
Lecture Notes in Physics 861

Tides in Astronomy and Astrophysics

Bearbeitet von
Jean Souchay, Stéphane Mathis, Tadashi Tokieda

1. Auflage 2012. Taschenbuch. xii, 375 S. Paperback
ISBN 978 3 642 32960 9

Format (B x L): 15,5 x 23,5 cm
Gewicht: 593 g

Weitere Fachgebiete > Physik, Astronomie > Astronomie: Allgemeines

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Souchay-Mathis-Tokieda-Tides-Astronomy-Astrophysics/productview.aspx?product=11142504&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_11142504&campaign=pdf/11142504
http://www.beck-shop.de/trefferliste.aspx?toc=9370
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642329609_TOC_001.pdf


Chapter 2
Investigations of Tides from the Antiquity
to Laplace

Vincent Deparis, Hilaire Legros, and Jean Souchay

Abstract Tidal phenomena along the coasts were known since the prehistoric era,
but a long journey of investigations through the centuries was necessary from the
Greco-Roman Antiquity to the modern era to unravel in a quasi-definitive way many
secrets of the ebb and flow. These investigations occupied the great scholars from
Aristotle to Galileo, Newton, Euler, d’Alembert, Laplace, and the list could go on.
We will review the historical steps which contributed to an increasing understanding
of the tides.

2.1 Introduction

In the Western world, the first questionings about the ebb and flow date back to
the 4th century B.C., when learned people of Greece began to acquire a precise
knowledge of motions in the sea thanks to travels mainly driven by conquests.
They raised basic questions such as: ‘What causes this wide, periodic, breathing-
like motion?’ ‘Why is it so small in the Mediterranean unlike in large oceans?’ The
phenomenon was disconcerting, for it is extremely regular in time and irregular in
space. From that time to Newton and Laplace, explanations of the tidal phenomena
were numerous, sometimes contradictory, often ingenious. They constitute an ad-
venture of the human thought, which we will analyse in this chapter. In particular
we will try to illustrate: when the origin of the tidal phenomena was discovered;
how the mathematical and physical tools to describe the tides were developed; how
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the scientists succeeded in solving a problem which at the beginning had utterly
bewildered them.

The concept of tide has two facets. First, we can consider the tidal force, which
arises any time an extended body A is subject to the gravitation of another body B .
The tidal force exists even in case A is a rigid body and not capable of deformation.
Second, we can consider the effects of the tidal force exerted by B on deformable
parts of A, for example ocean tides due to the combined gravitational tidal torque
exerted by the Moon and the Sun on the bulk of the oceans. Another example is the
terrestrial tides, due to the elasticity of the Earth’s crust, ordinarily not perceptible
but technically observable since the end of the 19th century. In our study, we will
focus on the concept of tidal force rather than that of tidal deformation, even if it
was via observations of the latter that the scientists have finally understood the real
cause of the former.

We have divided our study chronologically. In the first section we discuss ob-
servations of tides from the Antiquity to the beginning of the 17th century. We
show that learned people of the Antiquity and of the Middle Ages already had a
good inkling of the nature and the behavior of ocean tides, and that hypotheses con-
cerning their origin proliferated. In the 17th century several theories dominated the
debates, which had little in common with one another. We describe in particular
the theories by three great scientists: Kepler, Galileo, and Descartes. One section
will be devoted entirely to Newton. We give details on his explanation of tides in
his Philosophiae Naturalis Principia Mathematica (Principa for short), published
in 1687. This work, based on a succession of geometric considerations, evaluates
among other things the amplitude of the tidal force, and is regarded as the start-
ing point of the true explanation of tides. Another section deals with the works of
Daniel Bernoulli, Euler, and d’Alembert: in a relatively short span of time around
1740, these scientists improved the calculations of tidal effects exploiting then new,
very efficient tools of calculus.

We conclude our history with the monumental work of Laplace, which was elab-
orated over a period of more than half a century. Laplace’s work, supported by the
tool of spherical harmonics, is the foundation of the modern theory of tides. A more
complete study of the tides from the antiquity to modern times was done by D.E.
Cartwright [2].

2.2 Study of Tides in the Antiquity1

The first precise recorded observations of tides go back to the Antiquity, outside
the Mediterranean where the ebb and flow phenomena are negligible and cannot be
easily detected. Greek mathematicians listened to travelers, often involved in mili-
tary conquests, to form their description of oceanic tides. Among them, Nearchus,2

1We make an important use of the work of P. Duhem [8, 9].
2Born in Crete around 360 B.C., he participated in the expedition of Alexander the Great, being
in charge of a fleet of 120 vessels, transporting 10 000 people. He was in charge of establishing a
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Fig. 2.1 Poseidonios
(135–50 B.C.)

around 325 B.C., reported on tides of the Indian Ocean, whereas Pytheas,3 an ad-
venturer from Marseille, mentioned tides of the Atlantic during his trip from Gades
in southern Spain to Brittany, 340–325 B.C. Pytheas noticed the fundamental cor-
relation between ascending tides and the full Moon. The geometer Eratosthenes
(276–194 B.C.)4 carefully studied the flows inside the strait of Sicily. He pointed
out that their frequency was nearly half a day, with a positive peak corresponding
to the instant when the Moon is in the meridian or anti-meridian direction, and a
negative peak when the Moon is close to the horizon. Around 150 B.C. Seleucos,
a native of the Red Sea, pushed further the analysis of tides. He noticed that their
amplitudes get all the greater as the declination of the Moon is larger.

Poseidonios5 (Fig. 2.1) (135–50 B.C.), as a member of the Stoic school, was an
adept of the Aristotelian conception of the universe, an imperfect sublunar world and
a perfect supralunar one. For him the behavior of tides, governed by unexplained
powers, confirmed the importance of the Moon in human destiny. This argument
prevailed until the Middle Ages. In addition to the observation of the half-diurnal
frequency of tides, Poseidonios recognized that their amplitudes (associated with
what we call nowadays the tidal coefficient) are strongly linked with the phases of
the Moon, being maximal during the syzygies (new or full Moon), minimal during
the quadratures (when the Earth-Moon and Earth-Sun directions are perpendicular).

new maritime route between the Indus and the Persian Gulf. His achievements were described by
Strabo in Geography (vol. XV).
3One of the oldest scientific explorers. His accounts and astronomical observations were used later
by Eratosthenes and Hipparchus.
4Astronomer, geographer, philosopher, and mathematician, well known for his measurements of
the Earth radius by studying shadows produced by the mid-day Sun at Cyrene and Alexandria.
5Geographer and historian, he was keen on measurements (meridian length, height of the atmo-
sphere, distance to celestial bodies). He wrote treatises in physics and meteorology.
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Fig. 2.2 Strabo
(58 B.C.–25 A.C.)

The geographer Strabo (58 B.C.–25 A.C.) (Fig. 2.2), who compiled the scien-
tific knowledge of his times, emphasized the results obtained by Poseidonios. He
mentioned that his predecessor recognized that oceanic tides undergo three kinds
of motion, each related to an astronomical cycle: diurnal, monthly, and yearly. He
also showed how Poseidonios understood that each time the elevation of the Moon
reaches about 30°, the sea begins to rise progressively to reach a peak when the
Moon crosses the meridian plane. Moreover Strabo reports that Poseidonios ob-
served annual variations with peaks of amplitude around the equinoxes.

Supplementing these observations Pliny the Elder6 (23–79 A.C.) made a remark-
ably precise discovery: he revealed a time lag between the instant when the Moon
crosses the meridian/anti meridian and the instant when the tide reaches its maxi-
mum.

As the above enumeration shows, the Ancients knew the main characteristics of
tides with remarkable accuracy and perspicacity. Nevertheless, a physical explana-
tion remained to be found. Seleucos accepted the idea that the Earth rotates around
its axis. He explained that this rotation creates a whirlwind which is modified by the
presence of the Moon. The resulting effect is an activation of the oceanic motion.
From his side, Poseidonios explained that the Moon had a larger influence than the
Sun: the Sun, as a powerful fire, destroys all the vapor it creates at the surface of
the ocean; the Moon, an attenuated fire, cannot vaporize the fluid masses and thus
favors the ebb and flow. The Sun has no direct effect on the tides, but an indirect one
as it lights the Moon, which in its turn acts on the oceans.

As far as we can gather from the surviving testimonies, Arab scholars did not add
substantial knowledge or theory dealing with the tides. But as in the other fields of
astronomy and mathematics, they played a key role in the transmission of scientific
knowledge from the Greeks to the Western countries. The astronomer and astrologer

6Roman author, naturalist, and philosopher, he wrote Naturalis Historia, an encyclopedia of much
of the knowledge of his time, the largest single work to have survived from the Roman empire to
the present day, encompassing botany, zoology, astronomy, geology, and mineralogy.
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Abu Maishar al-Bakhli (787–896), more often called Albumasar (787–886),7 men-
tioned the three kinds of cycles accompanying the tides (semi-diurnal, fortnightly,
and semi-annual) as well as the leading effect of the Moon as pointed out by Posei-
donios. But in contrast with his Greek predecessor, he did not believe that moonlight
was the cause of tides. Indeed two facts were difficult to explain according to the
theory of Poseidonios: the existence of a peak of amplitude during a diurnal cycle
when the Moon is located in the anti-meridian direction, and a maximum of the
peak during a monthly cycle when the Moon is in conjunction with the Sun. Both
cases correspond to a total absence of Moon light, which contradicts the theoretical
foundations above.

Albumasar suggests an alternative explanation. As an astrologer ready to ascribe
supernatural powers to celestial bodies, he says the Moon possesses a ‘virtue’ hav-
ing the power of driving oceanic motions. The sea itself does not have the capacity to
be disturbed under the influence of the moonlight, enhanced by the solar light. The
cause of tides should be extrinsic to the sea and, after sieving various alternative
explanations, he reaches the conclusion that the Moon is responsible of the uprising
of oceanic masses, thanks to its own virtue. He supposes that the Sun too possesses
a similar, though attenuated, virtue. Finally, Albumasar explains (correctly) that the
lack of significant tidal phenomena in some basins comes from the their configura-
tion, and not from a limitation of the lunar effect.

2.3 Variety of Theories in the Middle Ages

The medieval knowledge about tides came essentially from the writings of Pliny the
Elder, until the Albumasar was translated into Latin in 1140. But it is worth mention-
ing the contribution of the Venerable Bede (about 672–735)8 one whose interesting
features is that it addresses the unexplored tides along the coasts of Great Britain.
Bede made very valuable and accurate observations, remarking for instance that the
maximum of the tide does not occur at the same time in various harbors along the
coast, even when these harbors are located along the same meridian. This constitutes
the first recognition of what is nowadays called the ‘harbor establishment law’. It
proves that Bede’s perception of ebb and flow was particularly sharp, at an epoch
when science generally stagnated. In contrast with these realistic observations, some
original theories were proposed by other scholars. Paul Diacre (720–748), studying
the maelströms in the North Sea, remarked that the direction of a whirlpool changed
when the tide is reversed: therefore he attributed the tides to some abysses swallow-
ing, then regurgitating, the oceanic masses.

7Persian astrologer, astronomer, and Islamic philosopher, he wrote a number of practical manuals
on astrology that profoundly influenced the Muslim intellectual history.
8English monk at the Northumbrian monastery of St. Peter at Monkwearmouth. Well known as
author and scholar, and for The Ecclesiastical History of the English People. In The Reckoning of
Time, he deals with ancient and medieval views of cosmos, including explanations of astronomical
phenomena.
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In the 4th century, the philosopher and philologist Macrobe (about 370–430)
imagined that the ocean had four arms crossed by big currents and that the tides orig-
inate from the conflict between these currents. This theory was popularized seven
centuries later by the philosopher, mathematician, and naturalist Abelard de Bath
(1080–1160), known for his interest in the Arab culture. None of these explana-
tions involves the Moon or the Sun. A little later, we come back to a more convinc-
ing explanation of the nature of tides thanks to a professor of theology, Guillaume
d’Auvergne (1190–1249), who reinstated the determining influence of the Moon at
the center of the discussion. His explanation looks very close to the true one: will-
ing to introduce some astrological principle involving the influence of the Moon, he
proposed that the sea gets elevated toward the Moon which acts like a conductor,
a disconcerting analogy with magnetism: when the Moon is ascending, it attracts
the fluid as a magnet attracts iron when lifted. One of the interesting points in Guil-
laume d’Auvergne’s conception of tides is the foreboding of gravitational attraction,
another in the rejection of swallowing or regurgitating of fluid masses: the oceanic
mass remains constant and the elevation is due to an agitation created by the Moon.
Nevertheless, Guillaume d’Auvergne shows an ignorance of the semi-monthly cy-
cle: he believes that a maximum of the tide occurs each month during the full Moon,
attributing the lunar action to its lighting; he does not mention the symmetric case
of the new Moon, when the satellite presents its dark face toward us.

