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Introduction

1.1 Ricci flow: what is it, and from where did it come?

Our starting point is a smooth closed (that is, compact and without boundary)
manifold M, equipped with a smooth Riemannian metric g. Ricci flow is a
means of processing the metric g by allowing it to evolve under the PDE

∂g

∂t
= −2 Ric(g) (1.1.1)

where Ric(g) is the Ricci curvature.
In simple situations, the flow can be used to deform g into a metric dis-

tinguished by its curvature. For example, if M is two-dimensional, the Ricci
flow, once suitably renormalised, deforms a metric conformally to one of con-
stant curvature, and thus gives a proof of the two-dimensional uniformisation
theorem – see Sections 1.4 and 1.5. More generally, the topology of M may
preclude the existence of such distinguished metrics, and the Ricci flow can then
be expected to develop a singularity in finite time. Nevertheless, the behaviour
of the flow may still serve to tell us much about the topology of the underlying
manifold. The present strategy is to stop a flow once a singularity has formed,
and then carefully perform ‘surgery’ on the evolved manifold, excising any sin-
gular regions before continuing the flow. Provided we understand the structure
of finite time singularities sufficiently well, we may hope to keep track of the
change in topology of the manifold under surgery, and reconstruct the topology
of the original manifold from a limiting flow, together with the singular regions
removed. In these notes, we develop some key elements of the machinery used to
analyse singularities, and demonstrate their use by proving Hamilton’s theorem
that closed three-manifolds which admit a metric of positive Ricci curvature
also admit a metric of constant positive sectional curvature.

Of all the possible evolutions for g, one may ask why (1.1.1) has been chosen.
As we shall see later, in Section 6.1, one might start by considering a gradient
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2 1 Introduction

flow for the total scalar curvature of the metric g. This leads to an evolution
equation

∂g

∂t
= −Ric + R

2
g,

where R is the scalar curvature of g. Unfortunately, this turns out to behave
badly from a PDE point of view (see Section 6.1) in that we cannot expect the
existence of solutions for arbitrary initial data. Ricci flow can be considered
a modification of this idea, first considered by Hamilton [19] in 1982. Only
recently, in the work of Perelman [31], has the Ricci flow itself been given a
gradient flow formulation (see Chapter 6).

Another justification of (1.1.1) is that from certain viewpoints, Ric(g) may
be considered as a Laplacian of the metric g, making (1.1.1) a variation on the
usual heat equation. For example, if for a given metric g we choose harmonic
coordinates {xi }, then for each fixed pair of indices i and j , we have

Ri j = −1

2
�gi j + lower order terms

where Ri j is the corresponding coefficient of the Ricci tensor, and � is the
Laplace-Beltrami operator which is being applied to the function gi j . Alterna-
tively, one could pick normal coordinates centred at a point p, and then compute
that

Ri j = −3

2
�gi j

at p, with � again the Laplace-Beltrami operator. Beware here that the notation
�gi j would normally refer to the coefficient (�g)i j , where � is the connection
Laplacian (that is, the ‘rough’ Laplacian) but �g is necessarily zero since the
metric is parallel with respect to the Levi-Civita connection.

1.2 Examples and special solutions

1.2.1 Einstein manifolds

A simple example of a Ricci flow is that starting from a round sphere. This will
evolve by shrinking homothetically to a point in finite time.

More generally, if we take a metric g0 such that

Ric(g0) = λg0

for some constant λ ∈ R (these metrics are known as Einstein metrics) then a
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1.2 Examples and special solutions 3

solution g(t) of (1.1.1) with g(0) = g0 is given by

g(t) = (1 − 2λt)g0.

(It is worth pointing out here that the Ricci tensor is invariant under uniform
scalings of the metric.) In particular, for the round ‘unit’ sphere (Sn, g0), we
have Ric(g0) = (n − 1)g0, so the evolution is g(t) = (1 − 2(n − 1)t)g0 and the
sphere collapses to a point at time T = 1

2(n−1) .
An alternative example of this type would be if g0 were a hyperbolic metric –

that is, of constant sectional curvature −1. In this case Ric(g0) = −(n − 1)g0,
the evolution is g(t) = (1 + 2(n − 1)t)g0 and the manifold expands homothet-
ically for all time.

