
Dynamic Blocking Problems for a Model
of Fire Propagation

Alberto Bressan

Abstract This paper contains a survey of recent work on a class of dynamic block-
ing problems. The basic model consists of a differential inclusion describing the
growth of a set in the plane. To restrain its expansion, it is assumed that barriers can
be constructed, in real time. Here the issues of major interest are: (i) whether the
growth of the set can be eventually blocked, and (ii) what is the optimal location
of the barriers, minimizing a cost criterion. After introducing the basic definitions
and concepts, the paper reviews various results on the existence or non-existence
of blocking strategies. A theorem on the existence of an optimal strategy is then
recalled, together with various necessary conditions for optimality. Sufficient con-
ditions for optimality and a numerical algorithm for the computation of optimal
barriers are also discussed, together with several open problems.

1 Introduction

Consider a set in the plane, which expands as time increases. Assume that its growth
can be restrained by constructing barriers, in real time. In this setting, a natural prob-
lem is whether one can completely block the growth of the set, constructing barriers
all around. In addition, given a cost criterion, it is also of interest to determine the
optimal location of these barriers.

Dynamic blocking problems of this kind were first considered in [5], motivated
by the optimal control of wild fires. Let R(t) ⊂ R

2 denote the region burned by the
fire at time t . To restrict its growth, assume that a barrier can be constructed, along
a one-dimensional curve. We shall denote by γ (t) ⊂ R

2 the portion of this barrier
constructed within time t . In the case of a forest fire, one may think of a thin strip of
land which is either soaked with water poured from an airplane or a helicopter, or
cleared from all vegetation using a bulldozer, or sprayed with fire extinguisher by a
team of firemen. In any case, this will prevent the fire from crossing that particular
strip of land. In connection with this model, it is then natural to ask whether it is
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possible to completely stop the fire, and what is the best strategy to achieve this
goal, minimizing the total value of the burned region.

Aim of this paper is to survey the main concepts and results in the theory of
dynamic blocking problems, developed in [5–7, 9–12, 15, 23], and discuss various
open questions.

After a precise description of the mathematical model, in Sect. 2 we introduce
an equivalent way to formulate both the blocking problem and the optimization
problem. In Sect. 3 we recall the main results on the existence or non-existence of
blocking strategies. The remainder of the paper is concerned with optimal strategies.
The basic existence theorem [7] is presented in Sect. 4. Section 5 reviews the clas-
sification of arcs in an optimal barrier and the necessary conditions for optimality
proved in [5, 11, 23], while Sect. 6 describes a recent result concerning sufficient
conditions for optimality. A numerical algorithm for computing the optimal barrier,
introduced in [9], is here presented in Sect. 7. Finally, in Sect. 8 we discuss several
remaining open problems.

1.1 A Model for Fire Propagation

Several models for fire propagation have been proposed in the literature, see for
example [17–19, 21]. In our model, the set R(t) ⊂ R

2 burned by the fire up to time t

is described as the reachable set for a differential inclusion. More precisely, consider
the Cauchy problem

ẋ ∈ F(x), x(0) ∈ R0, (1)

where the upper dot denotes a derivative w.r.t. time. Here R0 describes the region
where the fire is initially burning at time t = 0, while F(x) is a set of propagation
velocities.

If barriers are not present, for each t ≥ 0 the set R(t) reached by the fire is defined
as (see Fig. 1)

R(t)
.= {

x(t);x(·) is absolutely continuous, x(0) ∈ R0,

ẋ(τ ) ∈ F
(
x(τ)

)
for a.e. τ ∈ [0, t]}. (2)

We shall always assume that the initial set R0 ⊂ R
2 is nonempty and bounded.

Moreover, we assume that F : R2 �→ R
2 is a Lipschitz continuous multifunction

whose values F(x) are compact, convex sets containing the origin. Clearly, this
implies

R(t1) ⊆ R(t2) whenever t1 < t2. (3)

According to (2), the propagation speed of a fire front in the normal direction is
computed by

h(x) = max
v∈F(x)

〈
n(x), v

〉
. (4)
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Fig. 1 Left: the region R(t) burned by the fire at time t > 0 is described as the set reached by
trajectories of the differential inclusion (1). Right: according to this model, the fire front propagates
in the normal direction with speed given by (4)

Here x is any point along the boundary ∂R(t) of the set burned up to time t , while
n(x) denotes the unit outer normal vector to the boundary, at the point x. By 〈·, ·〉
we denote the Euclidean inner product in R

2.
An alternative way to describe this same model of fire propagation relies on the

solution of a Hamilton-Jacobi (H-J) equation [17]. For each x ∈R
2, call

T (x)
.= inf

{
t ≥ 0;x ∈ R(t)

}
(5)

the minimum time taken by the fire to reach the point x, starting from the initial set
R0. The function T (·) can now be computed by solving the nonlinear PDE

H
(
x,∇T (x)

) = 0, H(x,p)
.= max

v∈F(x)
〈p,v〉 − 1, (6)

with boundary data

T (x) = 0 for x ∈ R0. (7)

The level set {x;T (x) = t} describes the position of the fire front at time t > 0. We
remark that, in general, the solution of (6)–(7) may not be smooth. In this case, the
H-J equation (6) must be suitably interpreted in a viscosity sense [4].

