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Chapter 2
Data: The First Ingredient of a Program

The Von Neumann architecture has some implications even on high-level program-
ming languages. Below is an overview of these aspects:

• The Von Neumann architecture makes a clear distinction between the processing
unit, namely the CPU, and the memory.

• The content of the memory is highly mixed containing:

The orders to the CPU about all the actions: Register ⇔ memory transfer oper-
ations; arithmetic, comparison and bitwise operations on the registers; opera-
tions effecting the execution flow.

Adjunct information needed to carry out some instructions: Addresses for the
transfer operations, constants involved in arithmetic or bitwise operations.

Raw information to be processed: Integer or floating point values, or sequences
of them; address information of such raw data.

All these types of information live in the memory. However, still, there is a dis-
tinction between them. Anything that is stored in the memory falls into one of
these categories, and an error-free machine code, when executed, will consider
this distinction: Actions will be treated as actions, adjunct information as adjunct
information and raw information as raw information.

• Access to the memory is strictly address-wise. If you do not know the address of
what you are looking for, you cannot locate it unless you compare every memory
content with what you are looking for. In other words: Content-wise addressing
is not possible.

• All information subject to processing by the Von Neumann architecture must be
transformed to a binary representation.

Among these implications of the Von Neumann architecture, the main implica-
tion is the distinction between ‘actions’ and the ‘information’ because this distinc-
tion affects the way we approach any World problem. Here, the term World problem
refers to a problem of any subject domain, where a computerized solution is sought.
Below are a few examples:

• Find all the wheat growing areas in a satellite image.
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Fig. 2.1 Most of the time, a world problem is solved by a set of algorithms that act on structured
data

• Given students’ homework, lab and examination grades, calculate their letter
grades.

• Change the amplitude of a sound clip for various frequencies.
• Predict China’s population for the year 2040, based on the changes in the popu-

lation growth rate up to date.
• Compute the launch date and the trajectory for a space probe so that it will pass

by the outermost planets in the closest proximity.
• Compute the internal layout of a CPU so that the total wiring distance is mini-

mized.
• Find the cheapest flight itinerary from A to B, given departure and return dates.
• Simulate a war between two land forces, given (i) the attack and the defense plans,

(ii) the inventories and (iii) other attributes of both forces.

In such World problems, the first task of the programmer is to identify the infor-
mation to be processed to solve the problem. This information is called data. Then,
the programmer has to find an action schema that will act upon this data, carry out
those actions according to the plan, and produce a solution to the problem. This
well-defined action schema is called an algorithm. This separation of data and algo-
rithm is visualized in Fig. 2.1. There can be more than one algorithm that can solve
a problem and this is usually the case in practice. Actually, in Chap. 5, we will talk
about the means for comparing the quality of two algorithms that solve the same
problem.
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2.1 What Is Data?

Practically, anything in the computer representation of a solution (for a World prob-
lem), which is not an instruction to the CPU, i.e., not an action, can be called data.

Some data are directly understandable (processable) by the CPU. However, un-
fortunately, there are only two such data: integers and floating points. Furthermore,
these data types are not full-fledged: Both integers and floating points are limited in
size, which is determined by the processing capability of the CPU; i.e., the range of
the integer and the floating point numbers that can be represented is limited, and the
limit is around 4–8 bytes at the time this book was written.

There are many more data types which are not recognized as directly processable
entities by the CPU. To mention a few, we can quote fractions of numbers, real
numbers of arbitrary precision, complex numbers, matrices, characters, strings of
characters, distributions (statistical values), symbolic algebraic values.

Nonetheless, it is possible to write programs that implement these types of data.
In fact, some of the high-level languages implement these types as part of the lan-
guage: For example, high-level languages like Lisp, Prolog, Python and ML provide
integers of arbitrary sizes; FORTRAN, an archaic language still in use, has support
for complex numbers; BASIC supports numerical matrices; Mathematica, Matlab,
Reduce and Maple provide, in addition to all of the above, symbolic algebraic quan-
tities; and, almost all high-level languages have characters and strings.

Certainly, there are other less-demanded data types which are not provided by
high-level languages but languages exist that facilitate defining new data types based
on the existing ones. Therefore, it is possible, for example, to define a color data
type with three integer attributes, Red, Green and Blue.

2.2 What Is Structured Data?

If the data is just a single entity then, in a low-level language, the programmer
himself/herself can directly store it somewhere, a place known to him/her, in the
memory. In fact, in a high-level language, there are language features that can do
this automatically for the programmer. Soon, we will be looking into this subject.

What if we have more than ‘one’ of any type of data (e.g., millions of integers)?
One option is to store them in the memory consecutively, one after the other. Thus, if
we want to fetch the 452389th item, we can easily compute the memory position as:

〈Address of the first byte of the first item〉
+

(452389 − 1) × 〈Count of bytes occupied by a single item〉
That was easy. We call this structured data an array. It is a very efficient organiza-
tion of the data because after we have calculated the address of the 452389th item,
accessing it is just a memory fetch. This benefit is due to the Von Neumann archi-
tecture: If you know the address, the content is always provided to you in a constant
and short time.
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Fig. 2.2 An array becomes computationally inefficient when a new item needs to be inserted in
the middle

However, what if your algorithm requires inserting some data at an arbitrary
position of the array? As shown in Fig. 2.2, you would have to move all the items
that are after the insertion point, and make new space for the new item. This could
be the case for example if the array holds a collection of sorted numbers in order and
you want to keep it sorted after the insertion. Unfortunately, the memory does not
have a facility for shifting a range of its content down or up. Nonetheless, this can
be performed by the CPU by shifting each item one by one. This is an extremely
time consuming task especially for a large collections of data and therefore, not
practicable.

Hence, we need other techniques for storing collections of data that make it easy
and efficient to insert new items. The solution is to keep the data in “island”s in
the memory, in a structured manner, with each island holding an information item
and the addresses of the neighboring islands. In this way, data can be organized into
a collection of islands, where a certain item is located by knowing how to “jump”
from one island to another and by comparing the item that we are looking for with
the data on the islands. This technique is extensively used in programming.
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Fig. 2.3 An address
reference is denoted by an
arrow

Fig. 2.4 A linked data
structure (Colors are data,
arrows are links)

Whenever, as a part of an item of data, an address is kept which is the address of
another data, the address holding position is called the pointer (or alternatively, the
link) to that data. Denotationally, this is represented by drawing an arrow from the
address holding position to that address, as shown in Fig. 2.3.

Therefore, keeping in mind that all the data islands are stored in the memory,
Fig. 2.4 provides a pictorial example of a linked data structure:

Assume that we have N -many such islands, each island keeping some informa-
tion which is required for our algorithm. Having more than one link per data island
and organizing the links intelligently, we can locate (search and find) any informa-
tion in logN many hops (How? Think about it). Moreover, removing an island or
inserting another is achieved by just modifying a couple of arrows.

Therefore, by storing and organizing the data in a particular way, we can gain
efficiency in various aspects. We will see that it is possible to reduce the time spent
on locating some data searched for as well as inserting or deleting a data from a vast
pool of data. This is an area of Computer Science called Data Structures.