1.2.2 Ricci solitons

There is a more general notion of self-similar solution than the uniformly shrink-
ing or expanding solutions of the previous section. We consider these ‘Ricci
solitons’ without the assumption that M is compact. To understand such solu-
tions, we must consider the idea of modifying a flow by a family of diffeo-
morphisms. Let X (t) be a time dependent family of smooth vector fields on
M, generating a family of diffeomorphisms ψt . In other words, for a smooth
f : M → R, we have

X (ψt (y), t) f = ∂ f ◦ ψt

∂t
(y). (1.2.1)

Of course, we could start with a family of diffeomorphisms ψt and define X (t)
from it, using (1.2.1).

Next, let σ (t) be a smooth function of time.

Proposition 1.2.1. Defining

ĝ(t) = σ (t)ψ∗
t (g(t)), (1.2.2)

we have

∂ ĝ

∂t
= σ ′(t)ψ∗

t (g) + σ (t)ψ∗
t

(
∂g

∂t

)
+ σ (t)ψ∗

t (LX g). (1.2.3)

This follows from the definition of the Lie derivative. (It may help you to
write ψ∗

t (g(t)) = ψ∗
t (g(t) − g(s)) + ψ∗

t (g(s)) and differentiate at t = s.) As a
consequence of this proposition, if we have a metric g0, a vector field Y and
λ ∈ R (all independent of time) such that

−2Ric(g0) = LY g0 − 2λg0, (1.2.4)
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4 1 Introduction

then after setting g(t) = g0 and σ (t) := 1 − 2λt , if we can integrate the t-
dependent vector field X (t) := 1

σ (t) Y , to give a family of diffeomorphisms ψt

with ψ0 the identity, then ĝ defined by (1.2.2) is a Ricci flow with ĝ(0) = g0:

∂ ĝ

∂t
= σ ′(t)ψ∗

t (g0) + σ (t)ψ∗
t (LX g0) = ψ∗

t (−2λg0 + LY g0)

= ψ∗
t (−2Ric(g0))

= −2Ric(ψ∗
t g0)

= −2Ric(ĝ).

(Note again that the Ricci tensor is invariant under uniform scalings of the
metric.)

Definition 1.2.2. Such a flow is called a steady, expanding or shrinking ‘Ricci
soliton’ depending on whether λ = 0, λ < 0 or λ > 0 respectively.

Conversely, given any Ricci flow ĝ(t) of the form (1.2.2) for some σ (t), ψt ,
and g(t) = g0, we may differentiate (1.2.2) at t = 0 (assuming smoothness) to
show that g0 is a solution of (1.2.4) for appropriate Y and λ. If we are in a
situation where we can be sure of uniqueness of solutions (see Theorem 5.2.2
for one such situation) then our ĝ(t) must be the Ricci soliton we have recently
constructed.1

Definition 1.2.3. A Ricci soliton whose vector field Y can be written as the
gradient of some function f : M → R is known as a ‘gradient Ricci soliton.’

In this case, we may compute that LY g0 = 2Hessg0 ( f ) (we will review this fact
in (2.3.9) below) and so by (1.2.4), f satisfies

Hessg0 ( f ) + Ric(g0) = λg0. (1.2.5)

Hamilton’s cigar soliton (a.k.a. Witten’s black hole)
LetM = R

2, and write g0 = ρ2(dx2 + dy2), using the convention dx2 = dx ⊗
dx . The formula for the Gauss curvature is

K = − 1

ρ2
� ln ρ,

where this time we are writing � = ∂2

∂x2 + ∂2

∂y2 , and the Ricci curvature can
be written in terms of the Gauss curvature as Ric(g0) = K g0. If now we set

1 One should beware that uniqueness may fail in general. For example, one can have two distinct
(smooth) Ricci flows on a time interval [0, T ] starting at the same (incomplete) g0, even if we
ask that each is a soliton for t ∈ (0, T ]. (See [40].)
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1.2 Examples and special solutions 5

ρ2 = 1
1+x2+y2 , then we find that K = 2

1+x2+y2 , that is,

Ric(g0) = 2

1 + x2 + y2
g0. (1.2.6)

Meanwhile, if we define Y to be the radial vector field Y := −2(x ∂
∂x + y ∂

∂y ),
then one can calculate that

LY g0 = − 4

1 + x2 + y2
g0.