Albert the Great (about 1200–1280) proposed similar explanations. For him, the
Moon is doubly responsible for the tides. First it is a body of humid nature and
so has the ability to attract the oceanic fluid as a magnet attracts iron. Second its
brightness creates a heat which leads to the formation of a bulge—some kind of
bubbling. He added that the water could be attracted only because of the salinity
of the sea. St. Thomas Aquinas (1224–1274) still clung to the idea that the Moon
possesses some virtue which gives it the capacity to stimulate motion inside fluids.
Thus, the 12th and 13th centuries saw many theories dealing with the formation
of tides, broadly based on two postulates. The first says that the Moon has some
virtue; the second says that the Moon acts through its light. Either way, such theories
face severe inconsistencies. For instance, how can the Moon cause the second semi-
diurnal tide when it is located in the anti meridian direction, at a position where
its influence should be minimum in terms of power, brightness, or heat? According
to some audacious theorists, such as Robert Grosseteste (1175–1253),9 the power
of the Moon, when it is below the horizon, is maintained through the reflection
of its light on the celestial sphere. This theory, though highly hypothetical, was
supported by many contemporary physicists, such as Roger Bacon (1214–1294).
Also, inconsistencies with astrological principles arose: the idea that moonlight acts
on oceans by a kind of bubbling is against the principle that the Moon is a humid
body cooling down and condensing any vapor. Physicists of the Paris school such
as Jean Buridan (1202–1363) hesitate to select one out of these many theories.

In summary, the main difficulties in the theory of tides during the Middle Ages
were as follows.

9English scholar, bishop of Lincoln. He showed deep interest in geometry and optics.
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• Precise observations of tidal mechanisms by Greek and Arab scholars had been
forgotten, replaced by obscurantism or wrong beliefs. For instance some theories
defend the idea of a monthly cycle for the maximum amplitude instead of the real
semi-monthly one.

• The fallacious idea that tides are due to alternating swallowing and regurgitating
of water competed the correct idea that oceanic masses remain constant and that a
bulge is produced at some place, balanced by a mass deficiency at another place.

• The problem of the geographical variations of tides is unsolved. In particular the
following questions do not find any answer. Why are the tides so strong at some
coastal locations and nearly non-existent at others? Why is the diurnal inequal-
ity (difference of maximum amplitudes between successive semi-diurnal tides)
clearly present at some locations like the Red Sea, while it does not appear at
others like the Atlantic?

• Does the Moon have an influence? If yes, how to characterize this influence?
In terms of its light? Or of some virtue? And how to explain the maximum of
the tide when the Moon is lying on the anti-meridian, at its maximum angular
distance below the horizon?

• What is the exact role of the Sun? Does it directly raise the water mass by heating?
Or does it act indirectly by reflection off the Moon?

• How can we explain the various periods linked to the tides? If the interpretation
of the semi-diurnal cycle can be found, what is the cause of the fortnightly and
the semi-annual cycles?

2.4 Tides in the Renaissance and the 17th Century

In the Renaissance and especially in the 16th century, the developments of the the-
ory of tides come largely from physicians and astrologers. Their main aim was to
establish a link between celestial bodies and phenomena occurring on the Earth.
For that aim they made a clear choice between the various explanations prevailing
at the end of the Middle Ages and enumerated at the end of the last section. For
them the water mass remains constant; tides are obviously caused by the action of
the Moon and less predominantly by the Sun; these two bodies do not produce their
action through their light but through a specific virtue, which is comparable to the
attraction between a magnet and iron.

2.4.1 Renaissance

In the beginning of the 16th century, a physician of Sienna, Lucius Bellantius, ex-
plains that the rays with which the Moon attracts the oceanic masses are not light
rays, as can be proved during the conjunctions (new Moon), when the Moon shows
us its dark face. For him the Moon acts through virtual rays, in the same way as a
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magnet attracts iron. Another physician, Frederik Grisogono (1472–1538)10 insists
on the modulating influence of the Sun, which in some cases enhances, in others
attenuates, the action of the Moon. His intuition is amazingly close to reality. The
total tide can be divided into two components, one due to the Moon, the other due to
the Sun. They both produce a swelling of the oceanic volume, maximum at the point
of the oceanic surface closest to that body, and also at the antipodal point. Grisogono
supposes that each of the Moon and the Sun distorts the sea to form an ellipsoid of
revolution, whose major axis is oriented toward it. This helps to explain how twice a
month, in the full and the new Moon (syzygies) when the two major axes coincide,
the amplitude of the tide is maximum. Such ideas from physicians and astrologers
spread rapidly, the majority of them supporting the ‘magnetic model’ of attraction.
Jules César Scalinger (1484–1558) claimed that just as iron is moved by a magnet
without any physical contact, so the sea can be moved by the presence of a ‘no-
ble body’ such as the Moon. The English scholar and physician William Gilbert
(1544–1603), who undertook pioneering studies in electrostatics and magnetism,
discovered that the Earth acts like a giant magnet. He also adhered to the idea that
the Moon does not act through its light but through forces analogue to the magnetic
one.

2.4.2 Kepler’s Views

Kepler (1571–1630) agreed with Scalinger’s conception and with the magnetic anal-
ogy. Of gravitational phenomena he had a remarkable visions, which opened the
path to Newton. First, though himself an occasional astrologer, he was a fierce op-
ponent to the astrological principle according to which the Moon attracts the sea by
their common humid nature. He defended the concept of a mutual gravity depend-
ing on the sizes of the bodies involved. He explicitly claims that if the Earth ceased
its attraction of the oceanic masses, the latter would instantaneously rise toward the
Moon. For him gravity is a mutual disposition to join between bodies sensitive to
each other. For instance he presumes that if two stones were placed at a little mutual
distance apart and far from any other body, they should undergo a mutual attraction,
leading to a junction in some intermediary location. Notice that we cannot qualify
this attraction as ‘universal’, because for Kepler the two bodies concerned must be
of such nature as to favor attraction. The concept of gravity-driven tides were ap-
preciated among some of Kepler’s contemporaries, and by the beginning of the 17th
century his ideas had spread quite a lot, even if they encountered opponents such as
the mathematician, philosopher, theologian, and astronomer Pierre Gassendi (1592–
1655) who rejected the idea that the Sun could have any action on tides, still arguing
that the action of the Moon comes from its humid nature. Another strong opponent

10Also mathematician, physicist, astronomer, born at Zadan in Croatia and educated at Padova.
In addition to Commentaries on Euclid’s Elements, he developed an important theory of tides,
published in Venice in 1528.
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Fig. 2.3 Galileo Galilei
(1564–1642)

to Kepler’s views was Galileo Galilei (Fig. 2.3) (1564–1642) who expressed his as-
tonishment that such a ‘free and subtle spirit’ (Kepler’s) could defend the idea of
any power of the Moon on the water, thus betraying attachment to some occult and
childish principles.

2.4.3 Galileo: An Original Concept

Galileo’s opposition to Kepler’s explanations was motivated by the fact that he him-
self developed a theory based on new principles of mechanics, very different from
all those already described. The fourth day of his Dialogues Concerning the Two
Chief World Systems [11] (published 1632) is devoted to the problem of tides, and
gives a full account of his approach starting from the combination of the Earth’s ro-
tation around its axis and its orbital motion around the Sun. This theory could have
been imported from the work of Celio Calcagnini11 (1479–1541) published posthu-
mously at Basel in 1544. Galileo’s explanations relies on the analogy between the
tides and the motion of water inside a vessel. When the vessel is accelerated or de-
celerated, the inertia inclines the surface of water toward the back or front side of
the vessel. For him, the tidal motions of the oceans follow the same laws, governed
by a varying acceleration of the water coming from the combination of the Earth’s
diurnal rotation plus its annual revolution around the Sun. According to this the-
ory, if only one of these motions existed and not the other, the ocean would be in
equilibrium.

These motions, when combined, produce the same kind of displacements as that
of water in a vessel. For a given point at the circumference of the Earth, the two
velocities due to the rotation and the revolution sometimes add together, sometimes
subtract from each other (Fig. 2.4). Therefore the water masses are displaced al-
ternately along the oriental and occidental coasts, causing a diurnal tide. Thus for

11Italian humanist and scientist from Ferrara, in his time a reputed astronomer.
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Fig. 2.4 Theory of tides
according to Galileo: the
ecliptic plane is supposed to
coincide with the equator.
Rotational and orbital
motions are added in A,
substracted in B

Galileo the origin of tides must be found exclusively from the combination of var-
ious terrestrial motions, and has no link at all with the influence of the Moon or of
the Sun. In retrospect this theory does not look realistic. Nevertheless, the reality of
the effect suggested by Galileo deserves some attention.

For him the two motions of rotation and revolution sometimes are added, some-
times substracted. Thus the points on the surface acquire a non-uniform velocity, im-
plying an activation of water motion. Note that Galileo’s idea can be associated with
the concept which enabled the scholars of the Antiquity to explain the non-uniform
motion of the Sun, the Moon, and the planets in the sky through a combination of
motions with the help of a deferent and epicycles.

Souffrin [25] analysed this effect, illustrated in Fig. 2.5: the acceleration of a
given point M at the surface of the Earth can be divided into two components: the
first, γ1, is the centripetal acceleration of the center of the Earth with respect to
the Sun, due to the orbital motion, with angular velocity Ω ; the second, γ2, is the
centripetal acceleration due to the rotational motion of the Earth around its center of

Fig. 2.5 Theory of tides according to Galileo: M is a point on the Earth surface, T the Earth
center, S the Sun, r the Earth radius, d the radius of the Earth orbit, supposed circular. Ω is the
angular velocity of the orbital motion, Ω + ω the angular velocity of the rotational motion
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mass, with angular velocity Ω + ω. Thus the total acceleration of M can be written
as12

γM = γ1 + γ2 = −Ω2 du − (ω + Ω)2rn (2.1)

Since u = cosωtn − sinωtt, the decomposition of γM along n, t gives

γM = γn + γt = −(
Ω2d cosωt + (ω + Ω)2r

)
n + Ω2d sinωtt (2.2)

Thus the acceleration γM for a given point of the Earth has a normal component
γn and a tangential component γt . The normal component has no significant effect,
for it acts in the same direction as gravity and is negligible in comparison. The
tangential component, though of very small size also, acts perpendicularly to gravity
and can have a visible effect. This tangential component Ω2d sinωt comes solely
from the orbital motion. Because of the diurnal rotation, it is alternately directed
eastward or westward.

Galileo’s mistake comes from a misunderstanding of the orbital motion of the
Earth. As Newton will show a little less than a century later, the Earth is kept in its
orbit by the gravitational attraction of the Sun which acts on all terrestrial matters,
the liquid part as well as the solid part. To a first approximation the water as well as
the basins are subject to equal gravitational attractions Ω2d of the orbital motion.
But the equality is exact only at the center of the Earth and not elsewhere, which
constitutes the basis of the explanation of tides by Newton. The water and the basins,
attracted in the same manner by the Sun, ‘fall’ toward it together: the relative motion
between the water and the basins does not exist.

Of course Galileo did not know Newton’s law of gravitation. No more than Ke-
pler and other contemporaries was he able to understand the orbital motions of the
planets. For him the revolution of the Earth is given naturally: it exists without any
cause, guided by an imaginary physical principle. Consequently Galileo relied on
purely kinematical principles and never adopted a dynamical one. Nothing and no-
body could induce him to doubt his solution from the combination of the two Earth
motions. Despite his misunderstanding, his will to develop a mechanical theory of
tides was fundamentally new and his contribution was essential.

2.5 Descartes and His Theory of Vortices

In his Principles of Philosophy published in 1644 [7], Descartes (Fig. 2.6) (1596–
1650) proposes an alternative theory of tides, relatively independent of the prede-
cessors. He is convinced that everything in the universe is governed solely by the
laws of motion, and that vacuum does not exist: as soon as vacuum arises, it gets
filled with subtle matter organized in a system of vortices. This principle is applied
to the solar system. The Sun occupies the center of the main vortex, and its proper

12Our method of proof, based on accelerations and vectors, is not that of Galileo who works with
velocities only. But it is a faithful translation of his idea.



42 V. Deparis et al.

Fig. 2.6 René Descartes
(1596–1650)

rotation (discovered at the beginning of the 17th century) is transmitted to the vortex
itself, which transports the planets on their orbit. Each planet is at the center of its
own vortex. Their proper rotations lead to the rotation of these secondary vortices
which transport the satellites in their revolutions (Fig. 2.7).

Thus, the Moon is transported by the Earth’s vortex. Starting from this statement,
Descartes built up an intricate theory where the Moon, despite being transported by
the Earth’s vortex, does not move at the same velocity. This creates an obstacle and
perturbs the symmetric flow of subtle matter, causing a displacement of the Earth’s
center with respect to the Earth’s vortex. Because of the presence of the Moon, the

Fig. 2.7 The System of the World according to Descartes (from Le Monde ou Traité de la lumière,
ed. Adam et Tannery, Paris, 1974). ABCD is the vortex of subtle material generated by the proper
rotation of the Earth EFGH, with center T . 1, 2, 3, 4 represent the sea, and 5, 6, 7, 8 the atmosphere.
Because of the presence of the Moon in B , the center M of the vortex does not coincide with T .
The tides result from a differential pressure exerted by the vortex matter on the sea
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Fig. 2.8 Issac Newton
(1642–1724)

vortex material surrounding the Earth cannot flow freely. Consequently it exerts a
differential pressure at the surface of the oceans, giving rise to tides.