While the representation based on differential inclusions is useful for theoretical
analysis, the H-J equation leads to more efficient computational algorithms, based
on the level set method [17, 20].

1.2 Barriers

We assume that the spreading of the fire can be controlled by constructing barriers,
in real time. Intuitively, we think of a barrier as a curve (or a family of curves) in
the plane, which the fire cannot cross. Since the wall is constructed in real time,
simultaneously with fire propagation, a restriction on its length must be imposed.
Calling γ (t) the portion of the curve constructed up to time t , if σ is the speed at
which the wall is constructed we thus have the constraint

[
length of γ (t)

] ≤ σ t for every t ≥ 0. (8)
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A more general situation can be considered. Indeed, the construction of the barrier
can be faster in certain places than others. For example, if water is sprayed by an
helicopter on top of the fire, this operation can be carried out more quickly in areas
close to a lake or a water reservoir. To model this fact, we consider a continuous,
strictly positive function ψ : R2 �→ R+. Calling γ (t) ⊂ R

2 the portion of the wall
constructed within time t ≥ 0, we make the following assumptions:

(H1) For every 0 ≤ t1 ≤ t2 one has γ (t1) ⊆ γ (t2).
(H2) Each γ (t) is a rectifiable curve whose length satisfies

∫

γ (t)

ψ dm1 ≤ t for every t ≥ 0. (9)

The first assumption states that, after being constructed a barrier cannot be de-
stroyed, or moved to another place. For a precise mathematical definition of rectifi-
able set we refer to [1]. Roughly speaking, a rectifiable set is the most general type
of one-dimensional set for which a concept of length can be introduced. In the in-
tegral formula (9), m1 denotes the one-dimensional Hausdorff measure, normalized
so that m1(Γ ) yields the usual length of a smooth curve Γ . Notice that 1/ψ(x) is
the speed at which the wall can be constructed, at the location x. In particular, if
ψ(x) ≡ σ−1 is constant, then the constraint (9) reduces to (8). In the above model,
we assume that the construction speed 1/ψ(x) depends only on the spatial location.
It would be of interest to consider a model where this speed depends also on time.
This more general case remains yet to be studied.

Remark 1 In general, the curve γ (t) need not be connected. For example, it may
be the union of two separate barriers, produced by two teams of firemen working
independently at different locations.

A blocking strategy t �→ γ (t) satisfying (H1)–(H2) will be called an admissible
strategy. In addition, we say that the strategy γ is complete if it satisfies

(H3) For every t ≥ 0 there holds
∫

γ (t)

ψ dm1 = t, γ (t) =
⋂

s>t

γ (s). (10)

Moreover, if γ (t) has positive upper density at a point x, i.e. if

lim sup
r→0+

m1(B(x, r) ∩ γ (t))

r
> 0,

then x ∈ γ (t).

Here B(x, r) denotes the open ball centered at x with radius r . As proved in [7],
for every admissible strategy t �→ γ (t) one can construct a second admissible strat-
egy t �→ γ̃ (t) ⊇ γ (t), which is complete.

Remark 2 The assumption (H3) provides some weak regularity for the sets γ (t).
In general, one cannot require that these sets be closed, because the closure of a
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set Γ can have much bigger total length. For example, consider a rectifiable set
Γ ⊂ R

2 containing all points with rational coordinates, and having total length
m1(Γ ) ≤ 1. In this case, the closure Γ is the entire plane, with one-dimensional
measure m1(Γ ) = m1(R

2) = ∞.

When a barrier is being constructed, the set reached by the fire is reduced. This
leads to the definition of the new reachable set

Rγ (t)
.= {

x(t);x(·) absolutely continuous, x(0) ∈ R0,

ẋ(τ ) ∈ F(x(τ)) for a.e. τ ∈ [0, t], x(τ ) /∈ γ (τ) for all τ ∈ [0, t]}. (11)

According to (11), at any time τ the fire cannot cross the portion γ (τ) of the wall
which is already in place. Clearly, the burned set will thus be smaller: Rγ (t) ⊆ R(t)

for every t ≥ 0.
The alternative description of the reachable sets based on the PDE (6) can also

be implemented in this more general case, in the presence of barriers. A charac-
terization of the minimum time function T (·) as the solution to a Hamilton-Jacobi
equation with obstacles was recently proved in [15].

1.3 Blocking and Optimization Problems

In the above setting, two natural problems arise. The first one is concerned with
dynamic control, the second with optimization.

(BP1) Blocking Problem: Given a multifunction F , a construction speed 1/ψ and
a bounded initial set R0, decide whether there exists an admissible strategy t �→
γ (t) such that the corresponding reachable sets Rγ (t) remain uniformly bounded
for all t ≥ 0.