Therefore by (1.2.4), g0 flows as a steady (λ = 0) Ricci soliton.
It is illuminating to write g0 in terms of the geodesic distance from the origin

s, and the polar angle θ to give

g0 = ds2 + tanh2 s dθ2.

This shows that the cigar opens at infinity like a cylinder – and therefore looks
like a cigar! It is useful to know the curvature in these coordinates:

K = 2

cosh2 s
.

Finally, note that the cigar is also a gradient soliton since Y is radial. Indeed,
we may take f = −2 ln cosh s.

The cigar is one of many Ricci solitons which can be written down explicitly.
However, it has been distinguished historically as part of one of the possible
limits one could find when making an appropriate rescaling (or “blow-up”) of
three-dimensional Ricci flows near finite-time singularities. Only recently, with
work of Perelman, has this possibility been ruled out. The blowing-up of flows
near singularities will be discussed in Sections 7.3 and 8.5.

The Bryant soliton
There is a similar rotationally symmetric steady gradient soliton for R

3, found
by Bryant. Instead of opening like a cylinder at infinity (as is the case for the
cigar soliton) the Bryant soliton opens asymptotically like a paraboloid. It has
positive sectional curvature.

The Gaussian soliton
One might consider the stationary (that is, time independent) flow of the standard
flat metric on R

n to be quite boring. However, it may later be useful to consider
it as a gradient Ricci soliton in more than one way. First, one may take λ = 0
and Y ≡ 0, and see it as a steady soliton. However, for any λ ∈ R, one may
set f (x) = λ

2 |x |2, to see the flow as either an expanding or shrinking soliton
depending on the sign of λ. (Note that ψt (x) = (1 + λt)x , and LY g = 2λg.)
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6 1 Introduction

1.2.3 Parabolic rescaling of Ricci flows

Suppose that g(t) is a Ricci flow for t ∈ [0, T ]. (Implicit in this statement here,
and throughout these notes, is that g(t) is a smooth family of smooth metrics –
smooth all the way to t = 0 and t = T – which satisfies (1.1.1).) Given a scaling
factor λ > 0, if one defines a new flow by scaling time by λ and distances by
λ

1
2 , that is one defines

ĝ(x, t) = λg(x, t/λ), (1.2.7)

for t ∈ [0, λT ], then

∂ ĝ

∂t
(x, t) = ∂g

∂t
(x, t/λ) = −2Ric(g(t/λ))(x) = −2Ric(ĝ(t))(x), (1.2.8)

and so ĝ is also a Ricci flow. Under this scaling, the Ricci tensor is invariant, as
we have just used again, but sectional curvatures and the scalar curvature are
scaled by a factor λ−1; for example,

R(ĝ(x, t)) = λ−1 R(g(x, t/λ)). (1.2.9)

The connection also remains invariant.
The main use of this rescaling will be to analyse Ricci flows which develop

singularities. We will see in Section 5.3 that such flows have curvature which
blows up (that is, tends to infinity in magnitude) and much of our effort during
these notes will be to develop a way of rescaling the flow where the curvature
is becoming large in such a way that we can pass to a limit which will be a new
Ricci flow encoding some of the information contained in the singularity. This
is a very successful strategy in many branches of geometric analysis. Blow-up
limits in other problems include tangent cones of minimal surfaces and bubbles
in the harmonic map flow.

1.3 Getting a feel for Ricci flow

We have already seen some explicit, rigorous examples of Ricci flows, but it
is important to get a feel for how we expect more general Ricci flows, with
various shapes and dimensions, to evolve. We approach this from a purely
heuristic point of view.

1.3.1 Two dimensions

In two dimensions, we know that the Ricci curvature can be written in terms
of the Gauss curvature K as Ric(g) = K g. Working directly from the equation
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1.3 Getting a feel for Ricci flow 7

K > 0

S1

K < 0

Figure 1.1 2-sphere

p
e3

S2 neck

Figure 1.2 3-sphere

(1.1.1), we then see that regions in which K < 0 tend to expand, and regions
where K > 0 tend to shrink.