In addition Descartes explains the existence of two tides per day from the drift
between the center of the Earth and the center of the main vortex. Astonishingly,
according to his views, the low tides arise when the Moon is located in the meridian
and anti-meridian directions, which is opposite what happens in reality. Moreover,
Descartes attributes the geographical variations of the high tides along a given coast
to the fact that the Earth is not entirely covered by oceans. For him time delays are
caused by various factors, such as the form of the coasts, the varying depths of the
oceans, the influx from the rivers, as well as the action of winds. These intuitions
were valid, for we know today that all these elements have to be taken into account
in order to construct accurate tide tables. For Descartes, the semi-monthly period
as well as the alternation of large and low tidal amplitudes linked with it come
from the non-circularity of the Earth’s vortex. All these considerations let us think
that his theory of tides, though unrealistic, attests to a remarkable view of mind.
In any case it relies on statements which have never been explained or verified, as
the existence of vortices, the drift between the center of the Earth and the center
of the main vortices, etc. Despite these negative aspects Descartes’s explanations
became very popular during his life, in particular among his French disciples. In his
Geographia Generalis, the German geographer Bernard Varenius (1622–1650) [26]
adopts Descartes’s theory as the preferred one among various others, and this will
helped its popularization.

2.6 Newton and the Gravitational Attraction: A Giant Step

In 1687, Isaac Newton (Fig. 2.8) (1642–1727) published his Philosophiae Naturalis
Principia Mathematica (Principia for short) [23], which revolutionized our percep-
tion of the Universe. In Principia, Newton set out the law of gravitation and the
three fundamental laws of motion: the principle of inertia, the principle of the rate
of change of momentum, and the law of action-reaction, showing that the behavior
of celestial bodies is deducible from these laws. One of the tremendous results of his
theory was an explanation of the tidal phenomena. For Newton, the oceanic tides are
explained by mechanical principles, as Galileo wanted them to be. Moreover they
are a consequence of an attraction at a distance, following Kepler’s intuition.



44 V. Deparis et al.

Fig. 2.9 The perturbing forces on the lunar motion (Fig. 121 of Principia, vol. I). S is the Sun,
T the Earth, P the Moon with orbit CABD. The attraction of the Sun on the Earth is represented
by the segment NS and the attraction of the Sun on the Moon by the segment LS, which can be
divided into two parts: LM and MS

How did Newton reach the explanation of the tides, after explaining the orbital
motion of the Earth around the Sun and that of the Moon around the Earth? In fact,
his success came from a deep investigation of the orbital motion of the Moon, taking
into consideration the departure of its trajectory from an exact ellipse, which was
due to the gravitational perturbations of the Sun. In particular he observed the drift of
the lunar nodes with respect to the ecliptic, with a 18.6 y period. Extrapolating these
solar perturbations he guessed that they should also influence the oceanic masses.

2.6.1 The Solar Perturbation on the Orbital Motion of the Moon

As mentioned above, the tide was analysed by Newton when he was determining
the perturbation by the Sun on the Moon orbiting around the Earth. We refer to
Proposition 66 of Principia, vol. I. In order to solve the problem, Newton used the
law of parallelogram of forces, well known since the 16th century when it was
popularized by the Dutch engineer, mathematician, and philosopher Simon Stevin
(1548–1620) and clearly set out by the mathematician Pierre Varignon (1654–1722)
in his treatise New Mechanics published posthumously (1725). Newton’s way of
thinking is clearly shown in Fig. 121 of the Principia (see Fig. 2.9). It represents
the Sun S, the Moon P, the Earth T, with their mutual distances SP, ST, PT. Newton
represents the attraction by the Sun on the Earth (respectively on the Moon) by
SN (respectively SL). The attraction SL itself is decomposed into two components:
one, SM in the Sun to Earth direction, another one ML in the direction parallel to
the Earth-Moon segment. One of the subtleties of Newton’s proof is that he depicts
the points N and T as coincident, although they have different statuses: T represents
the position of the Earth and has a physical meaning, whereas N is used to measure
the attraction SN exerted by the Sun, and has a mechanical meaning. From the law
of gravitation and by calling FSP (respectively FST) the forces exerted by the Sun
on the Moon (respectively on the Sun)we have, using modern notations:

SL = FSP = GMS

SP2
, SN = FST = GMS

ST2
(2.3)
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Fig. 2.10 The tidal force when the Moon is in quadrature. Because it is very far from S, P is
considered as coinciding with L, and the attraction LS by the Sun on the Moon is practically equal
to the attraction NS by the Sun on the Earth. The tidal force is represented by LN, equal to PT. It
is added to the attraction of the Moon by the Earth

therefore

SL

SN
= ST2

SP2
, SL = ST3

SP2
(2.4)

Thus the Sun acts on the Earth with the force FST represented by SN and on the
Moon with the force FSP represented by SL. The length and the direction of the
two segments are not the same, and these differences characterize the difference of
attraction exerted by the Sun. To determine how the Sun perturbs the orbital motion
of the Moon around the Earth, Newton searches which part of SL has a real effect.
He remarks that if the accelerations SN and SM are equal, they will change nothing
in the relative motion of the two bodies P and T, because they will bring the same
attraction, both in amplitude and direction. Thus only the component NM plays a
role in the difference of attraction and consequently in the perturbation of the orbital
motion of the Moon around the Earth. We must also take into account the component
ML, in such a way that finally the perturbing forces exerted by the Sun are reduced
to the two segments NM and LM. In modern notation, this way of thinking should be
equivalent to calculating the difference between the vectors LS and NS. In the proof
above, Newton has just revealed the presence of a solar tidal force, i.e. a differential
force which is not due to the total gravitational attraction by the Sun on the Moon,
but rather to the difference of attractions by the Sun on the Moon and the on Earth.
This is a fundamental discovery in the theory of tides.

2.6.1.1 Case of Quadrature

In quadrature (when ST and TP are perpendicular) the sketch is simplified
(Fig. 2.10). M coincides with T, and the lengths of SP and ST can be treated as
equal, given the large distance ST from the Sun to the Earth. Moreover we have
LM = PT, and LM is oriented along the direction from the Moon to the Earth (Prin-
cipia, vol. I, Proposition 66). We conclude that the tidal force Ftidal is reduced to its
component PT, and that the ratio of its amplitude to the attraction of the Earth by
the Sun is given by (Principia, Proposition 66, Corollary 14)

Ftidal

FST
= PT

ST
, Ftidal = FST × PT

ST
= GMS × PT

ST3
(2.5)
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Fig. 2.11 The tidal force when the Moon is in opposition. It is represented by the segment LN,
obtained by difference between the attraction LS by the Sun on the Moon and the attraction NS by
the Sun on the Earth. Thus the tidal force is in opposition to the attraction of the Moon by the Earth

Thus in this particular case of quadrature we are in presence of a remarkable equiv-
alence between the lengths of the segments representing the forces and the physical
distances.

Moreover, applying Kepler’s third law to the orbital motion of the Earth, we get

ω2
EST = GMS

ST2
, ω2

EST3 = GMS (2.6)

where ωE is the angular velocity, or mean motion, of the Earth. In Newton’s era, the
distance ST from the Earth to the Sun was not known with accuracy. From the last
two equations we get

Ftidal = ω2
EPT (2.7)

Now we can evaluate the ratio of the tidal force to the attraction FPT exerted by
the Earth on the Moon:

FPT = GME

PT2
= ω2

MPT (2.8)

where ωM is the angular velocity, or mean motion, of the Moon, and (Principia,
vol. I, Corollary 17)

Ftidal

FPT
= ω2

E

ω2
M

(2.9)

2.6.1.2 Conjunction and Opposition

When the Moon P is in conjunction with the Sun (Fig. 2.11), L and M coincide. The
Moon being closer than the Earth to the Sun, it is subject to a larger gravitational
attraction. Newton shows that in this case the perturbing force by the Sun on the
Moon is NM = 2 PT. This can be found from the equation

SM = SL = ST3

SP2
(2.10)

with SP = ST − PT. Expanding to the first order we have

SM = ST3

ST2(1 − PT/ST)2
≈ ST + 2 PT = ST + NM (2.11)
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Therefore, to a first approximation NM = 2 PT. The tidal force NM is twice bigger
than in the case of quadrature.

In a similar and symmetric way, when the Moon is in opposition we can easily
prove that SM = ST − 2 PT ≈ ST − NM. We still have NM ≈ 2 PT. In conclusion,
in syzygies (new Moon and full Moon) the perturbing force exerted by the Sun on
the Moon has the same value (2 PT) and is directed in the direction opposite to that
of the gravitational attraction exerted by the Earth on the Moon.

Thanks to this ingenious way of geometrical representation of the attraction,
Newton could calculate the two components LM and NM of the perturbing force
of the Sun on the orbital motion of the Moon, not only in the special cases of syzy-
gies and quadratures but also at any position of the Moon on its orbit. This helped
Newton to study in detail the characteristics of the lunar motion, showing in par-
ticular that the Moon is accelerated on its orbit from the quadratures towards the
syzygies, and that the lunar nodal line13 undergoes a linear retrogradation.

2.6.2 Ocean Tides

After studying the perturbations exerted by the Sun on the orbital motion of the
Moon, Newton in vol. I, Proposition 66, Corollary 19 shows how to apply the same
principle to the terrestrial phenomenon of the tides.

2.6.2.1 Analogy Between the Lunar Motion and the Ocean Tides

The fundamental idea consists in substituting for the Moon a set of fluid bodies,
then to replace this set by a continuous fluid ring inserted in a canal surrounding
the Earth. Under the gravitational attraction of the Sun, the fluid inside the canal
undergoes the same kind of gravitational perturbation as the Moon in its orbit, that
is to say an acceleration during the syzygies (for the part of fluid oriented in the
direction of the Sun and in the opposite direction) and a deceleration during the
quadratures (for the part of fluid in the directions perpendicular to the direction of
the Sun). This alternating motion gives rise to the tidal phenomena. Thus, thanks
to the analogy with the lunar orbital motion, Newton understands that the various
parts of the terrestrial globe, located at different distances of the Sun, are subject to
different attractions by the Sun, which in their turn cause the oceanic motions.

2.6.2.2 Agreement with the Observed Characteristics of Ocean Tides

In Principia, vol. III, Proposition 24, Newton returns to the problem of ocean tides.
Here the Moon no longer plays the role of a test body whose irregularities of motion

13The intersection of the orbital plane of the Moon with the plane of the ecliptic.
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Fig. 2.12 The tidal ellipsoid and the diurnal inequality (Fig. 2 of Principia, vol. III). Under the
effects of the tidal forces, the oceans change their global shape in an ellipsoid whose semi-major
axis is directed toward a fictitious body delayed three hours with respect to the real body. Pp is the
rotation axis, AE the equator, Ff a parallel. When the body is at a given declination, the two diurnal
tides in F and f do not have the same amplitude: this characterizes the diurnal inequality

reveal the effects of the differential gravitational attraction exerted by the Sun, but
as another celestial body providing the same kind of effects on the oceans. His
clear objective goes beyond identifying the origin of tides, to explaining the actual
tidal phenomena observed along the coasts. Attention is paid to their periodicities,
amplitudes, and characteristics as a function of the relative positions of the Moon
and the Sun.

Newton asserts that under the action of a celestial body (the Moon or the Sun),
the sea at any instant takes the shape of an ellipsoid whose major axis is oriented
toward the body. We have mentioned that 16th-century physicians and astrologers
had already guessed at this phenomenon intuitively. Newton gives a full justifica-
tion of the phenomenon, showing that it arises from a symmetry in the tidal force.
As the Earth rotates, points on its surface pass alternately through the locations of
maximum and minimum elevation of the water.

This explains the succession of low and high tides (Fig. 2.12). Moreover, Newton
can explain the monthly periodicity of the tides: during the syzygies, the major
axes of the ellipsoids due to the Moon and to the Sun are aligned, leading to the
addition of the raising of the sea level, whereas during the quadratures, these axes
are perpendicular and the effects at the sea level cancel, leading to an attenuation of
the high tides. Newton also remarks that the maximum amplitude of the tides varies
according to the distance of the perturbing body, which itself varies because of the
ellipticity of its orbit around the Earth. In short, Newton fully explained the various
periodicities of the tides, confirming the coherence and the validity of his theoretical
assumptions.

By assuming that the seas are distorted into the figure of an ellipsoid, Newton
accomplishes a significant step, that of adopting a simple figure of equilibrium, in
the same way as he did to express the deformation of the Earth undergoing the
effects of its rotation. Following this rotation, the ellipsoid moves in such a way that
its major axis always points toward the perturbing body.
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2.6.2.3 Remaining Questions

Nevertheless, this basic theoretical model faced several problems when confronted
with the observations. First, there are significant time delays between the occur-
rence of the diurnal tides and the transit of the perturbing body at the meridian or
at the anti-meridian. Second, the maxima of tides do not correspond exactly to the
syzygies, as predicted by the theory. Third, the amplitudes of tides strongly change
depending on the harbors where they are measured, even when the harbors are sep-
arated by short distances. Fourth, the diurnal inequality, i.e. the difference of ampli-
tudes between successive high tides, does not show up significantly in observations,
whereas theoretical calculations predict them to be large.

In fact the most important factor leading to these discrepancies between theoret-
ical statements and observations lies on the fact that Newton’s results are presented
in the frame of a static theory: it is necessary to construct a dynamic theory in which
the influence of the Coriolis force and the resonance phenomena are taken into ac-
count.

Nevertheless, even after recognizing the lack of perfect agreement between his
theoretical investigations and the observations, Newton kept the explanations above,
mentioning for example that the oceanic motions are delayed by the friction of the
bottom of the basins. Notice that this phenomenon of inertia has been fully explored
and validated in the 20th century to explain the secular deceleration of the proper
rotation of the Earth. Thus in various places of his work, we see that Newton adheres
to the idea of the inertia of oceans which necessitates further investigations. For
instance he explains the absence of diurnal inequality as well as the presence of time
delays between coastal points, by flow effects that conserve perturbing oscillations
for some duration, in the same way as water moved in a vessel.

