure 1.2 General structure of a bilinear recursive nonlinear filter.

and

uk (s) =
Q∑

q=0

wk (q)x(s − q) + bk ,

y(s) = bo +
K∑

k=1

wo(k)f(uk (s)),

(1.8)

where wyk (q), wxk (q), wyo(k), wk (q) and wo(k) are weighting coefficients, bk and bo

are bias parameters and f(·) is a predefined nonlinear function (the ANN activating
function) of its argument [15]. As in the case of polynomial filters, these ANNs have
universal approximation capabilities meaning that they are capable of an arbitrarily
accurate approximation to arbitrary mappings [16, 17]. This aspect is dealt with in
more detail in subsection 5.3.2.

These recursive and feedforward dynamic ANNs can be realised in the forms of
Figures 1.3 and 1.4 respectively.

A close look at the feedforward ANN model of Equation (1.8) and Figure 1.4
shows that the model output is built from the addition of the activation functions
f(uk (s)) and the weighted outputs plus a bias and that the uk (s) are biased sums of
the various delayed versions of the input, weighted by the coefficients wk (q). Each
uk (s) can thus be seen as the biased output of a linear FIR filter whose input is
the signal x(s) and whose impulse response is wk (q). So the non-recursive ANN
model is actually equivalent to a parallel connection of K branches of linear filters

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-88173-9 - RF Power Amplifier Behavioral Modeling
Dominique Schreurs, Mairtin O’Droma, Anthony A. Goacher and Michael Gadringer
Excerpt
More information



1.2 Power amplifier modelling basics 7
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Figure 1.3 General structure of a recursive single-hidden-layer dynamic artificial neural
network.
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Figure 1.4 General structure of a feedforward single-hidden-layer dynamic artificial
neural network.
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8 Overview of power amplifier modelling

followed by a memoryless nonlinearity, as shown in Figure 1.5.
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Figure 1.5 Equivalent structure of a feedforward single-hidden-layer perceptron ANN.
Note that here the combinations of the branch biases bk , the activation functions f (uk (s)),
the branch gains wo (k), and the final bias bo are here represented by different branch
memoryless nonlinearities fk (zk (s)).

If the branch memoryless nonlinearities were now approximated by polynomial
functions we would end up again with a polynomial filter. This shows that there
is essentially no distinction between a feedforward time-delay ANN and a non-
recursive polynomial filter. They simply constitute two alternative ways of approxi-
mating the multidimensional function fD(·), of Equation (1.5). There are, however,
some slight differences in these two approaches that will be addressed below. These
are worth mentioning because of their impact on PA behavioural modelling activi-
ties.

The series form of polynomial filters enables certain output properties to be
related to each polynomial degree, and this can be used to guide the parameter
extraction procedure. This is especially true if the polynomial series is orthogonal
for the input used in the model identification process. For example, the relationship
between the intermodulation content of the system’s response to a multisine (a
signal consisting of several sinusoidal tones) and the coefficients of an appropriate
multidimensional orthogonal polynomial have recently been found [18, 19] (the
structure and design of multisine signals will be discussed in subsection 2.5.6).
However, since in an ANN all memoryless nonlinearities share a common form,
there is no way to identify such relationships. Consequently, while polynomial filters
can be extracted in a direct way, ANN parameters can be obtained only from some
nonlinear optimisation scheme.

Moreover, despite the universal approximation properties of ANNs, there is no
way of knowing a priori how many hidden neurons are needed to represent a
specific system, nor is there any way of predicting the modelling improvement
gained when this number is increased. It cannot even be ensured that the extracted
ANN is unique or that it is optimal for a certain number of neurons. This can
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1.2 Power amplifier modelling basics 9

obviously pose some potential problems for the ANN’s predictability, especially for
inputs outside the signal class used for the identification, i.e. the ANN training
process.

However, in contrast with the intrinsically local approximating properties of
polynomials, ANNs behave as global approximates, an important advantage when
one is modelling strongly nonlinear systems. Also, since the sigmoidal functions
used in ANNs are bounded in output amplitude, ANNs are, in principle, better
than polynomials at extrapolating beyond the zone where the system was operated
during parameter extraction.