In other words, we ask whether it possible to construct a barrier γ (·) such that

Rγ (t) ⊆ Br for all t > 0 (12)

for some fixed ball Br centered at the origin with radius r . If this is the case, we say
that a blocking strategy exists. Here one should keep in mind that the barrier must
be constructed in real time, simultaneously with the advancement of the fire front
(Fig. 2). Clearly, a blocking strategy can exist only if the construction speed of the
barrier is sufficiently fast, compared with the speed at which fire propagates.

To describe an optimization problem, one needs to introduce a cost functional.
This should take into account:

– The value of the area burned by the fire.
– The cost of building the barrier.

Following [5], we consider two continuous, non-negative functions α,β : R2 �→
R+ and define the functional

J (γ ) =
∫

R
γ∞

α dm2 +
∫

γ∞
β dm1. (13)
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Fig. 2 Left: a “static” blocking problem. Here Γ is the curve of minimum length that entirely
surrounds the set R0. Right: a “dynamic” blocking problem, where the barrier Γ is constructed
at the same time as the set Rγ burned by the fire expands. Here the thick curve γ (t) denotes the
portion of the barrier constructed up to time t , while the shaded region Rγ (t) denotes the set
burned by the fire, at time t

Here m2 denotes the two-dimensional Lebesgue measure, while m1 is the one-
dimensional Hausdorff measure. Moreover, the domains of integration R

γ∞, γ∞ are
defined respectively as

R
γ∞

.=
⋃

t≥0

Rγ (t), γ∞
.=

⋃

t≥0

γ (t). (14)

In our model, α(x) is the value of a unit area of land at the point x, while β(x)

is the cost of building a unit length of wall at the point x. The set R
γ∞ describes the

entire region burned by the fire, while γ∞ is the entire barrier. The first integral on
the right hand side of (13) thus accounts for the value of the land burned by the fire,
while the second integral yields the total cost of constructing the barrier. This leads
to

(OP1) Optimization Problem: Find an admissible strategy t �→ γ (t) for which the
corresponding functional J (γ ) at (13) attains its minimum value.

In the remainder of this paper we discuss several recent results and open ques-
tions, in connection with the above blocking and optimization problems. In particu-
lar, the following issues are of interest:

– existence or non-existence of blocking strategies,
– existence of optimal strategies,
– necessary conditions for optimality,
– sufficient conditions for optimality,
– regularity of optimal barriers,
– numerical computation of optimal barriers.

For future reference, we list a set of assumptions which will be used in the re-
mainder of the paper.

(A1) The initial set R0 is nonempty, open and bounded. Its boundary satisfies
m2(∂R0) = 0.
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(A2) The multifunction F is Lipschitz continuous w.r.t. the Hausdorff distance. For
each x ∈ R

2 the set F(x) is nonempty, closed and convex and contains the
origin in its interior.

(A3) For every x ∈ R
2 one has α(x) ≥ 0, β(x) ≥ β0 > 0, and ψ(x) ≥ ψ0 > 0.

Moreover, α is locally integrable, while β and ψ are both lower semicontinu-
ous.

We recall that the Hausdorff distance between two compact sets X,Y is defined
as

dH (X,Y )
.= max

{
max
x∈X

d(x,Y ),max
y∈Y

d(y,X)
}
,

where

d(x,Y )
.= inf

y∈Y
d(x, y)

and d(x, y)
.= |x − y| is the Euclidean distance on R

2. The multifunction F is Lip-
schitz continuous if there exists a constant L such that

dH

(
F(x),F (y)

) ≤ L · d(x, y),

for every couple of points x, y. For the basic theory of multifunctions and differen-
tial inclusions we refer to [3].

2 An Equivalent Formulation

In its original formulation [5], an admissible strategy was defined as a set-valued
map t �→ γ (t) ⊂ R

2. Indeed, for each t ≥ 0 one needs to describe the portion of
the wall constructed within time t . The subsequent paper [9] showed that the both
the blocking problem and the optimization problem can be reformulated in a sim-
pler way, where an admissible strategy is determined by one single rectifiable set
Γ ⊂ R

2. This approach is particularly useful for the numerical computation of opti-
mal strategies. We review here the main ideas.

Consider a rectifiable set Γ ⊂ R
2 which is complete, in the sense that it contains

all of its points of positive upper density:

lim sup
r→0+

m1(B(x, r) ∩ Γ )

r
> 0 �⇒ x ∈ Γ.

The set reached at time t by trajectories of the differential inclusion (1) without
crossing Γ is then defined as

RΓ (t)
.= {

x(t);x(·) absolutely continuous, x(0) ∈ R0,

ẋ(τ ) ∈ F(x(τ)) for a.e. τ ∈ [0, t], x(τ ) /∈ Γ for all τ ∈ [0, t]}. (15)
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Throughout the following, S will denote the closure of a set S. We say that the
rectifiable set Γ is admissible in connection with the differential inclusion (1) and
the bound on the construction speed (9) if

∫

Γ ∩RΓ (t)

ψ dm1 ≤ t for all t ≥ 0. (16)

Of course, this means that the strategy

t �→ γ (t)
.= Γ ∩ RΓ (t) (17)

is admissible according to (9).
In analogy with (14), we denote by

RΓ∞
.=

⋃

t≥0

RΓ (t) (18)

the entire region burned by the fire. Both the blocking problem (BP1) and the opti-
mization problem (OP1) can now be reformulated in a simpler way, involving one
single barrier Γ .