2.6.2.4 Calculation of the Solar Tide

After the periodicities of tides were explained and a hypothesis was made about
their time delay, an important challenge remained to be undertaken by Newton: it
consisted in starting from the tidal force exerted by the perturbing body (the Moon
or the Sun) and deducing the amplitude of the ebb and flow. This could be done for
the Sun, thanks to the previous calculations presented previously, of the tidal force
exerted by the Sun on the Moon’s orbital motion. But it could not be done for the
Moon, because its mass was unknown. Thus in a first step, Newton attempted to
calculate only the amplitude of the solar tides. Rather than trying to find a final for-
mula, he proceeded by successive numerical approximations gathered in Principia,
vol. III, Propositions 25 and 36. We saw in Eq. (2.9) that the ratio of the tidal force
Ftidal exerted by the Sun on the Moon to the force of attraction FTP exerted by the
Earth on the Moon in quadrature could be expressed as

Ftidal

FPT
= ω2

E

ω2
M

= T 2
M

T 2
E

= 1/178.725 (2.12)
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where TM = 27.32d and TE = 365.25d are the sidereal periods of revolution of the
Moon and of the Earth. Once this result is obtained, it can be used to calculate the
solar tide at the surface of the Earth, still in the case of quadrature. In particular it
is possible to calculate the ratio of this solar tide to the gravitational acceleration g.
Two facts are used for this purpose:

– Since the Moon being 60 times more distant from the center of the Earth than a
point on the surface, g/FPT = 602 = 3600.

– As the tidal force exerted by the Sun is directly proportional to the distance PT
between the point considered and the center of the Earth, this tidal force F ′

tidal on
the surface of the Earth is 60 times smaller than the same tidal force Ftidal at the
distance of the Moon: F ′

tidal = Ftidal/60.

Hence the ratio F ′
tidal/g is

F ′
tidal

g
= 1

60 × 3600 × 178.725
= 1

38 604 600
(2.13)

This is the ratio for points on the surface of the Earth in quadrature, i.e. located
at 90° with respect to the direction of the Sun. As seen previously, for points in
conjunction with the Sun, i.e. for which the Sun is at zenith or at nadir, the ratio is
twice bigger. Notice that in quadrature the tidal force is pushing the surface toward
the bottom whereas in conjunction it raises the surface toward the attracting body,
the Sun. Therefore, the amplitude of the total acting tidal force is 3 times bigger
than the amplitude calculated above, that is to say g/12 868 200.

The next step consists in calculating the elevation of water under the sole action
of the Sun. To simplify, Newton considers a fictitious Earth completely covered by
oceans, and having the same density. Then he uses the same kind of trick as the one
he used to calculate the bulging of the Earth under the centrifugal acceleration due
to the rotation: he considers two channels filled with a homogeneous fluid extending
radially from the center of the Earth to the surface, one in the direction of the Sun,
the other in the direction perpendicular (Fig. 2.14). The first channel is longer, for the
tidal force is substracted from the gravity, whereas in the second channel it is added.
Assuming proportionality between the bulging of the surface and the perturbing
force, he first remarks that the centrifugal force which is 289 times smaller than g

at the equator leads to a difference of 27.7 km (in fact 85 472 Paris feet) between
the equatorial radius (semi-major axis) and the polar radius (semi-minor axis) of the
bulging Earth. By analogy, following the same proportionality, the solar tidal force
being 12 868 200 times smaller than g will create a difference of level of 60 cm
between a point in quadrature and another point in conjunction with the Sun.

2.6.2.5 Ratio of the Lunar Tide to the Solar Tide and the Mass of the Moon

The mass of the Moon being unknown, Newton cannot calculate directly the am-
plitude of the lunar tides. In Principia, Proposition 37, he considers the inverse
problem: knowing the amplitude of the tides as a function of the relative positions
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of the Moon and the Sun, is it possible to calculate their respective attractions on
the oceans and to deduce the mass of the Moon? The basic hypothesis is that the
height of the tides caused by each body is proportional to the size of its tidal action.
Close to the equinoxes, the two bodies are located on the equatorial plane and dur-
ing an equinoctial syzygy, the height of the tide is maximal because the actions of
the two bodies are maximal and added together. Thus the height of the tide hsyz. can
be written

hsyz. = A(M + S) (2.14)

where M and S are respectively the actions of the Moon and the Sun, and A is a co-
efficient of proportionality. About seven days after the syzygy, when the Moon is in
equinoctial quadrature, the actions of the Moon and of the Sun must be substracted
from each other. Moreover the Moon is no longer on the equator, its declination δ

being roughly 23° (if we neglect the inclination of the lunar orbit with the ecliptic).
This diminishes the strength of its action, the coefficient of diminution being cos2 δ.
This correction concerns only the semi-diurnal tides, as it will be shown by Laplace.
Thus in this case the height of the tide is

hquad. = A
(
M cos2 δ − S

)
(2.15)

From the last two equations, we find
hsyz.

hquad.

= M/S + 1

cos2 δ(M/S) − 1
= μ + 1

μ cos2 δ − 1
(2.16)

where μ = M/S is the ratio of the action of the Moon to that of the Sun. With this
formula it is theoretically possible to calculate μ from the observations of the tides
at a given point to the surface of the Earth and in specific configurations (syzygy or
quadrature). Equation (2.16) is not exactly that given by Newton, for he took into
account the age of the tides, which led him to underestimate the action of the Sun.
To apply this formula, he studied the observations made at Bristol harbor, during the
days close to the equinoxes, in spring and autumn: he remarked that the tidal range,
i.e. the difference of level between the high tide and the low tide, amounted to 45 feet
during the syzygies and to 25 feet during the quadratures. From this observational
data he concludes that the action of the Moon is 4.4815 times larger than that of
the Sun. The value is off by a factor of 2: we know today that the true value is
2.18. The reasons for the discrepancy are first that the quality of the observations of
tides is doubtful and second that dynamical effects are not taken into account, the
calculations being made in the frame of a static model. Newton did not have at that
time the mathematical tools that would have enabled him to tackle them. Laplace,
at the end of the 18th century, will undertake Newton’s calculations with substantial
improvements leading to a ratio, much closer to the true value, of μ = 2.35.

Nevertheless, using his value, Newton could give for the first time an estimate
of the mass of the Moon. First proved that the tidal force exerted by the perturbing
body (M or S) is proportional to its mass and to the inverse of the cube of its distance
to the Earth. Thus by using the same notations as previously the ratio of the tidal
force exerted by the Moon to that exerted by the Sun is given by

FM

F ′
tidal

= MMoon

PT3
× ST3

MSun
= ρMoonR

3
MoonST3

ρSunR
3
SunPT3

(2.17)
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where ρMoon and RMoon (respectively ρSun and RSun) stand for the density and the
radius of the Moon (respectively of the Sun). Moreover, calling αMoon and αSun the
apparent diameters of the Moon and of the Sun,

αMoon = 2RMoon

PT
, αSun = 2RSun

ST
(2.18)

These apparent diameters, varying as an inverse function of the distance (PT or
ST), were already known with a very good accuracy in Newton’s time, thanks to
various astrometric measurements done for a little less than one century, since the
first refractor by Galileo around 1610. On average we have αMoon = 31′16′′.5 and
αSun = 32′12′′, which immediately give αSun/αMoon = 1.0296. From the equations
above we get

FM

F ′
tidal

= α3
Moon

α3
Sun

× ρMoon

ρSun
,

ρMoon

ρSun
= α3

Sun

α3
Moon

× FM

F ′
tidal

(2.19)

Newton deduced the ratio FM/F ′
tidal = 4.4815 from the records of tides at Bristol.

This led to ρMoon/ρSun = 4.891. The next step is to determine ρSun/ρEarth. Indeed,
by using Kepler’s third law and the value of g, we have

GMSun = ω2
EarthST3, g = GMEarth

R2
Earth

(2.20)

hence

ρSun

ρEarth
= ω2

EarthST3R3
Earth

gR2
EarthR

3
Sun

= ω2
EarthREarthST3

gR3
Sun

(2.21)

Finally, with αSun = 2RSun/ST we find

ρSun

ρEarth
= 8ω2

EarthREarth

gα3
Sun

(2.22)

In Newton’s time all the quantities on the right-hand side of this equation were
known with very good relative accuracy. The radius of the Earth had been set
by Picard at REarth = 6732 km, while g = 9.81 ms−2, ωEarth = 2π/TEarth with
TEarth = 365.25d , the value of αSun having been given previously. From the jux-
taposition of the values found for ρMoon/ρSun and ρSun/ρEarth, a calculation gives
ρMoon/ρEarth = 11/9 (Principia, vol. II, Proposition 37, Corollary 3). Thus, for
Newton the Moon is slightly denser than the Earth. The ratio of the mass of the
Moon to that of the Earth is obviously

MMoon

MEarth
= ρMoonR

3
Moon

ρEarthR
3
earth

(2.23)

From determination both of the apparent diameter and of the parallaxes of the
Moon, it is possible to provide the ratio RMoon/REarth which, according to New-
ton is 1/3.65. Finally he arrives at the mass ratio

MMoon

MEarth
= 11

9
× 1

3.653
= 1

39.79
(2.24)
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This is roughly twice bigger than the true value of 1/81. Newton over-estimated the
mass of our satellite by a factor of 2, but recall that we are in presence of the first
calculation of the mass of the Moon.

2.6.3 Assessment of Newton’s Contribution

From his various calculations detailed in the previous sections, Newton demon-
strated one of the most impressive consequences of his law of gravitation, a full
explanation of the phenomenon of tides, through the differential gravitational action
of the Sun and of the Moon on a particle on the surface of the Earth. These results
were rapidly recognized throughout England as a real triumph of his theoretical in-
vestigations. This can be seen from the presentation of Principia by Edmund Halley
(1656–1742) to King James in 1697, during which Halley singled out Newton’s
work on tides, explaining that his illustrious contemporary solved for the first time
the mysterious problem of the ebb and flow.

Nevertheless, as it is well known, the diffusion of Newton’s work and of his law
of gravitation encountered strong opposition. Among opponents we find Huygens
(1629–1695) who, while recognizing the unquestionable advances made by Newton,
could not subscribe to his conception of gravity. The main trouble is with action at a
distance: Huygens was not convinced that celestial bodies show a natural tendency
for mutual attraction. This is confirmed by a letter to Leibnitz in 1690, in which he
concedes that he cannot accept the reasons given by Newton on his theory of the ebb
and flow as well as on other theories based on the principle of gravitational attraction
[12]. Huygens’s opinion is widely shared by scholars in France and other countries
of the continent. Newton himself was disconcerted by the idea that a matter at rest
can act on another matter without mutual contact. In Principia (vol. II, book III,
scholium) he remarks that he explained celestial phenomena as well as terrestrial
ones (tides) thanks to his law of gravitation without being able to assign a cause of
this law.

Let us summarize the characteristics of Newton’s theory of tides.

• Nowadays this theory is regarded as a by-product of his law of gravitation, but
at that time it was taken by his supporters as an emblematic confirmation of his
general theory of gravitation, including all the new fundamental tools of physics:
law in 1/r2, calculus, geometrical combination of forces, etc.

• Newton did not tackle head-on the problem of ocean tides. This problem came
gradually to his mind after he studied in detail the inequalities of the lunar orbital
motion due to the perturbing gravitational action of the Sun, which in fact is based
on the same dynamical principle as that which raises the ocean mass and causes
the tides.

• Newton’s tricky geometrical reasoning where he represents the attractions by seg-
ment lengths judiciously chosen allow him to quantify in a simple way the solar
tidal force.
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• Thanks to his theory of tides, and by fitting the results of his calculations to ob-
servational records of tidal range, Newton could make an estimate of the mass of
the Moon relatively to that of the Earth. Moreover, his results explain such well-
established characteristics as the presence of two tides per day and the variation
of the tidal range according to the lunar phase with extrema during syzygies and
quadratures.

• Newton understood perfectly the principle and the origin of tidal forces but his
explanations about their consequences are imperfect, essentially because his con-
ception of tides is static and in consequence he did not include the dynamical
approach of the oceanic motions. Nevertheless his results mark a turning point
and will be fully exploited by his successors like Daniel Bernoulli, Euler, and
d’Alembert, and in a quasi-modern form by Laplace at the end of the 18th cen-
tury.

2.7 Theory of Tides and Analytical Calculations Around 1740

For half a century after Newton, no substantial study on the subject appeared to
improve or complete it. But during this same period, mathematics was progress-
ing, notably thanks to the contributions of Leibniz, Jacob and Johann Bernoulli,
l’Hôpital, and Varignon. All these mathematicians participated in the birth and the
development of calculus. Whereas Newton showed a complex geometrical reason-
ing, these new tools allowed the development of analytical studies related to me-
chanics and more specifically to celestial mechanics. At the same time, the meta-
physical opposition raised by the principle of Newton’s action at a distance was
gradually abandoned in the light of the obvious improvements it brought for the res-
olution of various problems. To illustrate this evolution, we can mention a testimony
from Daniel Bernoulli (1700–1782) in 1740, who presents gravitation as an incom-
prehensible and essential principle that the famous Newton has so well established
and that his contemporaries could no longer reject, without harming sublime knowl-
edge and fortunate discoveries of the century. People spoke less of the ‘absurdity’ of
gravitational attraction, and accepted the concept as it was, only preoccupied with
investigating its consequences.

