
Introduction

This text arose from the author’s drive to understand martingales other than the
Wiener process (Einsteinean Brownian motion), to find nontrivial examples of
martingales, and to understand the dynamics of nontrivial martingales with finite
variance. This takes us to Ito processes and Fokker–Planck partial differential
equations, ruling out Levy processes.

Because martingales provide our main focus, Ito calculus and the Fokker–
Planck partial differential equation are developed parallel as methods of analysis.
A drift-free Ito process describes a martingale, for example Ito processes can
be used to solve some interesting partial differential equations via martingale
constructions, and martingales are fundamental in finance theory. Mathematicians
use Ito calculus while physicists use the Fokker–Planck equations. We marry the
two and provide a bridge between the two different dialects of the same language,
Ito calculus transforms 1–1 with Fokker–Planck under coordinate transformations.
We combine both methods to achieve new and more powerful results that would
have been difficult had we been confined to one description or the other.

Mathematics books on stochastic calculus and differential equations prove pow-
erful theorems about Ito processes and martingales but provide no nontrivial exam-
ples. Nontrivial examples from finance and trivial ones from statistical physics are
provided in this text. Physics texts on stochastic processes generally do not develop
Ito calculus and thereby provide inadequate preparation for understanding finance
theory (see Hänggi and Thomas, 1982, for a very rare exception). Indeed, it was
Harry Thomas who made me realize that I had to learn to understand and apply Ito
calculus in 2002. Once I learned it, I found it so simple, direct, and useful that I
would never choose to do without it.

Another problem of communication is the different notations used in physics
and mathematics. We use physics notation and provide next a translation to the
mathematicians’ notation. We also provide the reader with a list of definitions
where the notation is defined.
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2 Stochastic Calculus and Differential Equations for Physics and Finance

I use Dirac notation 〈x(t)〉 to denote the ensemble average of a random variable
x at time t, whereas mathematicians would write E(x). A conditional expectation,
conditioned on having observed xo at time to, is denoted in our notation by 〈x(t)〉c,
whereas mathematicians typically write E(x|xo). Conditional expectations, along
with martingales, are introduced in Chapter 2 and are used throughout the text.
In defining certain quantities in advanced stochastic integration (see Chapter 10),
mathematicians use a notation that looks like our bracket notation for averages but
isn’t. A guide to our and their notation for stochastic integration is provided in
Chapter 10. Indeed, the main obstacle initially preventing me from understanding
Durrett’s generalization of stochastic integration was his notation, which I had to
decipher from his text because it was introduced without a word of explanation.
Once I understood the notation, I found Durrett’s two books (Durrett, 1984; 1996)
to be invaluable. A topic of strong interest to mathematicians in the study of
martingales is the stopping time for a process. Stopping times are introduced and
used in Chapters 3 and 10 in connection with martingales but are called “first
passage times,” which is the common phrase in physics and also in the older
literature on stochastic processes. I hope that these words will help mathematicians
in following the book. They’re the ones who need it the most in order to understand
why their reliance on formal theorems, combined with ignorance of the underlying
conditions needed for the application of a stochastic process, created the atmosphere
that led to the 2007–8 (and as yet unresolved) finance crisis through the unrestricted
and unthinking creation of what Warren Buffett has rightfully and correctly labeled
“toxic waste”.

The log returns variable in finance plays the same role mathematically as does the
space variable x in physics. Only continuous time and “space” stochastic processes
are considered here. Stochastic calculus and differential equations are developed
in Chapters 2–4, and examples of scaling processes are studied in Chapters 5 and
6. Scaling and correlations are introduced in Chapter 1. Correlations are central to
our theme, whereas scaling is not. The reason for this is that scaling has nothing
to do with long-time correlations, long-time correlations follow from stationarity
of the increments combined with a nonlinear time dependence of the process
variance. Furthermore, scaling is not indicated by finance data, the claims of many
econophysicists and financial economists to the contrary (interday FX returns can
be fitted only by scaling over a few very small time intervals).