(BP2) Blocking Problem: Find an admissible rectifiable set Γ such that the corre-
sponding region RΓ∞ is bounded.

(OP2) Optimization Problem: Find an admissible rectifiable set Γ ⊂ R
2 such that

the cost

J (Γ ) =
∫

RΓ∞
α dm2 +

∫

Γ

β dm1 (19)

attains the minimum possible value.

As proved in [9], under the assumptions (A1)–(A3) the two formulations are
equivalent. In particular, if t �→ γ (t) is a complete, optimal strategy for (OP1), then
the rectifiable set

Γ
.=

(⋃

t≥0

γ (t)

)∖(⋃

t≥0

Rγ (t)

)
(20)

is admissible and provides an optimal solution to the minimization problem (OP2).
Viceversa, if the set Γ provides an optimal solution to (OP2), then the strategy γ (·)
in (17) is optimal for (OP1).

Remark 3 For each t ≥ 0, the set γ (t) in (17) is the part of the wall Γ touched by
the fire at time t . This is the portion that actually needs to be put in place within time
t , in order to restrain the fire. The remaining portion Γ \γ (t) can be constructed at a
later time. On the other hand, given a strategy γ (·), the set Γ in (20) consists of the
“useful” part of all walls constructed by γ . Portions of a wall, which are constructed
in a region already reached by the fire, are clearly useless.

Remark 4 By the assumption (A2), the fire propagates with positive speed in every
direction. Hence, for a given initial domain R0, the set RΓ∞ in (18) burned by the
fire can be characterized as the union of all connected components of R2 \ Γ which
intersect R0.
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Given a barrier Γ , we can define the minimum time function as

T Γ (x)
.= inf

{
t;x ∈ RΓ (t)

}
. (21)

A characterization of this function as a solution of a H-J equation with obstacles
was recently provided by De Lellis and Robyr in [15]. Before stating their result,
we recall that a map u : R2 �→ R is in the space SBV of Special functions with
Bounded Variation if

• its distributional derivative Du is a measure,
• decomposing this measure Du = ∇u+Djumpu+DCantoru as the sum of an abso-

lutely continuous part (w.r.t. Lebesgue measure), a jump part, and a Cantor part,
the last component vanishes: DCantoru ≡ 0.

A family SΓ of subsolutions to the H-J equation (6) with Γ as an obstacle can now
be defined as follows. For any t ≥ 0, we shall denote by u∧ t the truncated function

(u ∧ t)(x)
.= min

{
u(x), t

}
. (22)

Definition 1 A function u :R2 �→ [0,∞] is in the set SΓ if

(i) For every t ≥ 0 one has (u ∧ t) ∈ SBV , and the set of jump points Ju∧t ⊆
Supp(Djumpu) is contained inside the barrier. Namely, m1(Ju∧t \ Γ ) = 0.

(ii) u = 0 on R0 and H(x,∇u(x)) ≤ 0 for a.e. x.

As proved in [15], the function T Γ defined by (21) admits the following charac-
terization:

Theorem 1 Let the assumptions (A1)–(A2) hold. Then the minimum time function
T Γ is the unique maximal element of SΓ .

3 Existence of Blocking Strategies

In this section we discuss the existence or nonexistence of an admissible strategy
γ (·) which restrains the fire within a uniformly bounded region.

We recall that a blocking problem is specified by assigning

– the multifunction x �→ F(x) describing the propagation velocity of the fire,
– the set R0, describing the initial location of the fire,
– the function x �→ ψ(x) determining the speed σ = 1/ψ at which the barrier can

be constructed.

For different data, a simple but useful comparison result holds.

Lemma 1 Consider two blocking problems, the first with data (F,R0,ψ), the sec-
ond with data (F̃ , R̃0, ψ̃). Assume that R0 ⊆ R̃0 and

F(x) ⊆ F̃ (x), ψ(x) ≤ ψ̃(x) for all x ∈R
2. (23)
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If a blocking strategy for the second problem exists, then the first problem admits a
blocking strategy as well.

Proof Indeed, let t �→ γ̃ (t) be an admissible strategy for the second problem, such
that the corresponding reachable sets satisfy R̃γ̃ (t) ⊆ Br for some fixed radius r and
all t ≥ 0. Since

∫

γ̃ (t)

ψ dm1 ≤
∫

γ̃ (t)

ψ̃ dm1 ≤ t,

the strategy γ̃ (·) is admissible for the first problem as well. Call Rγ̃ , R̃γ̃ the corre-
sponding sets reached by the fire in the first and second problem, respectively. By
the assumptions,

Rγ̃ (t) ⊆ R̃γ̃ (t) ⊆ Br for all t ≥ 0. �

3.1 The Isotropic Case

We begin by discussing the isotropic case, where the fire propagates with unit speed
in all directions, while the barrier is constructed at a constant speed σ > 0. In other
words, we assume that F(x) = B1 is the closed disc centered at the origin with
radius 1, and the constraint (8) holds.