At the same time, a lot of systematic observations of tides were being carried
out. In the period from 1700 to 1720, Jacques Cassini (1677–1756), a staunch sup-
porter of Descartes’s theory of vortices, gathered and discussed tidal observations
in French harbors, Le Havre and Dunkerque (1701–1702), Lorient (1711–1712 and
1716–1719) and principally Brest (171–1716) [3, 24]. In the middle of the 18th
century, the quasi-totality of scholars recognized the essential correctness of New-
ton’s explanations, but they sometimes emphasized their insufficiencies. Marquise
de Châtelet (1706–1749), in her commentaries on Principia [14] published posthu-
mously in 1756, explained that people in her time knew that the tides are caused by
the inequalities of the action of the Moon and of the Sun on the Earth; she added
that Newton had established the mechanism of this cause so well that nobody could
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express any doubt on its validity. But she also pointed out that the famous scholar
(Newton) did not investigate deeply enough the details of the important subject of
tides.

In order to encourage scientists to investigate the problem more deeply, the
French Académie des Sciences proposed in 1738 the precise elucidation of the
tides as a prize to be awarded by the Académie in 1740. Four works received this
prize. Three of them were based on the theory of gravitation. They were submitted
by Daniel Bernoulli (Fig. 2.13) (1700–1782), Euler (1707–1785), and MacLaurin
(1698–1746). The remaining one, by Cavalleri [4], was based on Descartes’s theory
of vortices, and must surely be, according to Laplace, the very last work dealing
with this theory and considered by the Académie. MacLaurin’s work entitled De
causa physica fluxus and refluxus maris [22] is based on proofs of geometrical type.
It presents remarkable theorems on the attraction of spheroids, but paradoxally of-
fers few developments on the ocean tides. The two other works, entitled Traité sur le
flux et du reflux de la mer by Bernoulli [1] and Inquisto physica in causam fluxus ac
refluxus maris by Euler [10] both represent the real beginning of analytical studies
on the subject of tides. These two works fully exploit Newton’s calculations but in
addition benefit from the drastic improvement accomplished at the beginning of the
18th century in the fields of calculus and of analytical mechanics. Thanks to these
advantageous new tools, the two authors did not have to solve the problem of ocean
tides by similitude with the problem of the lunar orbital motion perturbed by the
tidal action of the Sun, as Newton did. They could directly tackle the resolution of
the problem in the frame of terrestrial mechanics.

2.7.1 Prize of the Académie of 1740 for Bernoulli

Daniel Bernoulli’s work honored by the prize of the Académie is entirely in the lin-
eage of Newton. He deals with three major problems. The first, the most important
according to Bernoulli himself, concerns the elevation of the ocean surface under the
attraction of a perturbing body, the Sun. For that purpose he used exactly the same
procedure as Newton. But his calculations were much clearer. The second concerns
the exact time and amplitude of the high (or low) tides at any point on the surface of
the Earth under the combined gravitational action of the two bodies (the Moon and
the Sun). The calculations allow him to establish for the first time a tide table. The
third concerns the estimation of the mass of the Moon. To this end, he did not follow
the same procedure as Newton, based on the height of the tides, but an alternative
one based on the interval of time separating successive high (low) tides one day after
the other. Marquise de Châtelet, in her Commentaires des Principes Mathématiques
de la Philosophie Naturelle [14] offers a very clear analysis of Bernoulli’s treatise,
following his arguments one by one, and often in a more understandable form. One
of the fundamental principles of Bernoulli is that the attraction of the Earth by the
Sun is rigorously equal to the centrifugal force coming from the revolution of the
Earth, if we consider the Earth as a whole. If we consider locally a particle closer
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Fig. 2.13 Daniel Bernoulli
(1700–1782)

to the Sun than the center of the Earth, the centrifugal acceleration will be the same
whereas the attraction will be stronger. This leads to the characterization of the tidal
force which can be regarded as the difference between the attraction of the perturb-
ing body (the Sun) and the centrifugal force.

2.7.1.1 Calculation of the Elevation of Water

The most important question tackled by Bernoulli concerns the amplitude of the
tides caused by the Sun. For that aim, he starts from the following hypotheses:

– The Earth at rest is spherical, completely covered by the sea, a thin fluid layer.
– Unlike Newton’s hypothesis, the Earth is heterogeneous and made of concentric

layers, each having its own density. A law of variation of density as a function of
depth is given.

– At anytime the figure of equilibrium of the Earth undergoing the action of the
perturbing body (here the Sun) is an ellipsoid, whose the major axis is directed
toward the perturbing body.

Thus calculating the amplitude of the tides amounts to measuring the difference
between the semi-minor and the semi-major axes of the ellipsoid. Following the
same reasoning as Newton, Bernoulli imagined two channels, one directed toward
the Sun and the other in a perpendicular direction (Fig. 2.14). In the first the tidal
force is against the gravity, whereas in the second it increases it. The solution of the
problem of the elevation of water is given by the equality of pressure at the bases of
the channels. The problem is complicated by the fact that the ellipsoidal deformation
alters the gravity of the Earth at any of point of the surface: in order to solve this
additional difficulty, Bernoulli initiates subtle analytical calculations giving a model
of self-gravity of the Earth. The height difference β between a high tide and the
corresponding low tide is equal the difference above between the lengths of the two
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Fig. 2.14 Calculation of the amplitude of the solar tide with the equilibrium of two channels
(Fig. 1 of Sect. V of the Commentaires aux Principes Mathématiques of la Marquise du Châtelet
[14]). The two channels are directed one toward the Sun, the other in a direction perpendicular to
the Sun, and join at the center of the Earth

channels. In the case of the simplified hypothesis of a homogeneous Earth with an
ocean surrounding it and having the same density, Bernoulli gets

β = 15
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where MSun and MEarth are the mass of the Sun and of the Earth, dS is the distance
ST from the Earth to the Sun, and REarth is the Earth radius.

In the first half of the 18th century, dS was not known with good accuracy. But
by using Kepler’s third law it is possible to substitute for it the angular velocity ωE

of the Earth around the Sun. Indeed we have the two relationships

GMSun = ω2
Earthd

3
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3
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where ωMoon and dM are the angular velocity of the Moon around the Earth and the
distance between the Moon and the Earth. Substituting these into Eq. (2.25), we get

β = 15

4

ω2
Earth

ω2
Moon

R3
Earth

d3
Moon

REarth (2.27)

This formula enables Bernoulli to find the same numerical value as Newton,
with β ≈ 60 cm. But this value is obtained with the simplified model of oceans
described above (a homogeneous Earth surrounded by an ocean with the same den-
sity). Bernoulli is convinced that the value is too small compared with what is ex-
pected from the observations of tides. Therefore he expounds various hypotheses
about the interior of the Earth, considering for instance the case it is empty, or the
case the density of an internal layer is proportional, or inversely proportional, to its
radius. In some cases, with a density profile judiciously chosen, he succeeded in
obtaining a value of β significantly larger than the value above. This profile corre-
sponds to an increase of density with the depth of the layer, which is quite realistic.

Nevertheless, Bernoulli’s calculations are something ambiguous and erroneous:
first he believes that only a small part of the oceanic mass is moved by the attraction
of the perturbing body, insisting that the Earth as a whole cannot be deformed;
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Fig. 2.15 The height of water ζ of a tidal ellipsoid is measured with respect to the initial spherical
surface (when the water is at rest), with radius R. Ψ is the geocentric zenithal distance enabling
one to define the position of the body S (Moon or Sun)

second, his calculations based on an equilibrium characterized by the ellipsoidal
figure with equality of pressures at the bases of the two channels rely on the opposite
hypothesis of a global deformation of our planet. There is a contradiction between
the method of calculation and the model of the Earth chosen. This was pointed by
d’Alembert in his Reflexions sur la Cause Générale des Vents in 1746 [5].

Nevertheless, though clumsy and erroneous, Bernoulli’s approach deserves great
interest. First it acknowledges the discrepancy between Newton’s value for the am-
plitude of tides and the significantly larger amplitudes observed in various harbors.
Second it inaugurates to some extent the concept of the internal structure of the
Earth, based on a decomposition in layers with a gradual variation of density [6].
This new concept will be fully used a few years later by Clairaut in his study of
the figure of the Earth, by Bouguer in 1749 in a study of the variation of ampli-
tude and location-dependent direction of gravity on the surface of the Earth, and by
d’Alembert and Euler in their works on the precession of equinoxes.

Bernoulli used geometrical arguments to show that when the perturbing body
is at zenith, the elevation of water is twice the size of the depression when it is
on the horizon, which is the result found by Newton. Moreover he states that each
body (Moon or Sun) acts on the sea independently. In a first step, he makes the
approximation that the two celestial bodies move on the celestial equatorial plane,
with constant angular velocity. Under their combined action, the height of water
with respect to the surface of the sea at rest (Fig. 2.15) is given by

ζ = βS

(
cos2 ψS − 1

3

)
+ βM

(
cos2 ψM − 1

3

)
(2.28)

where ψS and ψM are the zenithal angular distances of the Sun and the Moon, βS

and βM are the differences between the semi-major and semi-minor axes of the
ellipsoid representing the equilibrium tide for the Sun and the Moon (Fig. 2.16).
Assuming βS/βM known, Bernoulli uses a formula derived from Eq. (2.28) to cal-
culate the exact instant of the high tide during a lunar cycle. For that purpose he
corrected his results by taking into account that the relative motions of the Moon
and of the Sun are elliptical and inclined with respect to the equator. Finally he
could construct the first theoretical tide tables, which proved satisfactory for any
harbor where dominant tides have a semi-diurnal frequency. Finally, an important
step in Bernoulli’s calculations is the ratio of the lunar action to the solar one. We
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Fig. 2.16 Combined action of the Moon and the Sun. We are in the equatorial plane. S is the Sun,
represented by the angle ψS . L is the Moon, represented by the angle ψL. MNM′N′ is the oceanic
surface in the case of no deformation. Each body (Moon or Sun) deforms the water surface in
an ellipsoid whose semi-major axis is directed toward it. The combination of the two ellipsoids
generates a high tide in M and M ′ and a low tide in N and N ′

saw that Newton’s value of 4.48 was deduced from a comparison of the heights of
tides during syzygies and quadratures. These values obtained in various harbors are
not taken in a ‘free sea’: they show big variations and have consequently a large
uncertainty. In contrast Bernoulli proposed an alternative method on the occurrence
of tides, which seemed for him much easier to estimate.

Everyday the tides are delayed due to the fact the average time interval between
two transits of the Moon at a given meridian is 24h50mn. But during syzygies, this
interval is shorter (24h35mn) than during quadratures (25h25mn). These differences
come from various combinations between lunar and solar tides and enable one to
determine the ratio between the action of the Moon and of the Sun. By averaging
over various tidal observations, Bernoulli gets a value of 2.5 for this ratio. From this
new determination, he could get an updated value of the density and the mass of the
Moon, respectively 5/7 (≈ 0.71) and 1/70 of those of the Earth, these two values
being much closer to the true values (respectively 0.60 and 1/81) than Newton’s
ones.

2.7.2 Prize of Académie of 1740 for Euler

A second work honored by the prize of the Académie des Sciences in 1740 was
by Euler (Fig. 2.17), who deepened several points of Newton’s theory, from which
he borrowed the definition of tidal force as the difference between the gravitational
force exerted by an external body (the Moon or the Sun) on a point on the surface of
the Earth, and this same gravitational force exerted at the center of the Earth. Euler
established in a very modern way the analytical expression of the tidal force, which
led him to deduce the formula of the radial and tangential components at the point
considered. These formulas can be regarded as definitive.



60 V. Deparis et al.

Fig. 2.17 Leonhard Euler
(1707–1783)

Euler modeled the Earth as a spherical undeformable globe surrounded by an
oceanic layer with limited thickness. Then, exploiting his formula, he defined the
figure of equilibrium of the Earth subject to the effect of tides. He showed that at
first order this figure is really an ellipsoid, as had been suggested without proof by
Newton and Bernoulli. Moreover Euler did not have to rely on the artificial concept
of two perpendicular channels joined at their bases. Instead, he found his inspiration
in an idea already proposed by Huygens: the ocean surface is at rest on the condi-
tion that it is perpendicular to the direction of the vertical, as materialized by the
plumbline.

2.7.2.1 Analytical Expressions for the Tidal Force

Euler establishes the expressions of the radial and tangential components of the tidal
force in Chap. II, par. 24–27 of a work entitled ‘On the lunisolar forces which put
the oceans in motion’. Referring to Fig. 2.18, the gravitational force exerted by the
Sun at the center C of the Earth and at any point M are given respectively by

GMSun

d2
ux,

GMSun

l2
ul (2.29)

The tidal force F is given by the difference between these two forces. Calling α

the angle between SC and SM, the components of F are

Fx = GMSun

l2
cosα − GMSun

d2
, Fy = −GMSun

l2
sinα (2.30)

Fx = GMSun

(
d − x

l3
− 1

d2

)
, Fy = −GMSun
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Then Euler decomposes Fx and Fy into a radial and tangential components

Fr = −Fx cosψ + Fy sinψ (2.32)

Ft = Fx sinψ + Fy cosψ (2.33)
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Fig. 2.18 Analytical
expression of the tidal forces.
S is the Sun, C the center of
the Earth, M a point on the
Earth for which the tidal force
is determined. r , l, d stand
respectively for the distances
CM, MS, CS
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these give
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it follows (Chap. II, art. 27, Fig. 15) that
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These are the formulas established by Euler. To find the modern formula, we can
introduce the angle ψ . Then
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Thus the analytical results obtained by Euler are very clear and give a quasi-
definitive form to the expression of the tidal force.