The dynamics of martingales in particular, and Ito processes in general, is devel-
oped in more detail in Chapters 7–9. In Chapter 10 we follow Durrett in generalizing
stochastic calculus from the Wiener process to arbitrary local martingales. There,
we also prove and discuss Girsanov’s theorem, but mainly we provide examples
of solving a partial differential equation “by running an Ito process”. First passage
time problems (also called stopping times) are formulated and solved. Toward that
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Introduction 3

end, an elementary discussion of ordinary differential equations linked with partial
differential equations is provided in Chapter 1. In Chapter 8 the reader will find new
results: the theory and examples of Ito processes that are not Markovian but instead
have memory of an initial condition. All time series in the statistical ensemble
must pass through that initial condition. Chapter 11 discusses the different historic
developments of statistical physics and finance theory and their qualitative and
quantitative similarities and differences. Chapters 12–14 have been adapted from
my Dynamics of Markets (McCauley, 2009) and updated and are used to illustrate
the application of martingales to finance. The reasons for the worldwide finance
crisis, 2007–present (2012), are discussed, as they were used more extensively in
my 2009 book, Dynamics of Markets.

We show that a martingale (with finite variance) is a drift free process with
uncorrelated noise increments and is therefore diffusive but not necessarily Marko-
vian. Ito stochastic differential equations and their corresponding Fokker–Planck
and backward time Kolmogorov pdes are based on martingale noise plus drift and
are not restricted to be Markovian. As Doob and Feller stated (see Snell, 1997),
but is ignored in the literature, the Chapman–Kolmogorov equation does not imply
a Markov process. We add meat to the bare bones by providing several analyti-
cally solvable examples of non-Markov Ito processes with memory of an initial
state where the Fokker–Planck pde and the Chapman–Kolmogorov equation are
satisfied.

A Markov process is defined following the 1960s era Russian literature (see
also Wang and Uhlenbeck in Wax, 1954). A Markov process is a process with no
memory whatsoever. This means that the drift and diffusion coefficients depend on
the present state and on no other state and on no other parameters. This definition
prevents us from falling into the trap of labeling an Ito process with memory of one
initial condition as a “nonlinear Markov process” (Chapter 8). In a related vein,
we also provide an example of superficially nonlinear diffusion in Chapter 6. We
explain why 1-point diffusion pdes and 1-point densities cannot be used to imply
any particular stochastic process or class of stochastic process. As an example, we
show in Chapter 6 that a self-similar Gaussian Markov process has exactly the same
1-point density f(x, t) as fractional Brownian motion. In Chapter 8 we show that
examples of processes referred to in the recent literature as “nonlinear Markov”
or “nonlinear Fokker–Planck” are linear Ito processes and are either Markovian or
else are non-Markovian with memory of an initial condition.

Instead of the abstract probability spaces emphasized in mathematics, we empha-
size statistical ensembles, which are necessary for data analysis. We point out that
1-point densities cannot be used to identify a stochastic process, hence, the empha-
sis in the text on pair correlations. Instead of defining probability spaces, statistical
ensembles for nonstationary processes are defined and emphasized. The other side
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4 Stochastic Calculus and Differential Equations for Physics and Finance

of the coin is that we explain why time averages should not be used in data analy-
sis. The application of approximate ensembles to time series in finance, a method
of analysis constructed by the author and his colleagues Gemunu Gunaratne and
Kevin Bassler, is developed in Chapter 13. In Chapter 15 I explain the formal
notions of filtrations, adaptations, and probability space measures in terms of time
series, n-point densities, and statistical ensembles, allowing the mathematician
to understand our language and helping the physicist to understand the abstract
mathematical language.

The author happily acknowledges critical and very helpful discussions over
the past several years (mainly via email) with Harry Thomas, who unfortunately
died in the summer of 2010, with Enrico Scalas, and also with Giulio Bottazzi.
The author’s two Houston colleagues, Gemunu Gunaratne and Kevin Bassler,
contributed much to my understanding and directly to the work presented here.
Duncan Foley commented usefully on an earlier version of Chapter 11. Most of
the material in the text was taught in my econophysics course at the University of
Houston 2004–09. An early preliminary version of the first ten chapters appeared
as the author’s Pisa Lecture Notes based on a week of lectures at the Sant’ Anna
School of Economics in 2006; many thanks to my hosts and friends Giulio Bottazzi
and Giovani Dosi. Preliminary results from Chapter 13 were not presented then
as we had not submitted them for publication at that time. Our sons were 10 and
15 years old then, still boys. After my Pisa lectures, my Frau, two sons, and I spent
a very nice week before Easter in a stone house in an olive grove near Vinci. I
am extremely grateful to my wife/partner, Cornelia Küffner, for proofreading and
criticizing several chapters and the introduction and to Simon Capelin at Cambridge
University Press for publishing this text, the author’s fifth Cambridge book. Finally,
I’m also grateful to our two very good econophysics students at the University of
Houston, Lars Seeman and Jia-Chen Hua, for extending the pioneering work of
understanding financial time series via a statistical ensemble analysis that Gemunu
Gunaratne, Kevin Bassler, and I did in 2007.
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1

Random variables and probability distributions

1.1 Particle descriptions of partial differential equations

In this book we will focus mainly on a class of stochastic process that admits
descriptions both via a noise-driven differential equation and a corresponding
deterministic partial differential equation. We begin with the general question:
when does particle motion described by deterministic differential equations admit
a corresponding partial differential equation and vice versa. Then, we will add
noise and ask the same question.