1.2.2 Nonlinear dynamic properties of microwave PAs

We now turn our attention to some typical nonlinear effects presented by practical
microwave and wireless PAs. Considering the variety of available PA technologies,
it is not easy to give a completely comprehensive view. Nevertheless, the technical
literature in this subject indicates that a few effects at least are commonly observed
in a fairly wide range of devices.

Both solid-state PAs (SSPAs) and travelling-wave tube PAs (TWTAs) have been
frequently represented by cascade combinations of linear filters and a memoryless
nonlinearity [20–22], the so-called two-box and three-box models. These structures
introduce linear memory effects at the input and output that can be physically
related to the PA’s input and output tuned networks.

Beyond these linear memory effects, there are also some dynamic effects that
show up only in the presence of nonlinear regimes. This is the case for the so-called
long-term memory effects commonly attributed to the active device’s low-frequency
dispersion and electrothermal interactions and the interactions of the active device
with the bias circuitry [23–29] (compare also subsection 2.4.1). Described by the
dynamic interaction of two or more nonlinearities through a dynamic network, these
long-term memory effects manifest nonlinear dynamics that cannot be modelled by
any non-interacting linear filter and memoryless nonlinearity box models. Indeed,
Pedro et al. [26] showed that such effects can be represented by a memoryless nonlin-
earity and a filter in a feedback path, as depicted in Figure 1.6, while Vuolevi et al.
[25] and Vuolevi and Rahkonen [27] used a cascade connection of two nonlinearities
with a linear filter in between.

As a common basis for the following behavioural-model discussion, we will as-
sume that a general PA has the form shown in Figure 1.6. Through H(ω) and O(ω),
this feedback model can account for linear memory effects not only in the carrier
but also in the information envelope; these occur whenever the PA characteristic
is not flat within the operating signal’s bandwidth. In addition, the model is also
capable of describing nonlinear memory effects in the carrier (AM–PM) and/or
the envelope whenever the feedback filter F (ω) exhibits dynamic behaviour at the
carrier frequency, the carrier harmonics frequencies or the demodulated envelope
frequency [4, 26, 27].
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10 Overview of power amplifier modelling
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Figure 1.6 Typical nonlinear feedback structure of a microwave PA. Note the presence
of the filters H(ω) and O(ω) representing linear memory effects related to the input
and output matching networks; the feedback path represents nonlinear memory effects
attributed to electrothermal and/or bias circuitry dynamics.

For reference, the first- and third-order Volterra nonlinear transfer functions of
the dynamic feedback model of Figure 1.6 are [4, 26]:

S1 (ω) = H(ω)
a1

D(ω)
O(ω) (1.9)

and

S3 (ω1 , ω2 , ω3) =
H(ω1)H(ω2)H(ω3)
D(ω1)D(ω2)D(ω3)

O(ω1 + ω2 + ω3)
D(ω1 + ω2 + ω3)

×
{

a3 +
2
3
a2

2

[
F (ω1 + ω2)
D(ω1 + ω2)

+
F (ω1 + ω3)
D(ω1 + ω3)

+
F (ω2 + ω3)
D(ω2 + ω3)

]}
,

(1.10)

where D(ω) = 1 − a1F (ω).
On expanding Equation (1.10), input and output linear memory effects are de-

scribed by the terms H(ω1)H(ω2)H(ω3), O(ω1 + ω2 + ω3), F (ω1)F (ω2)F (ω3) and
F (ω1 + ω2 + ω3), while nonlinear memory can be seen to arise from the harmonics
F (ωj + ωk ), j, k = 1, 2, 3 and the envelope dynamics F (ωj − ωk ).

1.3 System-level power amplifier models

System-level PA behavioural modelling employs low-pass equivalent PA models and
thus processes only the complex-envelope information signal. Any specific effects
related to or arising from the carrier frequency used must be individually incorpo-
rated. This distinguishes such models from circuit-level PA models, which maintain
the full RF circuit’s band-pass nature and information and work with the actual
RF signal.

The RF signal may be written [1, 30]:

s(t) = Re
{

r(t)ej [ω0 t+φ(t)]
}

= r(t) cos[ω0t + φ(t)], (1.11)

where an RF carrier of frequency ω0 is modulated by the complex envelope:

s̃(t) = r(t)ejφ(t) . (1.12)
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