By inspection of Figure 1.1, one might then guess that the Ricci flow tends
to make a 2-sphere “rounder”. This is indeed the case, and there is an excellent
theory which shows that the Ricci flow on any closed surface tends to make
the Gauss curvature constant, after renormalisation. See the book of Chow and
Knopf [7] for more information about this specific dimension.

1.3.2 Three dimensions

The neck pinch
The three-dimensional case is more complicated, but we can gain useful intu-
ition by considering the flow of an analogous three-sphere.

Now the cross-sectional sphere is an S2 (rather than an S1 as it was before)
as indicated in Figure 1.2, and it has its own positive curvature. Let e1, e2, e3 be
orthonormal vectors at the point p in Figure 1.2, with e3 perpendicular to the
indicated cross-sectional S2. Then the sectional curvatures Ke1∧e3 and Ke2∧e3 of
the ‘planes’ e1 ∧ e3 and e2 ∧ e3 are slightly negative (c.f. Figure 1.1) but Ke1∧e2
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8 1 Introduction

(ii)

(i)

(iii)

perhaps infinitely long!

Figure 1.3 Neck Pinch

is very positive. Therefore

Ric(e1, e1) = Ke1∧e2 + Ke1∧e3 = very positive

Ric(e2, e2) = Ke2∧e1 + Ke2∧e3 = very positive

Ric(e3, e3) = Ke3∧e1 + Ke3∧e2 = slightly negative

This information indicates how the manifold begins to evolve under the Ricci
flow equation (1.1.1). We expect that distances shrink rapidly in the e1 and
e2 directions, but expand slowly in the e3 direction. Thus, the metric wants
to quickly contract the cross-sectional S2 indicated in Figure 1.2, whilst
slowly stretching the neck. At later times, we expect to see something like
the picture in Figure 1.3(i) and perhaps eventually 1.3(i i) or maybe even
1.3(i i i).

Only recently have theorems been available which rigorously establish that
something like this behaviour does sometimes happen. For more information,
see [1] and [37].

It is important to get some understanding of the exact structure of this process.
Singularities are typically analysed by blowing up: Where the curvature is large,
we magnify – that is, rescale or ‘blow-up’ – so that the curvature is no longer
large, as in Figure 1.4. (Recall the discussion of rescaling in Section 1.2.3.)
We will work quite hard to make this blowing-up process precise and rigorous,
with the discussion centred on Sections 7.3 and 8.5.

In this particular instance, the blow-up looks like a part of the cylinder
S2 × R (a ‘neck’) and the most advanced theory in three-dimensions tells us
that in some sense this is typical. See [31] for more information.
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1.3 Getting a feel for Ricci flow 9

magnify

S2

Figure 1.4 Blowing up

The degenerate neck pinch
One possible blow-up, the existence of which we shall not try to make rigorous,
is the degenerate neck pinch. Consider the flow of a similar, but asymmetrical
three-sphere of the following form:

L
R

If the part R is small, then the flow should look like:

and the manifold should look asymptotically like a small sphere. Meanwhile,
if the part R is large, then the flow should look like:

singularity

Somewhere in between (when R is of just the right size), we should have:
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10 1 Introduction

degenerate neck pinch

If we were to blow-up this singularity, then we should get something looking
like the Bryant soliton:

S2

Figure 1.5 Magnified degenerate neck pinch

Infinite time behaviour
A Ricci flow need not converge as t → ∞. In our discussion of Einstein man-
ifolds (Section 1.2.1) we saw that a hyperbolic manifold continues to expand
forever, and in Section 1.2.2 we wrote down examples such as the cigar soliton
which evolve in a more complicated way. Even if we renormalise our flow, or
adjust it by a time-dependent diffeomorphism, we cannot expect convergence,
and the behaviour of the flow could be quite complicated. We now give a rough
sketch of one flow we should expect to see at ‘infinite time’.

Imagine a hyperbolic three-manifold with a toroidal end.

T 2

sectional curvatures = −1

This would expand homothetically under the Ricci flow, as we discussed in
Section 1.2.1. Now paste two such pieces together, breaking the hyperbolicity
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