We observe that, in this isotropic case, the family of solutions of (1) is invariant
under rotations and translations. It is also invariant under a group of rescaling trans-
formations. Namely, consider an initial set R0 and an admissible strategy t �→ γ (t),
and let Rγ (t) be the corresponding reachable sets, defined at (11). Given any λ > 0,
define the rescaled barriers

γ̃ (t)
.= λγ (t/λ)

and the initial set R̃0
.= λR0. It is now easy to check that the blocking strategy γ̃ (·)

is also admissible, and the corresponding sets reached by the fire are given by

Rγ̃ (t) = λRγ (t/λ). (24)

Combining (24) with the comparison result stated in Lemma 1, one can prove
that the solvability of the blocking problem depends only on the speed σ , and not
on the initial set R0.

Lemma 2 Let a construction speed σ > 0 be given. If there exists a (nonempty)
bounded open set R∗

0 for which the blocking problem can be solved, then a blocking
strategy exists for every bounded set R0.

Proof Indeed, by a rescaling followed by a translation, every bounded set R0 can
be mapped into a subset of R∗

0 . The result thus follows from Lemma 1. �
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To understand the solvability of the blocking problem in the isotropic case, it thus
suffices to study the case where

F(x) ≡ B1, R0 = B1, ψ(x) = 1

σ
, (25)

where B1 is the open disc centered at the origin with unit radius. By a comparison
argument it is clear that there must be a constant σ ∗ > 0 such that

– for σ > σ ∗ a blocking strategy exists,
– for σ < σ ∗ blocking strategy does not exists.

At the present date, the exact value of this constant σ ∗ is not known. The analysis
in [5, 10] has shown that σ ∗ ∈ [1,2]. We recall the main results in this direction.

Theorem 2 Let (25) hold. If σ > 2, a blocking strategy exists.

Proof Assuming σ > 2, consider the positive constant λ
.= ( σ 2

4 − 1)−1/2, so that

σ = 2
√

1 + λ2/λ. Using polar coordinates r, θ , let Γ be the closed curve consisting
of two arcs of logarithmic spirals:

Γ
.= {

(r cos θ, r sin θ); r = eλ|θ |, θ ∈ [−π,π]}.
As in (17), let

γ (t)
.= Γ ∩ RΓ (t) = {

(r cos θ, r sin θ); r = eλ|θ |, θ ∈ [−π,π], r ≤ 1 + t
}

be the portion of this barrier reached by the fire within time t . By the choice of λ, an
elementary computation yields m1(γ (t)) = σ t , showing that γ (·) is an admissible
strategy. This strategy solves the blocking problem, because the reachable sets Rγ (t)

are all contained inside the region bounded by the closed curve Γ . �

On the other hand, proving the non-existence of a blocking strategy when σ is
small is a far more difficult task. In this direction, two entirely different arguments
were developed in [5] and [10].

Theorem 3 Let (25) hold. If σ ≤ 1, a blocking strategy does not exist.

With reference to Fig. 3, this result can be motivated by the following intuitive ar-
gument. Assume that, for a construction speed σ > 0, a blocking strategy exists. Let
Γ be the entire barrier constructed by this strategy, and let x̄ ∈ Γ be the point where
the “last brick” of the wall Γ is placed (see Fig. 3). Calling T Γ (·) the minimum
time function in (21), we must have

T Γ (x̄) = sup
x∈Γ

T Γ (x) ≥ m1(Γ )

σ
. (26)

Indeed, the right hand side measures the total time needed to construct the barrier Γ .
If the fire reaches the point x̄ before this barrier is completed, it will spill outside,
hence the reachable sets RΓ (t) will not remain within the bounded set enclosed
by Γ .
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Fig. 3 If the barrier is
constructed at speed σ ≤ 1,
then the fire reaches the point
x̄ and spills outside before the
barrier is completed. Hence
no blocking strategy can exist

We now estimate the left hand side of (26), i.e. the time needed by the fire to
reach the point x̄. Let γ0 be a shortest path joining a point x0 ∈ R0 with x̄ without
crossing Γ . By prolonging this path backwards, we can find a point x1 ∈ Γ and a
path γ1 ⊃ γ0, such that γ1 is the shortest path joining x1 with x̄ without crossing Γ .
An estimate on the length of γ1 can be obtained as follows. Starting from x1, move
along Γ either clockwise or counterclockwise until the point x̄ is reached. This
yields two curves, say γ2 and γ3. The length of these curves satisfies

m1(γ2) + m2(γ3) ≤ 2m1(Γ ). (27)

Hence

T Γ (x̄) = m1(γ0) < m1(γ1) ≤ min
{
m1(γ2),m1(γ3)

} ≤ m1(Γ ). (28)

If σ ≤ 1, the inequality (28) is in contradiction with (26), hence a blocking strategy
cannot exists. For a rigorous proof based on these ideas we refer to [10].