Some high-level languages provide mechanisms to define those islands with
“linkage fields”; Prolog, Lisp and ML, for example, provide syntactic features for
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automatically building and modifying such linked data structures. The ‘list’ con-
struct in these languages is a good example of such embedded features.

2.3 Basic Data Types

From now on, we will use the adjective ‘basic’ to refer to the content of a high-
level language. In this sense, ‘basic’ means a construct which is relatively easily
implemented at the low level, i.e., the machine code, and provided by a high-level
language as built-in.

There are two categories of basic data:

• Numerical (integers, floating points)
• Symbolic (or non-numerical) (character, boolean)

All CPUs have support for numerical data whereas some may not support floating
points. CPUs can add, subtract, multiply or divide numerical. A CPU-supported
numerical data has a fixed size for representation (if the CPU uses 4 bits to represent
integers, the magnitude of the maximum integer that can be represented on this CPU
is around 151), and this fixed size will vary from CPU to CPU. At the time of writing
this book, this limit is mostly 32 bits or 64 bits.

2.3.1 Integers

Integer is the data type used in almost all discrete mathematical applications,
like enumeration, counting, combinatorics, number theoretics, geometry and many
more.

The most common way to representing integers is Two’s Complement using
which we can represent integers in the range of [−2n−1,2n−1 − 1] given n bits.
In Two’s Complement notation, a positive number has the leading bit as 0 whereas
a negative number’s leading bit in Two’s Complement notation is 1. To convert a
(positive or negative) decimal number x into its Two’s Complement representation:

1. Convert |x| into base-2, call it bn−2 . . . b1b0.
2. If x > 0, 0bn−2 . . . b0 is the Two’s Complement representation.
3. If x < 0,

(a) flip each bit—i.e., ci = 1 − bi for i = 0, . . . , n − 2.
(b) add 1 to cn−2 . . . c0; i.e., dn−2 . . . d0 = cn−2 . . . c0 + 1.
(c) 1dn−2 . . . d0 is the Two’s Complement representation.

An important advantage of Two’s Complement representation is that addition, sub-
traction and multiplication do not need to check the signs of the numbers. Another

1The exact value depends on how the CPU represents negative numbers.
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important advantage is the fact that +0 and -0 have the same representations, unlike
other notations.

The CPU arithmetic works rather fast (faster compared to floating points) in the
integer domain. Furthermore, some obscure precision losses, which exist in repre-
senting floating point numbers, is not present for integers. Therefore, integers are
favored over floating points when it is possible to choose between the two. It is
frequently the case that even problems that are defined in a domain of reals (like
computer graphics) is carried over to the integer domain, because of the gain in
speed.

Some high-level languages do provide arbitrary precision integers, also known as
bignums (short for big numbers), as a part of the language. In some cases, the usage
is seamless and the programmer does not have to worry about choosing among
the representations. Lisp, Prolog, ML, Python are such programming languages. In
languages like C, Pascal and C++, facilities for bignums are available; therefore, the
functionality is provided but not seamless (i.e., the user has to make a choice about
the representation type). As explained in the preceding section, bignums are not
directly supported by the CPU; therefore, the provider has to represent them with a
data structure and has to implement the algorithms himself to perform the arithmetic
operations on them. Usually, bignums are represented as arrays of integers, each
element of which is a digit in base-n, where n is close to the square root of the
biggest integer that can be handled by the CPU’s arithmetic (Why? Think about it).

It is possible that a high-level language offers more than one fixed-size integer
type. Usually, their sizes are 16, 32, 64 or 128 bits. Sometimes, CPUs have support
for two or three of them (having also different operations for different types of inte-
gers; for example, there are two different instructions to add integers of size 32 and
64, respectively).

2.3.2 Floating Points

Floating point is the data type used to represent non-integer real numbers. The in-
ternal representation is organized such that the number is converted into a binary
fractional part and a multiplicative exponent part (i.e., F × 2E , where F is the frac-
tion, E the exponent). After this conversion, the fractional part is truncated to a fixed
length in bits, and stored along with the exponent.

You might remember from your Mathematics courses that irrational numbers do
not have fractional parts that can be truncated, neither do most of the rationals.
In “. . . the fractional part is truncated. . . ”, “truncated” means “approximated”. To
observe this, feel free to take the square root of (let’s say) 2.0, and then square the
result, in any high-level language. You will never get back the answer, 2.0.

Let us have a closer look at the internal representation of floating points to un-
derstand what is going on and where the precision gets lost. Below is the IEEE 754
binary floating point standard, converting a real number into the internal represen-
tation (see also Fig. 2.5):
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Fig. 2.5 IEEE standard for
32-bit floating point
representation

1. The whole part (the value to the left of the point) and the fractional part of a real
number are expressed in binary.

2. The fraction ‘point’ is moved to the left (or right) so that the whole part becomes
exactly 1. To compensate for the move and not to alter the value of the real
number, a multiplicative power of 2 is introduced. It is possible, of course, that
this power is negative.

3. The binary number 1 right before the point is skipped over, and the 23 digits
(following the fraction point) in the fraction part are stored as the mantissa.

4. 127 is added to the power of the multiplicative factor and stored as the exponent.
5. If the original real number is negative, the sign bit is set to 1, otherwise to 0.
6. The values ‘0’, ±∞, and ‘NaN’ (Not-a-Number) are represented by some excep-

tional combinations of mantissa and exponent values.

Therefore, mathematically, a real number is approximated to:(
1 +

23∑
n=1

bit[23−n] × 2−n

)
× 2exponent−127

Where exactly is the loss? The answer is as follows: if the summation were extended
to infinity, then any real number could be represented precisely. However, we do not
have infinite number of bits; we have only 23 of them. Therefore, the truncation after
the first 23 elements in the summation causes the loss. For example, the binary rep-
resentation for a simple real number 4.1 has the whole part equal to 100, and yet, the
fraction part has infinitely many binary numbers: i.e., 000110011001100110011 . . . .
Hence, using only 23 bits for real numbers such as 4.1 introduces a precision loss.

Is this a big problem? Yes, indeed it is. Here are some examples of everyday
problems that occur in scientific computing:

• Let us say we have 32 bits for representing floating points. Therefore, you have
only 232 real numbers that can be correctly represented. However, we know from
Mathematics that even in the range [0,1], there are infinitely many real numbers
(actually, it is worse than that: to be precise, there are ‘uncountably many’). In
other words, uncountably many real numbers are approximated to one real num-
ber that is representable by the computer. We call this precision loss roundoff
error.
What makes it even worse is that we easily make wrong estimates on roundoff
errors. In fact, there is no correlation between the representability in the decimal
notation and representability in the binary notation. For example, to us, 0.9 might
seem less prone to roundoff errors compared to 0.9375. Actually, it is just the
other way around: 0.9375 is one of the rare real numbers that is represented with-
out any loss, and 0.9, despite its innocent look, suffers from the roundoff error
(take your pencil and paper and do the math! When you get tired of it, you can
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go and watch the movie “Office Space” (1999), where you can learn how to make
millions out of roundoff errors).