2.7.2.2 Figure of Equilibrium and Tangential Component

A second part of Euler’s investigations, particularly interesting, concerns the form
of the surface of equilibrium of the oceanic mass under the combined gravitational
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Fig. 2.19 Figure of equilibrium under the action of the tidal force: (a) deviation of the vertical
under the influence of the tangential component of the tidal force, (b) the figure of equilibrium of
the fluid layer at each point is perpendicular to the vertical. It is defined by the inclination i of the
vertical with respect to the geocentric direction of M

action of the Moon and the Sun. In paragraphs 34 to 38 of Chap. 3, Euler explains
that this form depends on the role of the tangential component of the tidal force.
Making use of a statement first given by Huygens, Euler considers that the surface
of the fluid is in equilibrium when at each point it is perpendicular to the direction of
the gravity. The tidal forces modify slightly the direction of the vertical with respect
to the geocentric direction of reference (Fig. 2.19): the tangential component Ft of
the tidal force is responsible of the deviation i of the vertical line, which at first
order can be calculated in a straightforward manner:

i ≈ tan i = Ft

g + Fr

≈ Ft

g
(2.42)

By taking into account the constraint that the total mass of water remains constant,
Euler gets the general formula of the surface of equilibrium (Chap. II, art. 36)
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where R is a reference radius and r is the radius form the center to the point con-
sidered at the surface of the ellipsoid, from which the angle ψ is measured. This
expression by Euler constitutes a determining step toward a modern and accurate
theory of the tides. The quantity ζ = r − R is the height of the equipotential repre-
sented by the surface of the ellipsoid. The right-hand side, when multiplied by g, is
the tidal potential. The expressions (3 cos2 ψ − 1)/2 and (5 cos3 ψ − 3 cosψ)/2 are
called the Legendre polynomials of 2nd and 3rd degree respectively. They were in-
troduced by Legendre (1752–1833) around 1780 and appear in Laplace’s equations,
studied below. By using the equality g = GMEarth/R

2, Eq. (2.43) can be rewritten,
at the first order in R/d ,
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2
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that is to say

r = b + β cos2 ψ (2.45)
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Fig. 2.20 Jean Le Rond
d’Alembert (1717–1783)

with
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This is the equation of an ellipse with semi-major axis b and with difference β

between the semi-major and semi-minor axes. From these calculations Euler proves
what Newton and Bernoulli supposed without proof: at first order, the figure of
equilibrium of the oceans under the action of the Sun or the Moon is an ellipsoid.
Moreover the amplitude of β , which can be interpreted as the amplitude of the tides,
is 2.5 times smaller than that found by Bernoulli, in the case of a homogeneous
model of the Earth. The results by Euler are exact when neglecting the self-gravity of
the oceans. The great advantage of Euler’s method is that the solution is available for
an oceanic surface layer surrounding a solid Earth, whereas in Bernoulli’s method,
relying on the equality of pressure at the bases of two perpendicular channels, the
whole Earth (including the oceans) must be homogeneous and fluid.

2.8 D’Alembert and His ‘Reflexions sur la Cause Générale des
Vents’

D’Alembert (Fig. 2.20) (1717–1783) did not publish a specific work dealing with
oceanic tides but his report entitled Réflexions sur la Cause Générale des Vents,
submitted in 1746 to the Royal Academy of Sciences of Berlin, and published in
1747 [5], deals with several important points related to the tides. One of the subjects
of great interest concerns the characteristics of regular winds in the tropical areas
of the Earth. His aim is to study how the tidal forces exerted both by the Moon and
the Sun on the atmosphere of the Earth can be regarded as the origin of winds on its
surface. He tried to start from the calculation of the atmospheric tides and to infer
in some detail the velocity distribution of the winds.

Some remarkable studies are included in the first part of the work. Two of them
can be retained as emblematic of a totally new approach to the problem: the first is
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Fig. 2.21 Determination of
the figure of equilibrium of
the fluid layer by d’Alembert
(Fig. 3 of Réflexions sur la
Cause Générale des Vents)

the determination of the surface of equilibrium of a given fluid surface layer when
it is subjected to a given external force. The consequence is the production of an
oscillation around a figure of equilibrium. D’Alembert calculates the eigenmodes
of this oscillation. The second study is oriented toward the question of self-gravity
of a deformed fluid layer. This can be naturally applied to the problem of ocean
tides. On this topic, d’Alembert completes the work of his predecessors, making the
link between Euler’s and Bernoulli’s results. In the following we present the main
features of these two studies.

2.8.1 Mechanics of Surface Layer of Fluid

D’Alembert does not show any interest on the global deformation of the Earth as
Newton and Bernoulli did. In contrast he analyses in detail the deformation of a thin
fluid layer surrounding the Earth considered as an undeformable spherical globe. In
that sense his method is similar to Euler’s.

2.8.1.1 Figure of Equilibrium of the Fluid Layer

Here d’Alembert makes use of the same mathematical formalism both for the tidal
force and for the centrifugal force due to the rotation. For both, only the tangen-
tial component of the force has an effect on the figure of equilibrium (Fig. 2.21).
Moreover these tangential components have the same structure. They can both be
expressed by an equation of the type Ft = φ cosψ sinψ . In the case of the tidal
force, ψ stands for the zenithal distance of the perturbing body and φ stands for
φ = 3GMSunREarth/d

3, where MSun is the mass of the Sun, REarth is the Earth ra-
dius and d is the distance from the body to the Earth. In the case of the centrifugal
force ψ is the latitude and φ = ω2REarth where ω is the rotational angular velocity
of the Earth. D’Alembert found the same results as Euler but in a more straight-
forward manner, thanks to the use of polar coordinates instead of rectangular ones.
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The steps of his argument are similar: after determining the inclination of the grav-
ity under the effect of the tangential component, he finds the difference β between
the semi-major and semi-minor axes of the ellipsoid as

β = φREarth

2g
(2.47)

In the particular case of tides, this gives
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Then the mass conservation enables him to give the expression of the deformation
(Fig. 2.21).

2.8.1.2 Oscillation of the Fluid Layer

D’Alembert’s investigations are not restricted to the determination of the figure of
equilibrium of the fluid layer, in the frame of a static theory. He wants to deal with
a much more difficult problem: what is the law of displacement of the various parts
of the fluid? For that purpose he determines the interval of time �t necessary for a
given particle to go from the initial spherical surface to the new ellipsoidal one. In
a second step he compares �t with the interval of time �θ necessary for the same
particle to fall from a height a above the surface when undergoing the acceleration
of gravity g. By considering that the period of oscillation of the particle is T = 4�t ,
and with a = 1/2g�θ2, his calculations lead to the formula T = 2πREarth/

√
6gh,

where h is the depth of the fluid layer. With respect to this equation d’Alembert
makes the interesting remark: T does not depend on the gravity but only of the
parameters REarth and h. This confirms for the first time the existence of a proper
oscillation mode of the fluid, even when forcing is absent. About half a century later
Laplace will reinforce this result, inaugurating a long series of similar works.

2.8.2 Self-gravity of the Fluid Surface Layer

A second remarkable study of d’Alembert’s concerns the self-gravity of a fluid sur-
face layer. When this layer is deformed, it creates gravitational changes, increas-
ing or decreasing its own initial deformation. D’Alembert’s argument relied on
MacLaurin’s and Daniel Bernoulli’s calculations. In art. 49, he shows that to de-
termine the figure of equilibrium of the fluid layer by taking into account its self-
gravity, all we have to do is to multiply the perturbing force by a factor

ρ = 1

1 − 3
5

δ
�

(2.49)

where δ is the density of the fluid layer and � is the mean density of the Earth
considered as a solid body. Then the self-gravity of the fluid layer is expressed in a
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rather simple way, by inserting this law in the tidal force. The difference between
the semi-major and semi-minor axes of the deformable ellipsoid becomes

β = 3

2(1 − 3
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D’Alembert suggested that this formula, validated by Laplace half a century later,
could enable one to deduce the unknown mean density δ if one takes β from obser-
vations of tides, for instance by measuring the difference of height between the low
and high tides at a given point of the sea. Nevertheless this kind of measurement
is particularly delicate because d’Alembert does not take into account dynamical
phenomena which act on the figure of equilibrium. Laplace will make appropriate
adjustments in 1790, remarking that the determination of δ/� will be more efficient
when studying long periodic tidal components, less apt to affect the equilibrium
tide.

Here, one of d’Alembert’s important conclusions is that the self-gravity of a fluid
layer accentuates the amplitude of the tides. But with the real ratio δ/� = 1/5.5, the
calculations above lead to a small increase of 13 % of the amplitude of the tides due
to the self-gravity. This value remains rather small, in comparison to the amplitudes
of resonant phenomena in harbors that exhibit significantly larger effects. Finally,
notice that when the auto-gravity of the sea is not taken into account we get Euler’s
equation (2.48). And when considering the fictitious case in which the sea has the
same density as the Earth, we find

β = 15
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which fits with the expression found by Daniel Bernoulli. Therefore D’Alembert’s
expressions are completely in accordance with his two contemporaries.

2.9 Laplace’s Masterpiece

Pierre Simon de Laplace (Fig. 2.22) (1749–1827) is just 25 years old when he begins
his work on tides in 1774. In his introduction, when presenting the theories of his
predecessors (Newton, Daniel Bernoulli, Euler, and d’Alembert) he points out their
lack of validity when they are confronted with real observed tides. He proposes a
complete renewal of the theoretical concepts, emphasizing the necessity to solve
in a much more rigorous way what he considers as ‘one of the most complex and
interesting problems of the whole physical astronomy’. In 1825, after half a century
of personal investigations on the subject of tides, he mentions that the motion of fluid
covering a planet was a almost entirely new topic when he undertook its treatment
in 1774. This terse comment seems excessive if we recall that Newton gave the
definition of the tidal force, Euler found its precise formulation, and if we recall the
calculations on the static tide by Bernoulli, Euler, and d’Alembert, as well as of the
study by this last author of the oscillation and self-gravity of a fluid layer.
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Fig. 2.22 Pierre-Simon de
Laplace (1749–1829)

However, Laplace’s comment rings quite true if we remark that all these pre-
decessors, though broadly explaining the phenomena related to tides, were unable
to propose an adequate model describing their effects. Laplace is in fact the first
scientist to construct a mathematical model of tides. Moreover for that purpose he
invented specific mathematical tools to handle the dynamical equations.

Laplace tackled the problem of tides in four successive memoirs, and gave a syn-
thetic presentation of his calculations in his Traité de Mécanique Céleste (book IV,
vol. II; book XIII, vol. V) [19, 21]. The first two memoirs, written in 1775 and
1776 and published in 1778 and 1779 [15, 16], are entitled Recherches sur plusieurs
points du Système du Monde. They are devoted to theoretical aspects, accompanied
with general equations and a particular study of the influence of the bathymetry of
the sea on the oceanic tides. In the third memoir entitled Traité du flux et du reflux,
written in 1790 and published in 1797 [18], Laplace proposes a theoretical study of
the observations, in particular those recorded by Jacques Cassini at the beginning
of the 18th century and gathered in a treatise on tides by Lalande in 1781 [13]. The
contents of these memoirs are presented again by Laplace in a very clear and syn-
thetic way in his book IV of Traité de Mécanique Céleste, published in 1799 [19]. In
particular he makes full use of results acquired in 1782 on the spherical harmonics
[17]. The fourth memoir, also entitled Traité du flux et du reflux de la mer, written
in 1818 and published in 1820 [20], is devoted to observations organized by himself
in harbor of Brest. At last in the book XIII of Traité de Mécanique Céleste, written
in 1824 and published in 1825 [21], Laplace analyse as set of observations carried
out at Brest from 1807 to 1822.

2.9.1 Development of Analytical Mechanics

Before taking a look at Laplace’s capital contribution to the theory of tides, it is
worth making a brief summary of the then recent developments in the fields of an-
alytical mechanics, from which Laplace could build his theoretical investigations.
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First of all, we recall that in 1755 Euler published memoirs where he established the
general equations of hydrostatics and hydrodynamics, whatever the compressibility
of the fluid. By generalizing the ideas of Clairaut, developed in 1743 on the occasion
of his researches on the figure of the Earth, Euler introduced the notion of pressure
and gave the general condition of equilibrium of a fluid by showing that the pres-
sure counterbalances at each point the effect of the acceleration. He established the
general equation of motion of the fluid with respect to an absolute reference frame,
introducing the internal force of pressure −∇p and the external force f in such a
way that

ργ = −∇p + f (2.52)

where ρ is the density and γ the acceleration. Euler also introduced the local equa-
tion of the conservation of mass, which characterizes the fact that the variation of
mass inside a given volume of fluid is equal to the mass flux through the surface
bounding the volume:

∂ρ

∂t
+ divρv = 0 (2.53)

Together with the concept of pressure, Euler introduced also the concept of poten-
tial, although the evolution of this concept through his work is rather vague and
progressive. As soon as 1736, he defines a function μ whose the differential is ex-
act: dμ = −P dx −Qdy −R dz, where P , Q and R are the rectangular components
of the force per mass unit. In 1743, Clairaut showed the importance of such an ex-
pression in the equilibrium of a fluid mass and also proved that it must be an exact
differential form. He added that the expression above represents the ‘effort’ of the
gravity. This concept is close to the notion of work. Clairaut also showed that the sur-
face of equilibrium of a fluid is given by setting the integral of P dx + Qdy + R dz

to a constant. The notion of potential, in a latent state, was finalized in 1774 and
1776 by Lagrange who showed that the gravitational attraction derives from a po-
tential Ω and that the components of the force can be obtained by calculating the
partial derivatives of this potential. He added that this way of representation of the
forces can prove extremely advantageous by its simplicity and its generality. Finally
we mention that also in 1774 Lagrange introduced the use of spherical coordinates,
which Laplace used extensively later.