Particle descriptions of some partial differential equations are possible. Geomet-
rical optics of light rays follows from the characteristic equations dt = dx/c of the
linear hyperbolic partial differential equation (pde), the wave equation,(

∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
� = 0, (1.1)

where c is the wave speed. Equation (1.1) can be studied as the consequence of two
first-order pdes, each of which has the form of a constant velocity continuity equa-
tion. The one pde describes waves traveling along the x-axis, the other describes
waves traveling in the opposite direction. This corresponds to the fact that solutions
of (1.1) consist of waves traveling in both directions. An oppositely traveling wave
arises from a reflection at a boundary.

Let R(x) denote a vector field in an n-dimensional phase space. An autonomous
deterministic dynamic system, a phase flow, in particular, dx/dt = R(x) has n − 1
(local, not necessarily global) time-independent conservation laws G(x, t) =
constant satisfying the first order pde:

dG

dt
= ∂G

∂t
+ R(x)

∂G

∂x
= 0. (1.2)

Turning the argument around, this pde has a particle description in terms of the
characteristic equations dt = dx/R.
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6 Stochastic Calculus and Differential Equations for Physics and Finance

The continuity equation from fluid mechanics,

d�

dt
= ∂�

∂t
+ ∂(�R(x))

∂x
= 0, (1.3)

where � (x, t) is the fluid density and R(x, t) is the fluid velocity field, suggests a
particle description. Writing

∂�

∂t
+ R

∂�

∂x
+ �

∂R

∂x
= 0, (1.4)

we have a quasi-linear first order pde whose characteristic equations are given by
dt = dx/R(x, t). These differential equations generate the streamlines of the flow
locally, but understanding the flow locally requires knowing the three-dimensional
velocity field R(x, t). The fluid velocity field is not given a priori. Instead, R(x, t)
satisfies the Navier-Stokes pde. Our understanding of fluid turbulence is incomplete,
we are not able to solve the Navier-Stokes pde, a quasi-linear second order parabolic
pde, adequately approximately analytically for moderate to high Reynolds numbers.

Leaving fluid flow aside and returning to (1.3), where the solution can be given
a probability interpretation, here’s the main question for us: when does a pde arise
from writing

dx − R(x)dt = ‘noise’ (1.5)

and vice versa? The answer depends, as we will show in the chapters that follow,
entirely on the statistical properties that define the noise. We’ll show in Chapter 4
that there are very interesting and useful realizations of this idea. We’ll also see
in Chapter 6 that there exists noise that can be understood as particle motion but
that has neither a pde description, nor a description in terms of a noise-driven
differential equation (1.5).

In order to be precise we must first define what we mean by “noise”. In this
case, the random differential equation (1.5) cannot generate a trajectory in the
deterministic sense. What we would like to regard as “x(t)” can only be defined in
some statistical sense depending on the statistics that define the noise. In particu-
lar, we will discover that x(t) is wildly nonunique: starting from the same initial
condition x(to) at time to, reruns of the same identical experiment will yield wildly
different time series x(t). This leads to the idea of time-series analysis via statistical
ensembles. Statistical ensembles were introduced by Gibbs (1960).

Gibbs wrote something similar in his Elementary Principles of Statistical
Mechanics (1960), but in that case the motion is deterministic chaotic and mixing,
not stochastic. The difference is that the trajectories of a deterministic chaotic sys-
tem diverge wildly for slightly different initial conditions and then only at longer
times. In a stochastic system the time series diverge wildly for all times t, including
for the very shortest time differences t − to, for exactly the same initial condition.
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Random variables and probability distributions 7

We mean, of course, in principle: “exactly the same initial condition” would require
infinite precision, which is physically impossible. Gibbs used a hydrodynamic anal-
ogy to make his point, the mixing of a droplet of ink into water when stirred. The
same mixing occurs purely dynamically (in Gibbs’ sense) if you simply let fall a
droplet of ink into the water. A vortex cascade results, and then, after a long-time,
diffusion at small scales mixes the ink.