• Many numerical computations are based on multiplicative factors which are dif-
ferences of two big numbers (by big numbers, we mean numbers whose whole
parts � 0). The whole parts are represented in the mantissa, and as a result, the
fractional parts lose precision. Therefore, for example, (1.0023 − 1.0567) yields
a different result from (1000.0023 − 1000.0567), although, mathematically, the
results should be the same (Try it!).

• The irrational number π is extensively used in scientific and engineering com-
putations. To get a close-to-correct internal floating point representation for π ,
we have to type 3.1415926535897931. The sinus of π , i.e., sin(π), should yield
zero, but it does not: the result of sin(π) on a computer is 1.2246467991473532×
10−16, which is definitely a small number but not zero. Therefore, a comparison
of sin(π) against 0.0 would fail.

• You might remember that, in your Mathematics courses, you were told that
addition is associative. Therefore, (a + b) + c would yield the same result as
a + (b + c). This is not the case with floating number computations. The losses
in the intermediate computations will differ, and you will have a different result
for different ways numbers are added. As an example:

set a = 1234.567, b = 45.67834 and c = 0.0004:
(a + b) + c results in 1280.2457399999998,
a + (b + c) results in 1280.2457400000001.

• Precision does not mean accuracy. Assume that you are working with the (IEEE
754 standard) 32-bit float representation introduced above. You want to compute
an area and you take π as 3.141. You add, multiply, divide and what you get are
numbers that are precise in 7 decimal digits. However, your accuracy is not more
than 4 digits in any computation that involves π , since the π value (3.141) you
have taken is accurate only up to 4 digits: All those higher digits are nonsense as
far as accuracy is concerned.

What is the bottom line then? Here are some rules of thumb about using floating
points:

• If you can transform the problem to a problem in the integer domain, do so: As
much as you can, refrain from using floating points.

• Use the most precise type of floating point in your choice of high-level language.
C, for example, has float, double and long double, which, these days,
correspond to 32, 64 and 128 bit representations, respectively.

• Use less precision floating points only when you are short of memory.
• It is very likely that you will have catastrophic roundoff errors when you subtract

two floating points close in value.
• If you have two addends that are magnitude-wise incomparable, you are likely to

lose the contribution of the smaller one. That will yield unexpected results when
you repeat the addition in a computational loop where the looping is so much that
the accumulation of the smaller addends is expected to become significant. It will
not.
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• The contrary happens too: Slight inaccuracies might accumulate in loops to sig-
nificant magnitudes and yield non-sense values.

• You better use well-known, decent floating point libraries instead of coding float-
ing point algorithms yourself.

2.3.3 Numerical Values in Python

Just to remind you our first interaction with Python from Chap. 1, let us have a
look at a simple computation involving some numbers:

>>> 3+4
7

In this interaction, the numbers 3 and 4 are integers, and Python has a certain
name, i.e., a type, for all integers: int. If you ask Python what int is, it will
tell you that it is a type:

>>> int
<type ’int’>

We could also ask the type of a constant number, or a combination of them:

>>> type(3)
<type ’int’>
>>> type(3+4)
<type ’int’>

The int type in Python has fixed-size representation, which depends on the
CPU. If you need to work with integers that exceed the fixed-size limit of your
CPU, you can use the long data type in Python. If you want your constant
numbers to be represented as long integers, you need to enter the L letter after
them:

>>> type(3L)
<type ’long’>
>>> type(3L+4L)
<type ’long’>
>>>

int type in Python has fixed-size represen-
tation (based on the CPU) whereas long
type is only limited by the size of available
memory.

For floating point numbers, Python has another type:
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>>> type(3.4)
<type ’float’>
>>>

and similar to int numbers, we can do simple calculations with the float
data:

>>> 3.4+4.3
7.7
>>> 3.4 / 4.3
0.79069767441860461

– Useful Operations on Numerical Values in Python

Let us have a look at some useful simple operations with numerical values in
Python (in Chap. 3, we will look at more operations and how they are inter-
preted by the CPU):

• Absolute value of a number: The abs(Number) function can be used for
the absolute value of a number.

• Hexadecimal or octal representation of an integer: The hex() and oct()
functions can be used for this purpose.

• Exponent of a number: Typing pow(Number1, Number2) or
Number ** Number2 in Python results in Number1Number2.

• Rounding a floating point number: The round(Float) function rounds
the given floating point number to the closest integer.

• Conversion between numbers: You can use the int(Number),
float(Number) and long(Number) as constructors to convert a
given number to int, float and long respectively:

>>> long(3.6)
3L
>>> float(3L)
3.0
>>> int(3.4)
3

Note from the examples that converting a float number to an integer num-
ber results in losing the fraction part (without rounding it).

2.3.4 Characters

As stated earlier in this book, we attempt to generate computer solutions for some
of our world problems. These problems are not always about numbers, they can also
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be about words or sentences of a natural language. The written language is made up
of fundamental units called graphemes. Alphabetic letters, Chinese/Japanese/Ko-
rean characters, punctuation marks, numeric digits are all graphemes, and there is a
demand to have these represented on the computer. In addition to graphemes, cer-
tain basic actions of the computer-external world interactions need also to be repre-
sented on the computer: “make a beep sound”, “eject the half printed paper from the
printer”, “end a line that is being printed and start a new one”, “exit”, “up”, “down”,
“left”, “right” are all such interaction actions. We call them unprintables. Since the
semantics of graphemes is very different from numbers and numerical values, they
are not at the center of CPU design. The CPUs nowadays do not have any built-in
feature for graphemes.

Whenever there is no built-in representation provided by the CPU architecture,
then programmers are free to make their own choice. In the case of representing
graphemes, we have several options which all involve constructing a mapping from
the set of graphemes and unprintables to binary representations. In more practi-
cal terms, being a computer manufacturer, you make a table of two columns: one
column is for the graphemes and unprintables and the other is for the binary rep-
resentations that you choose for the graphemes. You manufacture your interaction
devices, the so-called input/output devices, to represent graphemes and interpret the
binary representations of graphemes according to this table. A grapheme is repre-
sented in the memory in binary. For the CPU, the representation does not have any
meaning—it is just a set of binary numbers. At most, without interpreting it, the
CPU can aid to copy such binary data from one memory position to another or just
compare whether two such binary representations are identical.

Throughout the history of computers, there has been many such tables that link
graphemes with binary representations. Almost all large computer manufacturers
had their own tables. Later, local authorities responsible for standardization began
to standardize those tables. Table 2.1 shows the ASCII (American Standard Code
for Information Interchange) table, which was defined by the American Standards
Association, in 1963.

As you may have observed, the ASCII table uses 7 bits. The first 32 entries are
the unprintables. For decades, the USA was the dominant computer manufacturer
and this table affected the way programs were written for years. Even today, the
ASCII table is still extensively used world wide, although it is solely organized
to reflect a subset of the local needs of the USA. The ASCII table includes the
dollar sign ($), however, apparently, it falls short to satisfy the needs of foreign
trade; the symbols for sterling (£) and yen (�) are absent. Furthermore, none of the
diacritics which are widely used in European languages are included in the ASCII
table; e.g., the table does not have Ö, Ü, Ç, Å or È letters. The punctuation characters
suffer, too. It is difficult to understand why the tilde is there but the section sign is
not.