2.9.2 The Equations of 1775 and 1776

In 1775, Laplace uses the general equations of the hydrodynamics set up by Euler,
to apply them to the Earth, in spherical coordinates. As his predecessors he models
the ocean as a uniform fluid layer with variable depth, covering entirely a spherical,
solid and undeformable Earth. The fluid is supposed incompressible. Laplace makes
an essential hypothesis which simplifies noticeably his calculations: he remarks that
the depth of the oceanic layer is small compared with the Earth radius. This implies
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Fig. 2.23 Laplace equations in 1776. Equation (6) characterize the mass conservation. Equa-
tions (7) and (8) are the dynamic equations. Laplace uses l for the depth of the layer, y for its
deformation, n for the angular velocity of the Earth. The Earth radius is chosen to be the unit of
length and u and v are horizontal displacements. B� and C� correspond to the self-gravity

Fig. 2.24 Reference frame
and parameters of the Laplace
dynamical equations. M is
represented by its spherical
coordinates: the colatitude θ ,
the longitude λ, counted
positively eastward l. ω is the
vector rotation of the Earth

that the real large scale motions of the fluid are quasi-horizontal. In other words, the
vertical velocity can be neglected, all the particles belonging to the same vertical
line having a priori the same velocity. Then the general problem of tides can be
treated by retaining only the tangential components, as a 2-dimensional problem.
This fundamental simplification, known as the long wave approximation, will be
fully used in later geophysical studies. Laplace kept on working on his equations
inside his memoirs of 1776 (Fig. 2.23) and 1790, and his Mécanique Céleste, vol. IV,
until he gave a precise and definitive formulation, which still stands nowadays.

Let θ and λ denote the colatitude and the longitude of a particle of the fluid layer
at depth h, vθ and vλ the respective North-South and East-West components of the
horizontal velocity v of the particle with respect to the Earth (Fig. 2.24). ζ is the
radial deformation of the fluid layer, ω is the angular velocity of the Earth, g is the
gravity, V is the tidal potential and Φ is the potential of self-gravity of the fluid layer.
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With this notation, the dynamical equation and the equation of mass conservation
are written with respect to a reference frame linked to the Earth

∂v
∂t

+ 2ω ∧ v = −g∇ζ + ∇V + ∇Φ (2.54)

∂ζ

∂t
+ divhv = 0 (2.55)

The pressure at a given point of the fluid is the sum of two terms

p = p0 + pζ (2.56)

where p0 is the hydrostatic pressure and pζ the additional pressure due to the defor-
mation of the oceans. As the vertical accelerations due to the tides are very small in
comparison to the gravity, the additional pressure pζ results only from the weight
of the water column undergoing the deformation

pζ = ρgζ (2.57)

ρ being the density of the fluid.
The hydrostatic pressure p0 is counterbalanced by the gravity of the Earth com-

bined to the force due to the rotation in such a way that these terms do not take
part in the dynamical equations. In spherical coordinates, the preceding equations
become

∂vθ

∂t
− 2ω cos θvλ = −1

a

∂

∂θ
(gζ − V − Φ) (2.58)

∂vλ

∂t
+ 2ω cos θvθ = − 1

a sin θ

∂

∂λ
(gζ − V − Φ) (2.59)

∂ζ

∂t
+ 1

a sin θ

(
∂

∂θ
(hvθ sin θ) + ∂

∂λ
(hvλ)

)
= 0 (2.60)

2.9.3 Conservation of Mass

The way Laplace takes into account the conservation of mass differs significantly
from his predecessors: it does not involve a global conservation of the ocean sup-
posed to cover the whole Earth and whose surface shape changes from a sphere to an
ellipsoid. Instead Laplace’s calculations express conservation locally. The starting
point is the equation given by Euler in 1755

∂ρ

∂t
+ divρv = 0 (2.61)

Then Laplace substitutes a variable surface density ρ(h + ζ ) for a constant volume
density ρ, h being variable in space but constant in time:

∂ρ(h + ζ )

∂t
+ divρ(h + ζ )v = 0 (2.62)
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As ζv has a 2nd-order amplitude, and taking into account that ρ is constant, this can
be rewritten

∂ζ

∂t
+ div(hv) = 0 (2.63)

This equation expresses the fact that the mass flux through the walls of a column of
water is compensated for by variations in the height of the column.

2.9.4 Complementary Acceleration due to the Rotation of the Earth

One of the most essential improvements offered by the two Eqs. (2.58) and (2.59)
is the presence of the components with the factor 2ω cos θ . They signal the exis-
tence of a complementary acceleration in a rotating frame, later called the Coriolis
acceleration. They imply a deviation of the motions at the surface of the rotating
Earth. Laplace’s predecessors considered that the sole effect of the rotation of the
Earth was to displace the ellipsoid of the equilibrium tides. In the introduction to his
memoir of 1755, Laplace remarked the error of this simplified hypothesis, noticing
that the change in the relative position of the Moon and the Sun at the surface of
the seas is not the unique effect coming from the rotation of the Earth. This was
already pointed out by MacLaurin in his treatise about the ebb and flow, but without
any calculation. Laplace completed his remark with the following reasoning: the
velocity of a particle of fluid remains the same when staying in the same parallel, its
angular velocity increases or decrease according to its distance to the equator, and it
drifts in meridian as it moves in parallel. The important fact is that the amplitude of
the changes due to this effect is of the same order as the gravitational action of the
two perturbing bodies. MacLaurin must not be considered as the only predecessor
to mention the effect above. Galileo, in 1632, studied it in the problem of a bullet
launched along a meridian, and Hadley, in 1735, when interpreting the deviation of
trade winds westward. But Laplace was the first scientist to propose a quantitative
analysis far before Coriolis (1792–1843).

2.9.5 A Decisive Innovation: Spherical Harmonics

In 1782, Laplace invented what turned out to be a decisive tool for tackling problems
of tidal phenomena: spherical harmonics [17]. They occupy a fundamental place in
his work dealing with terrestrial dynamics, notably by leading to a rewriting of his
dynamical equations in a more elegant manner. In his memoir of 1790 (art. 2 and 3)
he already amends his notation, by introducing the spherical harmonics of order 2 in
the expression of the tidal potential and by taking into account in a simple manner
the self-gravity of the fluid layer. But the mathematical expressions of the potential
as well as of the dynamical equations reach their full maturity in the Mécanique
Céleste (vols. III and IV) of 1799.
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Fig. 2.25 Coordinates of a celestial body in the sky. M is the zenith of a surface point, with colat-
itude θ and longitude λ (counted positively eastward). A is a point corresponding to the direction
of the celestial body (Moon or Sun), with declination δ and right ascension α. H is the hour angle
of the intersection of the orbit with the equator. The angle between the ‘meridian’ of the body and
the meridian of the surface point is given by H − α = ωt + λ − α

2.9.6 Tidal Potential

In vol. III, art. 23, Laplace establishes the definitive expression for the tidal potential
V exerted by a perturbing body (Fig. 2.25):

V = Gmp

d

(
r2

d2
P2(cosψ) + r3

d3
P3(cosψ) + r4

d4
P4(cosψ)

)
(2.64)

where d is the distance of the perturbing body from the center of the Earth, mp its
mass, ψ the geocentric angle of zenithal distance, r the radius of the Earth and Pn

are the Legendre polynomials defined by

Pn(x) = 1

2nn!
dn[(x2 − 1)n]

dxn
(2.65)

Thus the first Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) = 3x2 − 1

2
, P3(x) = 5x3 − 3x

2

P4(x) = 35x4 − 30x2 + 3

8
(2.66)

This expression of the tidal potential is very close to the expression of the deforma-
tion of an oceanic layer as given by Euler in 1740. Thanks to classic relationships
in a spherical triangle, Laplace can replace cosψ by a function of the colatitude
θ and the longitude λ of the point considered on the surface of the Earth, and of
the equatorial coordinates of the perturbing body, i.e. its right ascension α and its
declination δ:

cosψ = cos θ sin δ + sin θ cos δ cos(ωt + λ − α) (2.67)
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By inserting this expression in the tidal potential, Laplace shows that it can be writ-
ten naturally as a combination of functions called spherical harmonics Yn(θ,λ):

V (θ,λ) = V2Y2(θ, λ) + V3Y3(θ, λ) + · · · =
∞∑

n=2

VnYn(θ,λ) (2.68)

Here the coefficients Vn themselves can be written as functions of the spherical
harmonics Yn(δ,ωt − α)

2.9.7 Potential for Self-gravity

Thanks to their various properties, especially of orthogonality, spherical harmonics
form a basis in which any surface function can be expanded. Thus Laplace expands
the deformation of the fluid layer ζ(θ, λ) in spherical harmonics

ζ(θ, λ) =
∞∑

n=0

ζnYn(θ,λ) (2.69)

With the help of this expansion Laplace finds a simple and subtle expansion of the
potential for self-gravity of the fluid layer (vol. III, art. 11; vol. IV, art. 2)

Φ(θ,λ) =
∞∑

n=0

ΦnYn(θ,λ) (2.70)

with

Φn = 3gρw

ρe

ζn

2n + 1
(2.71)

where ρw and ρe are the density of water and the mean density of the Earth. A re-
markable point of the formula above is that each component of degree n of this
potential is expressed as a function only of the corresponding degree of deforma-
tion ζn. Therefore each spherical harmonics can be treated separately, according to
their degree.

2.9.8 Dynamical Equations with Spherical Harmonics

In his Mécanique Céleste (book III, art. 3) Laplace rewrites the equations of mo-
tion of a fluid particle, which are similar to those given in 1776, by relying on a
completely new approach which expands in spherical harmonics all the parameters
concerned. This approach is extremely general and valid at each degree of the har-
monics, which can be treated independently. They are shown in Fig. 2.26.
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Fig. 2.26 Laplace equations
in 1799. μ corresponds to
cos θ . The potential V ′ is the
combination of the tide
potential V and the potential
of self-gravity Φ of the fluid
layer

2.9.9 Oscillation of the Fluid Layer in Case of a Static Earth

In 1799, after much effort, Laplace succeeded in making progress on the difficult
problem already raised by d’Alembert, that of determining the oscillation of the
fluid layer in the case of a static Earth. In that specific case, the three Eqs. (2.58),
(2.59), (2.60) can combine to give one equation in ζ . By differentiating the equation
of mass conservation (2.63) and using the fact that h is constant, Laplace gets

∂2ζ

∂t2
+ h

a

[
1

sin θ

∂

∂θ

(
sin θ

∂vθ

∂t

)
+ 1

sin θ

∂

∂λ

(
∂vλ

∂t

)]
= 0 (2.72)

and, by replacing the partial derivatives of the velocities by their expressions from
(2.58) and (2.59),

∂2ζ

∂t2
= h

a2
�t(gζ − V − Φ) (2.73)

where �t denotes the tangential Laplacian given by

�t = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂λ2
(2.74)

Equation (2.73) was found by Laplace as early as 1776. But it took further 20 years
for Laplace to find way of solving this complex equation. Once more thanks to the
spherical harmonics, he found a way out, as it shown in Mécanique Céleste (vol. IV,
art. 2). Each term in the equation is expressed with the help of spherical harmonics,
and by use of their remarkable property

�tYn = −n(n + 1)Yn (2.75)

Equation (2.73) becomes equivalent to a set of equations for different degrees n:

∂2ζn

∂t2
= −n(n + 1)

h

a2
(gζn − Vn − Φn) (2.76)

with

Φn = 3gρw

ρe

ζn

2n + 1
(2.77)

Laplace gets

∂2ζn

∂t2
+ n(n + 1)

(
1 − 3ρw

(2n + 1)ρe

)
gh

a2
ζn = n(n + 1)

h

a2
Vn (2.78)
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This represents the equation of an oscillation forced by the tidal potential Vn. For
n = 2, and by setting the tidal potential to zero, we have

∂2ζ2

∂t2
+ 6

(
1 − 3ρw

5ρe

)
gh

a2
ζ2 = 0 (2.79)

This represents an oscillation of the fluid layer, with characteristic period

T = 2πa
√

6gh(1 − 3ρw

5ρe
)

(2.80)

This corresponds exactly to the eigenmode of oscillation found by d’Alembert. But
Laplace generalized the work for all degrees of the spherical harmonics.