While the blocking problem on the entire plane is not yet fully understood, a
sharp result is available in the case where fire propagation is restricted to a half plane
R+

2
.= {(x1, x2);x2 ≥ 0}. This models a situation where the presence of a river, or

a lake, provides a natural barrier to fire propagation. In this case, the definition of
reachable sets in (11) must be modified, requiring that all trajectories remain in the
half plane R2+:

Rγ (t)
.= {

x(t);x(·) absolutely continuous, x(0) ∈ R0,

ẋ(τ ) ∈ F
(
x(τ)

)
for a.e. τ ∈ [0, t], x(τ ) ∈ R

2+ \ γ (τ) for all τ ∈ [0, t]}.
(29)

The following result was proved in [10].

Theorem 4 Let (25) hold. Then, restricted to the half plane, for every bounded
initial set R0 ⊂ R

2+ a blocking strategy exists if and only if σ > 1.

3.2 The Non-isotropic Case

In a realistic situation, as shown in Fig. 4, the fire propagates in various directions at
different speeds. This happens, for example, if there is wind blowing in a preferred
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Fig. 4 The velocity sets F1 and F2 satisfy the assumptions (30), while the set F3 does not

direction. This case is modeled by replacing the unit disc B1 with more general ve-
locity sets F(x) ⊂ R

2. Sufficient conditions for the existence of a blocking strategy
for the problem (1), (8) were derived in [6].

Theorem 5 Assume that the velocity sets in (1) are independent of x and have the
form

F(x) ≡ F = {
(r cos θ, r sin θ);0 ≤ r ≤ ρ(θ), θ ∈ [−π,π]},

where the function ρ : [−π,π] �→ R+ satisfies

ρ(−θ) = ρ(θ), 0 ≤ ρ
(
θ ′) ≤ ρ(θ) for all 0 ≤ θ ≤ θ ′ ≤ π. (30)

If the wall construction speed satisfies

σ > [vertical width of F ] = 2 max
θ∈[0,π]

ρ(θ) sin θ

then, for every bounded initial set R0, a blocking strategy exists.

Notice that the above result reduces to Theorem 3 in the case where F = B1 is the
closed unit disc. Further results on existence or non-existence of blocking strategies
can be obtained by comparison with the isotropic case, using Lemma 2.

4 Existence of Optimal Strategies

Consider the dynamic blocking problem with dynamics described by the differential
inclusion (1) and by the admissibility condition (9). Let the cost functional be de-
scribed by (13). The following result on the existence of optimal blocking strategies
was proved in [7].

Theorem 6 Let the assumptions (A1)–(A3) hold. If there exists an admissible strat-
egy such that J (γ ) < ∞, then the optimization problem (OP1) admits an optimal
solution.

Proof The proof given in [7] relies on the direct method of the Calculus of Varia-
tions. Consider a minimizing sequence γn(·) of admissible strategies, such that

J (γn) → inf
γ∈A

J (γ ),

where the infimum is taken over the family of all admissible blocking strategies. An
optimal strategy γ ∗(·) is then obtained by taking a suitable limit of the γn(·).
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Fig. 5 Left: the limit of a sequence of bounded rectifiable sets can only be interpreted in measure
sense, and may not yield a rectifiable set. Right: the limit of a sequence of connected rectifiable
sets is a rectifiable set

One should be aware, however, that no regularity is known a priori about the rec-
tifiable sets γn(t). Hence (see Fig. 5) as n → ∞ there is no guarantee that these sets
will converge to a rectifiable set γ ∗(t). A more careful argument requires several
steps. The key idea is to split each set γn(t) into connected components of decreas-
ing length, and take limits componentwise.

1. By possibly enlarging the sets γn(t), is not restrictive to assume that the γn(·)
are complete strategies, i.e., for every t ≥ 0 one has

{
x ∈R

2; lim sup
r↓0

m1(B(x, r) ∩ γn(t))

r
> 0

}
⊆ γn(t) =

⋂

s>t

γn(s).

2. For each rational time τ , let the connected components of γn(τ ) be ordered
according to decreasing length, so that

γn(τ ) = γn,1(τ ) ∪ γn,2(τ ) ∪ γn,3(τ ) ∪ · · ·
with

�n,1(τ ) ≥ �n,2(τ ) ≥ �n,3(τ ) ≥ · · · , �n,i(τ )
.= m1

(
γn,i(τ )

)
.

Notice that, by completeness, each connected component γn,i(τ ) must be closed.
Taking a subsequence, as n → ∞ we can assume that, for every rational time τ ≥ 0,

�n,i(τ ) → �i(τ ), dH

(
γn,i(τ ), γi(τ )

) → 0.