For these reasons, many countries had to extend the ASCII table and add their
additional characters using the 8th bit set. In such extensions, the letter Ç has a nu-
merical value that is not between the numerical values of letter C and D, making
alphabetical sorting a problem. A solution to this problem is having another table
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for the ordering of these letters. However, this makes working with such extension
tables inherently slower. It is an undeniable fact that since many of such existing
mappings are limited in size and scope, incompatible with multilingual environ-
ments, and cause programmers no end of trouble.

Years later, in the late 80’s, a nonprofit organization, the Unicode Consortium,
was formed with a goal to provide a replacement for the existing character tables
that is also (backward) compatible with them. Their proposed encoding (represen-
tation) scheme is called the Unicode Transformation Format (UTF). This encoding
scheme has variable length and can contain 1-to-4 8-bit-wide components (in the
case of UTF-8), or 1-to-2 16-bit-wide components (in the case of UTF-16). Gain-
ing wide popularity, UTF is now becoming part of many recent high level language
implementations such as Java, Perl, Python, TCL, Ada95 and C#.

Characters in Python

Python has a data type for a collection of characters (called ‘string’) and does
not have a separate data type for individual character. However, taking a charac-
ter as a subset of the string class (i.e., a character is a string of length one), you
can write programs making use of characters. We will come back to characters
in Python when we introduce strings.

Although characters are not explicitly represented with a type in Python, we
have the following functions that allows us to work with characters:

• The function chr(ascii) returns the one-character string corresponding
to the ASCII value ascii.

• The ord(CharString) is the reverse of chr(ascii) in that it returns
the ASCII value of the one character string CharString.

2.3.5 Boolean

Boolean is the type of data that represents the answer to questions like 3.4 > 5.6

or 6/2
?= 3. CPUs has built-in support for asking such questions and acting accord-

ingly to the answers. Therefore, the concept of True and False must be understood
by CPUs. CPUs recognize 0 as the representation of False (falsity). Mostly, any
value other than 0 stands for True (truthness). If the CPUs process any boolean cal-
culation, the result will be either 0 or 1; 1 representing the True truth value that
CPUs generate.

High-level languages have a similar mapping. Generally, they implement two
keywords (like TRUE, FALSE or T, F) to represent the two boolean values.
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When the interpreter or the compiler sees these keywords, it translates them into in-
ternal representations of values 0 or 1. High-level languages make additional checks
to ensure that those values are created

• either by the programmer entering the keyword, or
• as a result of a comparison operation.

Although they will be represented as 1s and 0s internally, on the surface (i.e., in the
high-level language) these keywords will not be treated as integers.2

Boolean Values in Python

You can check yourself whether or not Python has a separate data type for
boolean values by asking it a simple comparison:

>>> 3 > 4
False
>>> type(3 > 4)
<type ’bool’>

Therefore, Python has a separate data type for boolean values and that data
type is called bool. The bool data type can take only two values: True and
False.

We can use the not keyword for negating a boolean value. For example,
not True, and not 4 > 3 are False.

Since everything is internally represented as binary numbers, we can check
for the mapping of the True and False values to the integers:

>>> int(False)
0
>>> int(True)
1

which tells us that False is internally represented as 0 (zero), and True as 1
(one).

In Python, like many high-level languages, numerical values (other than 0
and 1) have a mapping to boolean values as well:

>>> not 0
True
>>> not 1
False
>>> not 2.5
False

2Except in C and its descendants. C does not provide a distinct boolean type and assumes that the
integers 1 and 0 play the True/False role.
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From this interaction, we understand that Python interprets any numerical other
than 0 as True. Moreover, any non-empty instance of a container data type,
which we will see in the remainder of this chapter, is interpreted as True; and
otherwise, any data is False. For example:

>>> not ""
True
>>> not "This is some text"
False
>>> not ()
True
>>> not (1, 2, 3)
False

2.4 Basic Organization of Data: Containers

In Sect. 2.2, we introduced the necessity of storing collection of data in the memory
and retrieving it later. Furthermore, we argued that storing the data in an intelligently
organized way can provide efficiency and flexibility.

In computer science, a data structure with the sole purpose of storing elements is
called a container. If a high-level language implements a container type, we expect
the following functionalities from it:

• Construct a container from a set of elements and store them.
• Destruct a container and free the associated memory.
• Access the stored elements for use.

In addition to those aspects, if we have the right to set/delete/change the individual
elements, then the container is said to be mutable. Otherwise, it is immutable.

As far as the internal representation is concerned, the simplest way to implement
a container is to store the elements in adjacent memory locations. If the elements
are homogeneous, i.e., of the same type, then we call this an array representation.
If they are heterogeneous, i.e., of different types, this is a tuple representation.

In the following subsections, we will introduce three basic containers:

• Strings (mutable or immutable)
• Tuples (immutable)
• List (mutable)

2.4.1 Strings

Strings are the containers to store a sequence of characters. The need for strings
is various; world problems intensively contain textual information and Computer
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Science itself relies heavily on strings. For example, the implementations of pro-
gramming languages themselves, compilers as well as interpreters, is partly a string
processing task.

The internal representation of strings is based on storing the binary representa-
tions of characters that make up the string, scanned from left to right, in adjacent
memory cells in the increasing address order. The count of characters in a string
is not fixed: i.e., we can have a string instance with three characters or a thousand
characters. The count of characters that make up the string is named as the length of
the string. Zero-length strings, i.e. empty strings, are also allowed.

Since there is a flexibility in the length of a string, there is a problem of de-
termining where the string ends in the memory. There are two solutions for this
representational problem:

1. Store at a fixed position (usually just before the string starts), the length of the
string as an integer.

2. Store at the end of the string a binary code which cannot be a part of any string.
In other words, put an ending marker which is not a character that could take a
place in a string.

Both of these approaches do exist in high-level language implementations. For ex-
ample, Pascal takes the first approach, whereas C takes the second. Both approaches
have their pros and cons. The first approach limits the length of a string to be at most
the biggest integer that can be stored in that fixed position which is a disadvantage.
On the other hand, in this approach directly reaching the end of string is extremely
easy. You just add the length of the string to the starting address of the string and
you get the address of the last character in the string, that is an immense advantage.
The second approach has the advantage that there is no limitation on the length of a
string, however, the disadvantage is that to reach to the end of the string, you have to
undertake a sequential search through all the characters in the string for the binary
code of the ending-mark.