2.9.10 Hydrostatic Equilibrium

In his Mécanique Céleste (vol. IV, art. 12), Laplace remarks that his equations re-
cover in a simpler manner his predecessors’ results on another fundamental topic:
the equilibrium tide. A simple hypothesis is adopted that the surface of the sea takes
the form induced by the instantaneous forces acting on it, in other words the veloc-
ities and their derivatives are ignored. With this hypothesis, the value of the defor-
mation ζ of the fluid layer can be determined immediately for arbitrary depth and
density of the sea. Indeed the equation becomes

g∇ζ = ∇V + ∇Φ (2.81)

or after integration

ζ = V + Φ

g
(2.82)

This formula says that equipotentials are equivalent to equipressures. It shows the
advantageous of working with potential, which quickly yields the static deforma-
tion. Expanding in spherical harmonics and recalling

Φn = 3gρw

ρe

ζn

2n + 1
(2.83)

we get, for each harmonic of degree n,

ζn = 1

(1 − 3
2n+1

ρw

ρe
)

Vn

g
(2.84)

When self-gravity is neglected, this formula is very close to that given by Euler in
1740. Truncating the expression at the second order, we get

V = 3Gmpa2

2d3

(
cos2 ψ − 1

3

)
(2.85)
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and

ζ = 3

2(1 − 3
5

ρw

ρe
)

mpa4

med3

(
cos2 ψ − 1

3

)
(2.86)

which now corresponds to the formula given by d’Alembert. Laplace is interested
in the hypothesis of hydrostatic equilibrium in order to show that it conflicts with
the observations. He showed that when the Moon and the Sun are in conjunction
in the summer solstice, when their declination is maximal, the hypothesis implies
that the excess of water at midday high tide over the following low tide should be
roughly 8 times bigger than the excess of midnight high tide over the following low
tide, whereas the observations show these excesses to be of the same size.

2.9.11 Three Species of Oscillation

An extremely important contribution of Laplace’s study concerns the special struc-
ture of the tidal potential: he showed that this potential generates three different
kinds of oscillations, for which he studied the influence of bathymetry of the oceans.
His research on this topic began in the memoirs of 1775 and 1776 (art. 25–28), then
in Mécanique Céleste (art. 4–10). He shows that when restricting to the degree 2
of spherical harmonics, the leading term, the tidal potential exerted by an external
body is

V = 3Gmpa2

2d3

((
cos θ sin δ + sin θ cos δ cos(ωt + λ − α)

)2 − 1

3

)
(2.87)

where the parameters are either local, like colatitude θ and longitude λ, or related
to the ephemerids of the perturbing body, as celestial coordinates α and δ, ωt being
the sidereal angle of rotation of the Earth. By expanding (2.87) and combining the
terms, we find

V = Gmpa2

d3

(
3 sin2 δ − 1

2

)(
3 cos2 θ − 1

2

)

+ 3Gma2

d3
sin θ cos θ sin δ cos δ cos(ωt + λ − α)

+ 3Gma2

4d3
sin2 θ cos2 δ cos 2(ωt + λ − α) (2.88)

This modern way of writing the expressions is not exactly the same as Laplace’s
one, but strictly equivalent. It shows the symmetry between θ , δ, and between λ,
ωt − α. The distance d of the external body (Moon or Sun) as well as its equatorial
coordinates α and δ vary relatively very slowly with respect to the diurnal variable
ωt . This led to the conclusion by Laplace that the three terms of the potential V

in Eq. (2.88) give rise to three different species of oscillation. He mentions that the
three species mix without interacting and can be studied separately.
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2.9.11.1 Oscillations of the First Species

The oscillations of the first species do not depend on the longitude of the surface
point, but vary as a function of the orbital parameters of the perturbing body: they
have a zonal structure. Among these oscillations figure monthly and fortnightly
components for the Moon, annual and semi-annual ones for the Sun. The ampli-
tudes of these oscillations do not depend on the bathymetry of the oceans.

2.9.11.2 Oscillations of the Second Species

These have a quasi-diurnal period (close to 24h50mn for the Moon, 24h00mn for the
Sun) due to the presence of the argument ωt with diurnal frequency. Their ampli-
tudes are modulated by the orbital motion of the body. The amplitude is zero when
this body is on the celestial equator and gets all larger as the declination gets high.
This occurs during the solstices for the Sun and twice a month for the Moon.

In theory, when the declination is maximal, the oscillations should generate a
large difference of amplitude between successive high tides occurring on the same
day. This is in fact contrary to what is observed in various harbors of the Atlantic,
where these two tides show approximatively the same amplitudes. Laplace discov-
ered that these oscillations depend on the depth of the seas and vanish if the depth is
constant. As early as 1775 he expressed his satisfaction in observing his predictions,
mentioning that this agreement constituted one of the main accomplishments of his
research.

2.9.11.3 Oscillations of the Third Species

They are the most prominent in harbors of the Atlantic. Their period is semi-diurnal
(close to 12h25mn for the Moon, 12h00mn for the Sun) and their amplitudes are also
modulated by the relative celestial motion of the celestial body. The amplitude is
maximum when the body lies on the celestial equator. Laplace sought the condition
in which these oscillations vanish and found that this requires an ocean of infinite
depth.

2.10 Methodology, Organization, and Analysis of Observations

The numerous calculations by Laplace on the influence of bathymetry and his re-
search on the necessary conditions for the oscillations of second and third species
to vanish reach some limits. The impossibility of explaining the variety of tides by a
direct deterministic calculation led him, in his memoir of 1790, then in Mécanique
Céleste (vols. IV and XIII), to fully exploit observational data and to develop semi-
empirical methods.
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Thus, if Laplace must be considered as the founder of the dynamical theory of
tides, his activities in this field were not restricted to theoretical studies. He was
also concerned by more practical aspects and was at the origin of the development
of systematic observations of the tides. When in 1790 he sought to determine the
local laws of the ebb and flow using a semi-empirical method, the only observations
available were those carried out between 1711 and 1716 at Brest harbor and those
on Lalande’s initiative in 1777. Laplace remarked that they were too vague and
incomplete to enable a fruitful analysis. Then he exhorted the scientific community
to undertake tidal measurements with ‘the same care as astronomical observations’.

In 1803, with the help of Pierre Lévêque and Alexis de Rochon, he participated
in a commission in charge of the planning of tidal observations. Memoir on the
observations it is important to carry out on the tides in different harbors of the
Republic was written on this occasion. It establishes an extremely precise protocol
of observations, underlying the fact that if earlier the observations guided the theory,
now the theory guides the observations. In 1806, following this memoir, a long series
of observations was undertaken at Brest. Laplace in Mécanique Céleste (vol. XII)
analysed the data from 16 years of observations (1807–1822) and in 1843 the Bureau
des Longitudes published the observations from 1807 to 1835.

2.10.1 Semi-empirical Methods Based on Partial Flows

Whereas the purely theoretical expressions of the tidal potential established by
Laplace reached a quasi-definitive status and incurred few modifications until now,
his semi-empirical methods were rather complex and merely gave a starting point
for the development in the 19th and 20th centuries. Laplace was aware of why his
calculations are not satisfactory: tides are modified by the distribution of continents
and oceans, irregularities of the ocean depths, the positions and the slopes of shores,
currents, the drag of water. It is true that for these reasons tides have no direct and
simple relationship with the tidal potential. But they should obey some laws. Laplace
established a principle that should give access to local tides laws and is still used up
to the present. It relies on two basic ideas:

• The tidal potential can be decomposed as a series of sinusoidal terms with vari-
ous periodicities. This decomposition explains the modulation of tidal waves ac-
cording to the characteristics of the lunar and solar orbital motions (variations of
declination, of distance, of longitude). In his decomposition, Laplace introduced
a significant number of waves, which are found later in the decompositions used
by Lord Kelvin in 1867, Darwin in 1883, and Doodson in 1921.

• Despite numerous perturbations listed above, tides conserve something of their
periodicities. In other words, the sea is subject to the same periods as those of
the forcing tidal potential: each wave of this potential generates a partial sea flow
itself expressed by a sinusoidal function with the same period. The coefficients
and phases of the partial flows are modified differently for each harbor and for
each wave. The total sea flow at a given point is reconstructed as the sum of the
individual partial flows, using the principle of superposition.
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2.10.2 Determination of the Amplitudes and Phases of the Partial
Flows

The determination of the parameters acting on the water height is possible only from
observations. Laplace’s method tries to employ a shrewd combination of observa-
tions to disentangle the phenomenon being studied. For instance, for the characteri-
zation of the semi-diurnal tides, high and low tides were recorded in the vicinity of
solstitial and equinoctial syzygies or quadratures. In vol. IV, Laplace uses Cassini’s
observations from the beginning of the 18th century, refined by observations that
he himself organized at Brest between 1807 and 1822. He gathered more than 6000
observations for the purpose. Thus he could determine the fundamental parameters
(coefficients and phases) which take part in the diurnal and semi-diurnal oscillations,
and find a very good agreement between his semi-empirical formula and observa-
tions. In particular he could show that, under the effect of the terrestrial rotation
and of various perturbations listed above, the amplitude of the diurnal flow in Brest
harbor is reduced by a factor of 1/3 compared with the value predicted by the theo-
retical equilibrium tide, whereas the semi-diurnal flows is multiplied by a factor of
16. Pushing further the treatment of observations, Laplace sought to put in evidence
the flow depending on the lunar potential of degree 3, that is to say involving 1/d4

M .
His semi-empirical method was powerful indeed.

2.10.3 Determination of the Ratio of Lunar/Solar Tides

Finally, Laplace could attempt a fresh estimate of the ratio μ of the amplitude of
the lunar tide to that of the solar tide. We saw that in 1687 Newton had set the
value μ = 4.5 by using the height of tides in Bristol harbor, and that later Bernoulli
lowered this value to μ = 2.5 by using the precise times of high tides instead of
their height. Then in 1749 d’Alembert and Euler lowered the value further to 2.33
thanks to the study of the precession-nutation of the Earth. Finally Laplace found
the value 2.35 and concluded that ‘the agreement of values found by various means
is remarkable’. This ratio also enabled him to calculate the mass of the Moon, for
which he found 1/75 of the mass of the Earth, very close to the real fraction of 1/81.

2.10.4 Laplace and Atmospheric Tides

On the margin of his research about the oceanic tides, it is worth mentioning that
Laplace was also interested in atmospheric tides. The subject had already been ini-
tiated by Daniel Bernoulli and d’Alembert: Laplace explained that the gravitational
influence of the Moon and the Sun generates in the atmosphere periodic motions
similar to the oceanic ones but extremely weak. The barometer variation he cal-
culated theoretically should be of the order of 0.6 mm of mercury (80 Pa). These
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variations are too small to explain the strange variations of the barometer, with a
12-hour period and 1.5 mm amplitude observed in the 18th century in tropical ar-
eas, in particular by Lamanon in 1785 during La Perouse expedition (1785–1788).
Laplace concluded that these variations should be due to thermal forcing. In 1825,
using the analysis of 8 years of pressure measurements at the Observatoire de Paris,
he tried to show the existence of atmospheric tides with a lunar origin: he found an
oscillation of 0.055 mm of mercury, but emphasized that his results are not statisti-
cally convincing. The existence of such a tide was demonstrated for the first time in
1842, from observations on the island of St. Helens.

2.11 Conclusion on Laplace’s Work

Laplace’s work is a landmark in the study of tides. We can condense our discursive
text above on his contributions into three bullet points.

• The origin of the tides and the ultimate outcome of Newton’s ideas. Instead of the
generating force of tides, Laplace used the fruitful tidal generating potential, and
pioneered the use of the spherical harmonics.

• Even more fundamental, the establishment of a dynamical theory of tides. By
neglecting the vertical velocity in the fluid layer, Laplace establishes the gen-
eral equation of the dynamics of water in the oceans, which to this day remains
the basis of tidal theory. He highlighted the Coriolis force and the fact that each
oscillation of the tidal potential generates a partial flow with the same period
which, mixed with various local perturbations, gives a great variety of geography-
dependent tidal behaviors.

• The organization of an observational network, with a very precise protocol. In
parallel he developed a method of analysis of observations.

From these various point of view, Laplace can be considered as the true founder
of the modern science of ocean tides.

2.12 Overall Conclusion

Since the first ideas on the influence of the Moon put forward by the Ancients, until
the mathematical work of Laplace, the improvements of the theory of tides have
been considerable. But why did it take such a long time to solve the problem? Three
reasons can be found.

• First, solving the problem necessitated the discovery of the universal law of grav-
itation, so had to wait Newton.

• Second, tides mingle two causes, a deterministic and precise law of gravitation
and perturbations by local environments. To understand the tides, we had to sep-
arate the two causes. Newton took the first step by giving the tidal force. Laplace
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took the second step, by showing that the sea flows in each harbor have the same
periodicities as the tidal potential but with phases and amplitudes depending on
the local characteristics of each site.

• Third, mathematical tools had to be invented, not only calculus but also spherical
harmonics and the equations of fluid mechanics. By the end Laplace’s career, all
the tools are ready and provide the theoretical basis for the future.

After Laplace, improvements continued. Several of them are:

– The increase of the observations, in particular thanks to the floating tide gauges
invented in 1843 by Rémi Chazallon (1802–1872).

– Understanding that tides result largely from resonances of basins to astronomical
excitations: pioneering work by John William Lubbock and William Whewell in
1830–1840, then by Rollin Harris in 1897.

– Refining the harmonic expansion of the tidal potential: 91 terms for George Dar-
win in 1883, 378 for Doodson in 1921, and 12 935 for Hartmann and Wenzel in
1995.

– Understanding that tides concern only oceanic masses but also the solid part of
the Earth: elastic deformations.

– Last but not least, fantastic computing tools that integrate the dynamical equa-
tions, replacing the partial integrations done by George Biddell Airy, Lord Kelvin,
Henri Poincaré, Carl Gustav Rossby, and others.

In addition to the numerical modeling of tides, the problem today consists in
dealing with the tides in a global way to determine the motions of a deformable
Earth, partially covered by oceans, containing a fluid core and subject to the action
of external bodies.
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