Here dH (·, ·) denotes the Hausdorff distance between compact sets. We then define
γ (τ)

.= ⋃
�i (τ )>0 γi(τ ). Finally, the optimal strategy γ ∗(·) is defined as the comple-

tion of γ (·).
3. Using the lower semicontinuity of the functions ψ,β , for every t ≥ 0 one

obtains
∫

γ ∗(t)
ψ dm1 ≤ lim inf

n→∞

∫

γn(t)

ψ dm1 ≤ t,

∫

γ ∗(t)
β dm1 ≤ lim inf

n→∞

∫

γn(t)

β dm1.

By the first inequality, the limit strategy γ ∗(·) is admissible.
4. The last (and most difficult) step is to prove the inequalities

∫

Rγ ∗
(t)

α dm2 ≤ lim inf
n→∞

∫

Rγn(t)

α dm2.
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These are achieved by showing that, for every t ≥ 0, the sets Rγn(t) are “almost as
big” as the reachable set Rγ ∗

(t). In other words, assume that there exists a trajectory
τ �→ x(τ) for the fire, satisfying (1), and reaching a point x(t) = x̄ without crossing
the wall γ ∗(τ ) for any τ ∈ [0, t]. Then for every n ≥ 1 sufficiently large, there exists
a trajectory τ �→ xn(τ ) reaching a point xn(t) close to x̄ without crossing the barriers
γn(τ ). The proof of this statement requires a careful analysis of solutions to the dif-
ferential inclusion (1), involving both topological and measure-theoretic arguments.
A key step calls for the partition of the plane R2 into a checkerboard, whose squares
Qk are colored either white or black depending on the length m1(γn(τ ) ∪ Qk). For
all details we refer to [7].

An entirely different proof of Theorem 6, based on the analysis of the minimal
time function T Γ in (21), was recently developed in [15]. We review here the main
ideas.

1. Consider a minimizing sequence of admissible barriers Γk , k ≥ 1. Let Tk
.=

T Γk be the corresponding minimum time functions. For every t ≥ 0, the functions
Tk ∧ t are SBV functions, which admit the characterization stated in Theorem 1.

2. Using the Ambrosio-De Giorgi compactness theorem for SBV functions [1],
one obtains a convergent subsequence Tk → U such that

(i) Recalling the notation (22), for every t ≥ 0 one has (U ∧ t) ∈ SBV .
(ii) The jump set of U ∧ t satisfies

∫

J(U∧t)

ψ dm1 ≤ lim inf
k→∞

∫

J(Tk∧t)

ψ dm1 ≤ t. (31)

3. By (31) the rectifiable set Γ , obtained by taking the completion of JU , is an
admissible barrier. Standard lower semicontinuity estimates now yield

∫

RΓ∞
α dm2 ≤ lim inf

k→∞

∫

R
Γk∞

α dm2,

∫

Γ

β dm1 ≤ lim inf
k→∞

∫

Γk

β dm1.

Hence Γ is an optimal barrier. �

5 Necessary Conditions for Optimality

Given the minimization problem (OP2), assume that an optimal barrier Γ exists,
consisting of the union of finitely many, sufficiently regular arcs. By deriving nec-
essary conditions for optimality, one seeks to determine these optimal arcs, as solu-
tions to a family of ODEs together with boundary conditions.

Following a standard procedure in the Calculus of Variations, necessary condi-
tions are obtained by the analysis of perturbations. For the present problem, how-
ever, these conditions take different forms depending on the various types of arcs.
As a preliminary, one must therefore introduce a classification of optimal arcs.

Let Γ be an admissible barrier for the differential inclusion (1), so that (16) holds.
Observe that the presence of this barrier has two effects, namely: (i) it restricts the
fire to the set RΓ∞, consisting of all connected components of R2 \Γ which intersect
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Fig. 6 Here we take R0 = B1, and F(x) ≡ F = B1, the unit disc centered at the origin. The two
thick arcs denote the portion Γ d ⊂ Γ which contributes to slowing down the propagation of the
fire. Notice that T Γ (x) = T (x) for x ∈ Ω0, but T Γ (x) < T (x) for x ∈ Ω1 ∪Ω2. The thick arc next
to the shaded region Ω1 lies in Γ d \ Γ b , while the thick arc next to Ω2 lies in Γ d ∩ Γ b

the initial domain R0, and (ii) within the set RΓ∞, it can slow down the advancement
of the fire.

This fact, illustrated in Fig. 6, can be better described as follows. Given the dif-
ferential inclusion (1) and the barrier Γ , let T Γ (·) be the minimum time function,
defined at (21). Calling T (·) the minimum time function for the original problem
(1) without any barrier, one clearly has

0 ≤ T (x) ≤ T Γ (x) for all x ∈R
2.

We say that a point x ∈ Γ belongs to the delaying portion of the barrier if, by mod-
ifying the set Γ in an arbitrarily small neighborhood of x, one can change the min-
imal time function somewhere else:

Definition 2 The subset Γ d ⊆ Γ of delaying walls is the set of all points x ∈ Γ such
that, for some δ > 0, the following holds. For every ε > 0 there exists an admissible
rectifiable set Γ ′ with Γ ′ \ B(x, ε) = Γ \ B(x, ε) and such that T Γ ′

(y) �= T Γ (y) at
some point y /∈ B(x, δ).