Strings are usually immutable. Inserting new characters and/or deleting charac-
ters is not possible. Altering of individual characters is technically doable but many
high-level languages depreciate it. However, high-level languages provide syntactic
features to form new strings by copying or concatenating (i.e., appending) two or
more strings. You must keep in mind that such processes are not carried out in place
and are costly. In other words, when you concatenate a string S1 with another string
S2 to form a new string S3, first, the lengths of both S1 and S2 are obtained; then,
a fresh memory space that will hold length(S1) + length(S2) many characters is al-
located. All bytes that make up S1 are copied to that fresh memory location, then,
when the end of S1 is reached, the copying process continues with the characters
of S2. Therefore, a simple concatenation costs a memory allocation plus copying
each of the characters in the strings to some new location. If the end of a string is
marked by a terminator then, in addition, the length calculation requires access to
each member of both S1 and S2.
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Strings in Python

Python provides the str data type for strings:

>>> "Hello?"
’Hello?’
>>> type("Hello?")
<type ’str’>

The simplest thing we can do with strings is to get their lengths, for which
we can use the len(string) function:

>>> len("Hello?")
6

– Accessing Elements of a String

Using brackets with an index number, i.e., [index], after a string, we can ac-
cess the character of the string residing at the given index number. For example,
"Hello?"[0] returns the character ’H’, and "Hello?"[4] the character
’o’. Note that indexing the elements of a string starts at zero and not at one.
This means that to access the last element of the string, we would need to pro-
vide len(string)-1 as the index.

Luckily, we don’t need to use len(string)-1 to access the last element
of a string since Python provides a very useful tool for that: negative indexing.
In other words, if the index number is negative, the indexing starts from the end
of the string; i.e., "Hello?"[-1] gives us ’?’ and "Hello?"[-2] the
character ’o’. Note that negative indexing starts with one (as the last element
in the list) and in general, an index of -i refers to the character of the string at
position len(string) - i in positive indexing.

Python provides additional tools to access a subset of a string using ranged
indexing; i.e., [start:end:step], where start is the starting index, end
is the ending index, and step specifies that every stepth element of the string
until the index end will be returned. For example:

>>> "Hello?"[0:4:2]
’Hl’
>>> "Hello?"[2:4]
’ll’
>>> "Hello?"[2::2]
’lo’
>>> "Hello?"[::2]
’Hlo’

As seen in these examples, we can skip any of the start, end and step
values in [start:end:step] (i.e., we can just write [start::step],
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[start::], [::step] etc.), and in these cases, Python will assume that
the following default values are given: start: 0, end: the end of the string
and step: 1. However, if a negative step value is specified, then the start
corresponds to the last element, and end corresponds to the first element. In
other words:

>>> "ABC"[::-1]
’CBA’

If the subfields of [start:end:step]
are omitted, Python assumes default values
for them (see the text for some examples).

In Python, strings, lists and tuples have similar representations and therefore,
as we will see later, they have similar means for accessing their elements.

– Constructing Strings

We can get a string in either of the following ways:

• Enclosing a set of characters between quotation marks, like "Hello?", in
the code.

• Using the str() function as the constructor and supplying data of other
types. For example, str(4.5) constructs a string representation of its float-
ing point argument 4.5 and returns ’4.5’.

• Using the raw_input() function as follows to get a string from the user:

>>> a = raw_input("--> ")
--> Do as I say
>>> a
’Do as I say’
>>> type(a)
<type ’str’>

– Useful Operations on Strings

• The length of a string: As we shown above, we can use the len(string)
function to find the number of elements of a string: For example,
len("Hello?") returns 6 since there are six characters in the string.

• Searching for a substring in a string: To do this, we can use the
string.index() function, for example: "Hello?".index("o?")
returns 4 since the substring ’o?’ starts at index four.
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• Counting the occurrence of a given substring in a string: Can be
achieved by using the string.count() function, for example:
"Hello?".count(’lo’) returns 1 since there is only one occurrence
of the substring ’lo’.

• Concatenating two strings: Python provides the plus sign + to concatenate
two strings: "Hell" + "o"? yields "Hello?".

• Making the string lowercase or uppercase: We can use the
string.upper() and the string.lower() functions respec-
tively to make a string uppercase or lowercase. For example, for a string
"Hello?", the call to "Hello?".upper() result in ’HELLO?’
whereas the "Hello?".lower() would give us ’hello?’.

• Checking the characters in a string: The function
calls string.isalpha(), string.isdigit() and
string.isspace() respectively check whether all the characters
in a string are alphabetical, digital or whitespace (i.e., space, newline and
tab characters).

• Splitting a string into substrings: Often, we will need to split a string
into two or more substrings based on a given separator. We can use the
string.split([string]) function for that ([string] denotes that
the string argument is optional. Test it on your Python interpreter and see
what happens when you don’t supply a string argument to the split()
function). For example, "Hello?".split("e") gives us a list of two
substrings: [’H’,’llo?’].

• Checking for membership: We can use the in and not in operators to
check whether a substring occurs in a string: substring in string,
substring not in string.

• Minimum and maximum characters: The functions min(string) and
max(string) return the characters in the string that have respectively
the minimum and the maximum ASCII values. For example, for the string
"Hello?", min("Hello?") and max("Hello?") respectively give
us ’?’ and ’o’ since with ASCII values 63 and 111, ’?’ and ’o’ respec-
tively have the minimum and the maximum ASCII values in the string.

• Repeating a string: We can multiply a string with a number, i.e.,
string*number, and the result will be the concatenation of number
many copies of the string. For example, "Dan"*3 is ’DanDanDan’.

2.4.2 Tuples

The term tuple is borrowed from set theory, a subfield of mathematics. A tuple is an
ordered list of elements. Different from tuple in Mathematics, in Computer Science
a tuple can have elements of heterogeneous types. A very similar wording will be
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given in the following subsection for the definition of lists. Having almost the same
definition for lists and tuples could be somewhat confusing but this can be resolved
by understanding their difference in use and their function in life. Tuples are used
to represent a static form of aggregation. There is a known prescription and you,
the programmer, will bring together the components that make up that prescribed
aggregate.

For example, in a computer simulation of a physical event, you will extensively
be dealing with coordinates, i.e., a 3-tuple of floating point numbers. You will send
‘coordinates’ to functions, and form variables of them. However, they will neither
become a 2-tuple nor a 4-tuple; like the 3-musketeers, the grouping is unique. Sim-
ilarly, assume you want to represent an ‘employee record’ which may consist of six
fields of information:

ID, FIRSTNAME, LASTNAME, SALARY, ADDRESS, STARTDATE

As you can see, the types of the fields are not at all homogeneous. ID is an integer;
FIRSTNAME, LASTNAME and the ADDRESS are three strings, whereas SALARY
is a floating point, and STARTDATE is likely to be a 3-tuple. Since after setting the
structure of the aggregate information once (in the example that is what makes up
an employee record), it is illogical to change it in the subparts of the program, thus,
you make it a tuple.

We will see that lists, too, serve the purpose of grouping information but they are
dynamic; i.e., the information in a list can be altered, new elements can be added
and removed, etc.

As far as high-level language implementations are concerned, the immutability
constraint is sometimes turned into an advantage when it comes to compilation.
Compared to lists, tuples lead to fast and simple machine code. However, apart from
this, the only use of tuples in favor of lists is to prevent programming errors.