1.2 Random variables and stochastic processes

A random variable x is defined as any variable described by a probability distribu-
tion. This implies no randomness of motion, because chaotic differential equations
generate pseudo-random time series x(t) and corresponding probability distribu-
tions. Here, we’re concerned only with stochastic dynamics, “random” processes
whereby the variable x(t) obeys a noise-driven equation of motion. By a noise
process B(t) we mean that there is no change with time in B on the average. That
is, there is no deterministic/systematic component in B to produce an average. But
how do we define “on the average”? Leaving this ambiguity aside for the moment,
we turn to an example that has the germ of generality.

The simplest example of random motion is given by Brownian motion, the
motion observed via microscope of a colloidal particle in a fluid. The mathemat-
ics of Brownian motion was studied around 1900 by Smoluchowski, Langevin,
Einstein, and Bachelier. Markov’s earlier work was then generally known. Einstein
started with the Langevin equation dx/dt = �(t), where �(t) is uncorrelated with
�(s) if s �= t and with vanishing average. This is called white noise by mathemati-
cians and physicists, but economists mean something entirely different by white
noise. Einstein deduced that the probability density f(x, t) for the location of the
Brownian particle satisfies the partial differential equation (pde)

∂f

∂t
= D

2

∂2f

∂x2
. (1.6)

The generalization to the continuity equation

∂f

∂t
= − ∂j

∂x
(1.7)

with

j(x, t) = R(x, t)f − D

2

∂f

∂x
(1.8)

is called the Smoluchowski pde,

∂f

∂t
= −∂(R(x, t)f)

∂x
+ D

2

∂2f

∂x2
. (1.9)
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8 Stochastic Calculus and Differential Equations for Physics and Finance

We can argue for the diffusion term in (1.8) in the spirit of irreversible thermody-
namics. Or, from the viewpoint of another school, as a Landau-Ginzburg expansion:
think of an expansion of j in powers of, and gradients of, f. The coefficient of the
gradient term in (1.8) must be positive because particles will tend to diffuse from
higher to lower concentrations, D > 0.

This is the generalization of (1.3) that includes white noise acting on the particle’s
velocity. Unlike first order pdes or hyperbolic second order pdes, a parabolic
second order pde admits no description of trajectories by a deterministic equation
of motion. Equation (1.3) is time reversible but (1.9) is not.

Deterministic motion along a particle’s path is always time reversible: one can
integrate a system of deterministic differential equations dx/dt = R(x), where R
is a vector field, either backward or forward in time. Dissipative motion, deter-
ministic chaos, and complexity are all time reversible. In diffusive dynamics,
however, time-reversed motion does not exist. The lack of time reversibility is
reflected in the lack of self-adjointness: the pde (Equation 1.6) cannot be made
self-adjoint under general boundary or initial conditions. Instead, the pde has an
adjoint

∂f

∂t
+ D

2

∂2f

∂x2
= 0, (1.10)

that describes diffusion backward but not forward, in time. Time irreversibility
is fundamental for stochastic processes in general and for statistical physics and
finance theory in particular. The Black–Scholes (1973) pde for option pricing is,
to within a simple transformation, the adjoint of a forward time diffusion equation
that describes the distribution of a stock price. We will see that martingales are
inherently connected with the idea of diffusion backward in time.

The particle trajectories described by (1.6) are everywhere continuous but are
nowhere differentiable, are infinitely jagged, and are, therefore, difficult to describe
mathematically. Here’s the description of the particle motion generated by (1.6).
Suppose that we know the position of a particle at time t = 0, let x(0) = 0, e.g.,
where’s the particle at time t > 0? If we assume that the motion is unbounded,
−∞ < x < ∞, then the global solution of (1.6) for x(0) = 0 is

f (x, t) = (2�Dt)−1/2e−x2/2Dt . (1.11)

“On the average”, the position predicted by (1.11) is zero: 〈x(t)〉 = ∫
xf(x, t)dx = 0

since f(x, t) = f(−x, t). The probability that the particle lies within the interval
[x1 − �x, x1 + �x] at time t is then expressed as

P (x1 − �x ≤ x ≤ x1 + �x) = (2�Dt)−1/2

x1+�x∫
x1−�x

dye−y2/2Dt . (1.12)
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Random variables and probability distributions 9