Tuples in Python

Python provides the tuple data type for tuples. You can provide any number
of elements of any type between parentheses () to create a tuple in Python:

>>> (1, 2, 3, 4, "a")
(1, 2, 3, 4,’a’)
>>> type((1, 2, 3, 4, "a"))
<type ’tuple’>

– Accessing the Elements of a Tuple

Tuples have exactly the same indexing functionalities as strings to access the
elements; i.e., you can use the following that was introduced for strings:
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• Positive Indexing: e.g., (1, 2, 3, 4, "a")[2] returns 3.
• Negative Indexing: e.g., (1, 2, 3, 4, "a")[-1] yields ’a’.
• Ranged Indexing, i.e., [start:end:step]: e.g., (1, 2, 3, 4,
"a")[0:4:2] leads to (1, 3).

Strings, Tuples and Lists in Python have the
same indexing mechanisms.

– Constructing Tuples

There are several ways to constructing tuples:

• Writing a set of elements within parentheses: i.e., (1, 2, 3).
• Using the tuple() function as a constructor and supplying a

string or a list as argument: tuple("Hello?") gives us the tu-
ple (’H’, ’e’, ’l’, ’l’, ’o’, ’?’), and supplying the
[1, 2, 3] to tuple() function results in the (1, 2, 3) tuple (Note
the difference between the brackets and the parentheses).

• Using the input() function as follows to get a tuple from the user:

>>> a = input("Give me a tuple:")
Give me a tuple:(1, 2, 3)
>>> a
(1, 2, 3)
>>> type(a)
<type ’tuple’>

– Useful Operations on Tuples

Like strings, tuples have the following operations:

• The number of elements of a tuple: We can use the len(tuple)
function to find the number of elements in a tuple: For example,
len((1,2,3,4,’a’)) returns 5.

• Searching for an element in a string: One can use the index() function
location = my_tuple.index(element) as follows, for example:
(1,2,3,4,’a’).index(4) returns 3. Note, that unlike stings, you can-
not use the index() function to find a subtuple within a tuple.

• Counting the occurrence of a given element in a tuple: One can use
the count() function location = my_tuple.count(element)
as follows, for example: (1,2,3,3,’a’).count(3) returns 2. Note,
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that unlike strings, cannot use the count() function for counting the oc-
currence of a subtuple within a tuple.

• Concatenating two tuples: Python provides the plus sign + to concatenate
two tuples: (1, 2) + (3, 4) yields (1, 2, 3, 4).

2.4.3 Lists

Similar to tuples, lists store a sequence of ordered information. From the program-
mers point of view, the only difference between tuples and lists is that lists are mu-
table and tuples are not. You can extend a list by inserting new elements and shrink
it by removing elements. However, this ability has deep implementational impacts.
Once a tuple is created every member’s position in the memory is fixed but this is
not the case for a list. In lists, both the size and content can be dynamically adjusted.
This brings the problem of structuring the data (the elements of the list) so that these
changes to the size and content can be easily and efficiently performed. There exists
various implementation alternatives for lists, which fall into two categories:

(a) Dynamic array solutions.
(b) Linked data structures solutions.

In type (a) implementations, reaching any member takes a constant number of steps
(i.e., reaching the first, the middle, the end of the list, or any other member in the
list requires the same number of steps) which is better than type (b). However, in
type (b), the insertion or deletion of elements takes a constant time which is not so
for type (a). High-level languages are divided on this subject; for example, Lisp and
Prolog implement lists as linked structures whereas the Python implementation is
based on dynamic arrays.

The list as a container concept is quite often confused with the linked list data
structure. Linked list data structures can serve as implementations of the list abstract
data type (the container). As stated, there can be other types of implementations of
lists.

Lists are heterogeneous, i.e., the members of a list do not have to be of the same
type. Mostly, lists themselves can be members of other lists, which is extremely
powerful and useful for some problems. When you have this power at hand, all
structures that are not self-referential3 become representable by means of lists. Some
languages, like Lisp, allow even self reference in lists. Therefore, complex structures
like graphs become efficiently representable.

3Structures are self-referential if they are (recursively) defined in terms of themselves. We will
come back to self-referential structures in Chap. 4.
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Lists in Python

Tuples are immutable, i.e., unchangeable, sets of data. For mutable sets of data,
Python provides the list data type:

>>> [1, 2, 3, 4, "a"]
[1, 2, 3, 4,’a’]
>>> type([1, 2, 3, 4, "a"])
<type ’list’>

Note that, unlike tuples, a list in Python uses brackets.

– Accessing the Elements of a List

Lists have exactly the same indexing functionalities as strings and tuplesto ac-
cess the elements; i.e., you can use the following that we already introduced for
strings and tuples:

• Positive Indexing: [1, 2, 3, 4, "a"][2] returns 3.
• Negative Indexing: [1, 2, 3, 4, "a"][-1] returns ’a’.
• Ranged Indexing, i.e., [start:end:step]: [1, 2, 3, 4,
"a"][0:4:2] leads to [1, 3].

– Constructing Lists

There are several ways of constructing Lists:

• Writing a set of elements within brackets: i.e., [1, 2, 3].
• Using the list() function as a constructor and supplying a string

or a tuple as argument: tuple("Hello?") gives us the list
[’H’, ’e’, ’l’, ’l’, ’o’, ’?’].

• Using the range() function: range([start,] stop[, step])
• Using the input() function as given below, to get a list from the user:

>>> a = input("Give me a list:")
Give me a list:[1, 2, "a"]
>>> a
[1, 2, ’a’]
>>> type(a)
<type ’list’>
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– Modifying a List

You can substitute an element at a given index with a new one: i.e.,
List[index] = expression. Alternatively, Python allows changing a
subset of the list with new values:

>>> L = [3, 4, 5, 6, 7, ’8’, 9, ’10’]
>>> L[::2]
[3, 5, 7, 9]
>>> L[::2] = [4, 6, 8, 10]
>>> L[::2]
[4, 6, 8, 10]
>>> L[]
[4, 4, 6, 6, 8, ’8’, 10, ’10’]

Note that, in the above example, we have given the name L to the list in the
first line. We call L a variable, and later in this chapter we will discuss in detail
giving names to data (i.e., variables).

Python provides the L.append(item) function to add one item to the
end of the list L:

>>> L = [4, 4, 6, 6, 8, ’8’, 10, ’10’]
>>> L.append("a")
>>> L
[4, 4, 6, 6, 8, ’8’, 10, ’10’, ’a’]

Alternatively, you can add more than one item to a list using the
L.extend(seq) function:

>>> L.extend(["a", "b"])
>>> L
[4, 4, 6, 6, 8, ’8’, 10, ’10’, ’a’, ’a’, ’b’]

If you want to add a new element in the middle of a list, you can use the
L.insert(index, item) function:

>>> L=[1, 2, 3]
>>> L
[1, 2, 3]
>>> L.insert(1, 0)
>>> L
[1, 0, 2, 3]

To remove elements from a list, you can use either of the following:

• del statement: del L[start:end]

>>> L
[1, 0, 2, 3]
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>>> del L[1]
>>> L
[1, 2, 3]

• L.remove() function: L.remove(value)

>>> L
[2, 1, 3]
>>> L.remove(1)
>>> L
[2, 3]

• L.pop() function: L.pop([index])

>>> L=[1,2,3]
>>> L.pop()
3
>>> L
[1, 2]
>>> L.pop(0)
1
>>> L
[2]

List modification is meaningful only for
named lists; i.e., if you run (for exam-
ple) the append() function like [1, 2,
3].append(4), you will not observe an
effect, although the list [1, 2, 3] might
have been changed.

– Useful Operations on Lists

• Reversing a list: L.reverse() function
A list can be reversed using the reverse() function.

>>> L = [1, 2, 3]
>>> L.reverse()
>>> L
[3, 2, 1]
>>> L[::-1]
[1, 2, 3]
>>> L
[3, 2, 1]
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In this example, we also see the difference between the reverse() func-
tion and the [::-1] indexing (which gives the elements of a list in reverse
order): [::-1] does not change the list whereas the reverse() function
does (i.e., it is in-place)!

• Searching a list: index = L.index(item) function
The index() function returns the index of the item in the list L. If item
is not a member of L, an error is returned.

• Counting the occurrence of an element in a list: n = L.count(item)
function
The count() function counts the number of occurrence of the item in the
list L.

• Range of a list: value = min(L) and value = max(L) functions
We can easily find the minimum- and maximum-valued items
in a list using the min() and max() functions. For example,
min([-100, 20, 10, 30]) is -100.

• Sorting a list: L.sort() or L2 = sorted(L) functions
There are two options for sorting the elements of a list: L.sort() or
L2 = sorted(L). They differ in that sort() modifies the list (i.e., it
is in-place) whereas sorted() does not.

2.5 Accessing Data or Containers by Names: Variables

We are mostly used to the word ‘variable’ from our Mathematics classes. Interest-
ingly, the meaning in programming is quite different from the mathematical one.
In Mathematics, ‘variable’ stands for a value which is unknown or undetermined.
In programming though, it refers to a value that is at hand and hence, is very well-
known. Literary speaking, a variable, in programming, is a storage which can hold
a data element of the high-level language and in the program, is referred to by a
symbolic name, given by the programmer.

2.5.1 Naming

The symbolic name is the handle that the programmer uses for reaching the variable.
What this name can consist of differs from language to language. Mostly, it is an
identifier which starts with a letter from the alphabet and continues either with a let-
ter or a digit. Examples of possible names are x, y, x1, xmax, xmin2max,
a1a, temperature. Whether there is a distinction between upper case and
lower case letters, and the inclusion of some of the punctuation characters in the
alphabet (e.g. ‘_’, ‘-’, ‘$’, ‘:’) is dependent on the language. Moreover, some lan-
guages limit the length of the identifiers whereas others do not.
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2.5.2 Scope and Extent

The way variables are created differ among high-level languages. Some need a dec-
laration of the variable before it is used whereas some do not. Some high-level lan-
guages allow the creation and annihilation of a variable for subparts of a program
where some do this automatically. The subparts of a program can exist in various
forms. Although not restricted to this, they are mostly in the form of subroutines, a
part of the program which is designed to carry out a specific task and is, to a great
extent, independent of other parts of the code. Subroutines are functional units that
receive data (through variables that are named as parameters) process it and as a
result, produce action(s) and/or data.

In addition to the parameters, many high level languages also allow the definition
of local variables in subroutines. The situation can become quite complex when
a high-level language (like Pascal) allows subroutine definitions inside subroutine
definitions. This is done with an intention of limiting the subroutine’s existence and
usability to a locality.

All this creation and annihilation of variables, the nest-ability, both definition-
wise and usage-wise, in subparts of a program result in the emergence of two im-
portant properties of variables:

• Scope
• Extent (or lifetime)

Scope is about where the language allows or disallows accessing a variable by re-
ferring to its name; i.e., scope determines the program parts in which a variable
is usable. Disallowing mostly occurs when a subpart (e.g. a subroutine) defines a
variable with the exact same name of a variable that already exists in the global
environment (the part of the program which is exterior to that subpart but is not
another (sibling) subpart). The variable of the global environment is there, lives
happily but is not visible from the subpart that has defined a variable with the
same name.

Extent or so called lifetime is the time span, from the creation to the annihilation of
the variable, during the flow of the program execution.

2.5.3 Typing

Depending on the high-level language, variables may or may not be defined with a
restriction on the type of data they will hold. The difference stems from the language
being;

• statically typed, or
• dynamically typed.

In the statically-typed case, the language processor (the compiler or interpreter)
knows exactly for what kind of data the variable has been established. It is going to
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hold a single type of data, and this is declared by a statement in the program (prior to
using the variable). Therefore, whenever a reference in the program is made to that
variable, the interpreter or compiler knows exactly what type of content is stored in
the corresponding memory location. This is the case in C, Pascal and Java.

If it is a dynamically-typed language, the content of the variable can vary as far
as types are concerned. For example, the same variable can first store an integer
then, in accordance with the programmer’s demand, it can store a floating point. In
this case, every piece of data in the memory is tagged (preceded) with a byte that
specifies the type of the data. Lisp, Perl and Python are such languages.

Statically-typed languages are relatively faster, since at run time (i.e., when the
program is running) there is no need to perform a check on the type of the data
and make a decision about how to proceed with an action (e.g. to decide whether a
multiplication instruction is that of a floating point or an integer type).4

2.5.4 What Can We Do with Variables?

The answer is simple: you can do whatever you wanted to do with the ‘data’ stored
in the variable. You can replace the data, or use the data. Certain uses (syntaxes)
of a variable (name) have the semantic (meaning) of “I want to replace the content
of the variable with some new value (data)”. All other uses of the variable (name)
have the semantics of “I want to have the data (or sometimes a copy of it) inserted
at this position”. An assignment instruction example, common to many high-level
imperative languages, would read:

average = (x + y) / 2.0

Here, average, x and y are three distinct variables. The use of average is syn-
tactically different from the use of x and y. Being on the left of the assignment
operator,5 the equal sign, the data stored in the variable average is going to be re-
placed with a new value. This new value is the result of the calculation on the right
side of the assignment operator and that calculation also makes use of two variables:
x and y. Since they appear on the right-hand side of the assignment operator this
time, the semantic is different, meaning “use in the calculation the values stored in
those two variables”. In the course of the evaluation, those two values will be added
then the sum will be divided by two.

4Processors have different sets of instructions for floating point and integer arithmetic.
5The assignment operator exists in all imperative languages. ‘=’, ‘:=’ are the most common nota-
tions used for assignment. ‘<-’, ‘«’, ‘=:’, ‘:’ are also used, but less frequently.
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2.5.5 Variables in Python

As discussed above, programming languages almost always provide a means
for naming the locations of the stored information, and these names are called
variables. In Python, to create a variable is as easy as writing a name and as-
signing a value to that name:

>>> a = 4
>>> b = 3
>>> c = a + b
>>> a
4
>>> b
3
>>> c
7

One of the goodies of Python is visible in the previous example: we used
the variables a, b and c without first defining them, or declaring what they
are; Python can evaluate the right side of the equal sign and discover the type
of the value. If the variable has already been created, the existing variable is
used and the value stored in the variable is over-written. If the variable has not
already been created, a new one is created with the type of the expression on
the right-hand side of the assignment operator (i.e., =).