More accurate knowledge of the particle’s location than this cannot be predicted
in advance. Our ability to predict the particle’s future position falls off faster than
t−1/2, so we systematically and irreversibly lose the knowledge needed to predict
the future. Our ability to deduce the particle’s earlier history is nil. The most likely
position of the particle is the position that maximizes lnf(x, t), yielding x = 0,
but the scatter about that position grows as t increases. Our inability to predict the
particle’s position in the long run is in fact unbounded because the process does
not approach statistical equilibrium. Equilibrium would require that the probability
density f(x, t) approaches a t-independent normalizable limit f(x) as t goes to
infinity. We can achieve statistical equilibrium if the particle’s confined to a box,
–L ≤ x ≤ L, which requires solving (1.6) subject to boundary conditions f(−L, t) =
f(L, t) = 0. This yields f(x) = 1/L with –L < × < L for t 	 0.

This is a far simpler state of affairs than for a complex deterministic system,
where no probability at all can be predicted. So stochastic processes are simple,
not complex, at least for all processes considered this book.

Observe that a particle description of Laplace’s pde ∇2f = 0 is suggested as in
terms of steady-state motions of a Brownian particle. We’ll return to this topic in
Chapter 10, where the method used to construct solutions relies on martingales.

There are two key questions. First, how can probability densities and statistical
averages be obtained from measurements of the motion of a particle in a random
system? This requires a discussion of statistical ensembles. Second, how much
information is required mathematically to pin down a specific random dynamical
system? We address the second question in the next section because it leads us
to the notion of a conditional probability, which is useful for clarifying the first
question. The second question is answered discussed further in Chapter 6 and from
a practical standpoint in Section 1.7.

1.3 The n-point probability distributions

According to Kolmogorov, we can define a specific stochastic process precisely iff.
we can specify the complete, infinite hierarchy of joint probability distributions.
From an empirical standpoint we can at best obtain finitely many histograms from
measurement of N different runs of an experiment for n different times, using the
frequency definition of probability. So we can never hope to specify a process
mathematically uniquely via observation. The best we can hope for is to specify
some class of process.

Let P1(x) denote the probability to find a value X < x at time t. This is the
1-point distribution of x. Then P2(x, t; x′, t′) denotes the probability to find both
X < x at time t and X′ < x′ at time t′, and so on, up to Pn(x1, t1; . . . ; xn, tn). Clearly,
both the number N of runs and the number n of times that we strobe/observe the
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10 Stochastic Calculus and Differential Equations for Physics and Finance

system must be large in order have any hope of getting good statistics (meaning
reliable histograms). Nonuniqueness in modeling is inherent in the fact that we
can at best discover the lowest few distributions Pn from empirical data. The class
of models that we are able to deduce from data may be unique at the level of P2

but then will be nonunique at the level of P3 and beyond. But, in that case, what
cannot be discovered from measurement should not be interpreted as license for
invention from mathematical imagination. In Section 1.7 we’ll discuss the question
of whether we can even hope to measure P1.

We can introduce the hierarchy of probability densities fn via

dPn(x1, t1; . . . ; xn, tn) = fn(x1, t1; . . . ; xn, tn)dx1 . . . dxn. (1.13)

Consider a time series x(t) representing one run of a stochastic process. Empirically,
we can only strobe the system a finite number of times, so measurements of x(t)
take the form of x(tk), k = 1, . . . , n where n is the number of measurements made.
If we can extract good-enough histograms from the data, then we can construct the
hierarchy of probability densities f1(x, t), f2(x1, t; x2, t2), . . . , fk(x1, t1; . . . ; xk, tk),
where k � n (the 1-point density f1 reflects a specific choice of initial condition in
data analysis). To get decent histograms for fn, one would then need a much longer
time series.

We note that

fn−1(x1,t1; . . . ; xk−1,tk−1; xk+1,tk+1; . . . ; xn,tn) =
∫

dxkfn(x1,t1; . . . ; xn,tn) (1.14)

so

f1(x, t) =
∫

dyf2(y, s; x, t). (1.15)

Densities of all orders are normalized to unity if
∫

dxxf1(x, t) = 1.
We turn next to the question of scaling, which is a property of the 1-point density

whenever scaling occurs.

1.4 Simple averages and scaling

Given a dynamical variable A(x), to calculate simple averages we only need the
1-point density,

〈A(x)〉 =
∫

A(x)f1(x, t)dx. (1.16)

For example, moments are predicted by

〈xn〉 =
∫

xnf1(x, t)dx. (1.17)
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