The left-hand side of the assignment operator has to be a valid variable name;
for example, you cannot type a+2 = 4, (we will come back to what can be
put on the left hand side of an assignment operator in Chap. 3).

– Variable Naming in Python

Like in other programming languages, in Python only certain combinations of
characters can be used as variable names:

• Variable names are case sensitive, therefore the names a and A are two dif-
ferent variables.

• Variable names can contain letters from the English alphabet, numbers and
an underscore _.

• Variable names can only start with a letter or an underscore. So, 10a, $a,
and var$ are all invalid whereas _a and a_20, for example, are valid names
in Python.

Since the following keywords are already used by Python, you cannot use
them as variable names:
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and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

– Scope and Extent of a Variable in Python

The scope and the extent of a variable in Python depends on where it is defined.
Since we will cover more complex Python constructs later in the book, we will
return to the topic of scope and the extent of variables in the following chapters.

– Typing of Variables in Python

As discussed above, variables can be either statically or dynamically typed. In
Python, variables are dynamically-typed. The following example displays this
property:

>>> a = 3
>>> type(a)
<type ’int’>
>>> a = 3.4
>>> type(a)
<type ’float’>

That means, in Python, (i) you do not need to specify the type of the variable
and (ii) you can change the type of the variable by assigning new data of a
different type.

– Using Variables in Python

You can use variables in Python as you would use data: you can assign a tuple,
a string or a list to a variable and manipulate it in any way that you would
manipulate the data, for example:

>>> a = (1, 2, 3, ’a’)
>>> type(a)
<type ’tuple’>
>>> a[1]
2
>>> a[-1]
’a’
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– Variables, Values and Aliasing in Python

Each data (or object) in Python is assigned a unique identifier (basically, an in-
teger) which can be accessed by the id() function. Having unique identifiers,
Python manages memory space such that multiple occurrences of the same data
are stored only once whenever possible. For example:

>>> a = 1
>>> b = 1
>>> id(1)
135720760
>>> id(a)
135720760
>>> id(b)
135720760

Here, we see that the data ‘1’ and the variables a and b all hold the same
content; i.e., the data ‘1’ is represented once and all these three cases make use
of only one stored ‘1’.

However, it is safe to change the content of one variable without affecting
the content of the other (following the previous interaction):

>>> a = 2
>>> b
1
>>> id(a)
135720748
>>> id(b)
135720760

In the following example for lists (which are mutable containers), however,
the variables are linked to the same memory location and changing one variable
means changing the other one, due to mutability:

>>> a = [’a’, ’b’]
>>> b = a
>>> id(a)
3083374316L
>>> id(b)
3083374316L
>>> b[0] = 0
>>> a
[0, ’b’]

In this example, although we did not explicitly access the list pointed to by the
variable a, we could change it since variable b became an alias to the variable
a in the assignment b = a.
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In Python, mutable data types (we have
only seen lists up to now) are affected by
aliasing. Although this can be a beneficial
property at times, it is often dangerous to
assign variables of mutable content to each
other such as, a = b.

2.6 Keywords

The important concepts that we would like our readers to understand in this chapter
are indicated by the following keywords:

Structured Data Tuples
Basic Data Variables
Integers Static Typing
Floating Points Dynamic Typing
Characters Mutable Types
Boolean Values Immutable Types
Strings Aliasing
Lists Scope&Extent of Variables

2.7 Further Reading

For more information on the topics discussed in this chapter, you can check out the
sources below:

• Two’s Complement:
http://en.wikipedia.org/wiki/Two%27s_complement

• IEEE 754 Floating Point Standard:
http://en.wikipedia.org/wiki/IEEE_754-2008

• ASCII:
http://en.wikipedia.org/wiki/ASCII

• UTF—UCS Transformation Format:
http://en.wikipedia.org/wiki/UTF-8

• Mutable and Immutable Objects:
http://en.wikipedia.org/wiki/Mutable_object

• For naming conventions and the reserved keywords in Python:
http://docs.python.org/reference/lexical_analysis.html#identifiers

• Aliasing:
http://en.wikipedia.org/wiki/Aliasing_%28computing%29
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2.8 Exercises

1. Find the Two’s Complement representation of the following numbers: 4, −5, 1,
−0, 11. How many bits do you require for all these numbers?

2. Find the IEEE 754 32-bit representation of the following floating points: 3.3,
3.37, 3.375.

3. You can use either a comma , or a plus sign + to combine different values or
variables in a print statement. Experiment with the Python interpreter to see the
difference.

4. Write a Python code that inputs two numbers from the user and then displays
their arithmetic, geometric and harmonic means. Do you see any relation be-
tween the arithmetic mean, geometric mean and the harmonic mean? (Hint: For
a set of numbers x0, . . . , xN , arithmetic, geometric and harmonic means are
respectively defined as: 1/N

∑
xi

xi , 1/N
∏

xi
xi and N/

∑
xi

1/xi .)
5. Write a Python code that inputs the coefficients of two lines y = a1x + b1 and

y = a2x + b2 from the user and finds their intersection. (1st Hint: You can as-
sume that the lines are not parallel. 2nd Hint: The x coordinate of the intersec-
tion can be found by equaling a1x +b1 to a2x +b2. Putting that x coordinate in
the equation of one of the lines leads us to the y coordinate of the intersection.)

6. Write a Python code that inputs the coordinates of the corners of a triangle (i.e.,
(x0, y0), (x1, y1), (x2, y2)) and compute the area of the triangle.

7. What happens when you call the append() function on a list with another
list as the argument? (For example: For a list L = [1, 2, 3], what is the
output of L.append([4, 5])?)

8. What happens when you call the extend() function on a list with another list
as the argument? For example: For a list L = [1, 2, 3], what is the output
of L.extend([4, 5])?

9. Write a piece of Python code that takes the first half of a list, reverses it and
appends it to the end of the second half. For example: For a list L = [1, 2,
10, 20], the result of your Python code should be [10, 20, 1, 2].

10. Write a piece of Python code that checks whether a word is palindrome. A palin-
drome is a word or phrase or number which reads the same forward and back-
wards. Examples are; radar, racecar, wasitaratisaw. (Hint: You can make use
of the == operator to check the equality of two sequences.)

11. Write the following in Python and study their outputs: help(help),
help(type), help(int), help(long), help(float), help(bool),
help(str), help(list).

12. From the help page of the list type, find out how to calculate the number of
bytes that a list occupies.

13. What happens when you try to index a string with a number greater than the
length of the string? Do you get the same result for tuples and lists?

14. What happens when you try to change the elements of a tuple? For example:
for a tuple T = (1, 2, 3), what is the result of T[0] = 3 ?

15. Do the sort() and the sorted() functions sort in increasing or decreasing
order? How can you change the sorting order? (Hint: Use the help page of the
list data type or the sorted() function.)
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16. Type import sys and help(sys) into your Python interpreter and look
for how you can access the following:
(a) The maximum int, float and long that can be represented by your

Python interpreter on your machine.
(b) The version of the Python interpreter.
(c) The name of the platform that the interpreter is running on.