We think of Γ d as a portion of the barrier Γ which contributes to slowing down
fire propagation. In addition, the barrier Γ will contain an outer portion Γ b , sepa-
rating the burned from the unburned region.

Definition 3 The subset Γ b ⊆ Γ of blocking walls is defined as Γ b .= Γ ∩ ∂(RΓ∞).

Remark 5 If Γ is optimal and the construction cost β in (13) is strictly positive, then
Γ = Γ d ∪ Γ b . Indeed, any arc Γ ′ ⊂ Γ contained in the interior of the reachable set
RΓ∞ must be part of Γ d , otherwise the alternative strategy Γ̃

.= Γ \ Γ ′ would also
be admissible, with a smaller cost. On the other hand, as shown in Fig. 6, one can
have Γ d ∩ Γ b �= ∅.
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Fig. 7 Left: a free arc γi , parameterized by arc-length. Here any small perturbation having the
same length (the dotted line) yields another admissible barrier. Hence the optimality conditions are
the same as in isoperimetric problems. Right: a single boundary arc γ1. In this case the admissibility
condition already suffices to determine the arc

Given an admissible barrier Γ , a further classification of arcs can be achieved as
follows. Define the set of times

S .=
{
t ≥ 0;

∫

Γ ∩RΓ (t)

ψ dm1 = t

}
. (32)

These are the times where the admissibility constraint is saturated, i.e. it is satisfied
as an equality. We can further classify points x ∈ Γ by setting

ΓS
.= {

x ∈ Γ ;T Γ (x) ∈ S
}
, ΓF

.= {
x ∈ Γ ;T Γ (x) /∈ S

}
.

Following [5], arcs lying in the subset ΓF will be called free arcs, while arcs lying
in ΓS will be called boundary arcs. Notice that boundary arcs are constructed right
at the edge of the advancing fire front. On the other hand, free arcs represent a
preemptive strategy: they are put in place in advance, at locations which will be
reached by the fire only at a later time.

In the following, for simplicity we discuss necessary conditions for free and
boundary arcs, assuming that the functions β(x) ≡ β and ψ(x) ≡ σ−1 are both
constant. Results valid in the general case can be found in [11]. Furthermore, in
the case of delaying arcs, necessary conditions for optimality were recently derived
in [23].

5.1 Free Arcs

Let Γ be an optimal barrier. Assume that, during a time interval [t0, t1], this optimal
strategy simultaneously constructs N free, blocking arcs: γ1, . . . , γN ⊂ ΓF ∩ Γ b .
Referring to Fig. 7, let s �→ γi(s), s ∈ [ai, bi] be a parameterization of γi in terms of
arc-length, so that |γ̇i (s)| ≡ 1. Consider the unit tangent vector ti (s)

.= γ̇i (s) and let
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ni (s) be the unit normal vector, oriented toward the exterior of the set RΓ∞ burned
by the fire. Let κi(s) be the curvature of γi at the point γi(s), so that

γ̈i (s) = ṫi (s) = κi(s)ni (s). (33)

Since γi is a free arc, every curve γ̃i sufficiently close to γi , with the same length
and the same endpoints, will also yield an admissible barrier. Notice that, if γi is not
a segment, many such perturbations γ̃ can be constructed. The necessary conditions
for optimality thus take the same form as in the classical isoperimetric problem of
the Calculus of Variations.

Theorem 7 Let γ1, . . . , γN ⊂ ΓF ∩ Γ b be free arcs, simultaneously constructed by
an optimal strategy. Then the curvature of each arc is proportional to the local value
α(·) of the land. Indeed, either κi(s) ≡ 0 (hence all arcs are straight segments), or
there exists a Lagrange multiplier λ ≥ 0 such that

(
β + λ

σ

)
κi(s) = α

(
γi(s)

)
for all i ∈ {1, . . . ,N}, ai < s < bi. (34)

In particular, if α(x) ≡ α is a constant, then the curves γi are arcs of circumfer-
ences, all with the same radius r = 1

κ
= β+(λ/σ )

α
. It is important to notice that the

constant λ is the same for every arc γi , i ∈ {1, . . . ,N}. Calling ri(s) = 1/κi(s) the
radius of curvature, one has

λ = (
α
(
γi(s)

) · ri(s) − β
)
σ. (35)

As shown in [11], the Lagrange multiplier λ can be interpreted as the instantaneous
value of time. The next paragraph provides an intuitive explanation of this concept.

Assume that, in an idealized situation, we could “buy time”. In other words,
assume that we had at our disposal a short time interval [t, t + ε] to construct an
additional portion of barrier, while in the meantime the fire front did not advance.
Making the most of this advantage, we could thus reduce the total area eventually
burned by the fire, and hence the total cost. Roughly speaking, we say that V (t) is
the instantaneous value of time (at time t) if

[reduction of the total cost] = ε · V (t) + o(ε),

where the Landau symbol o(ε) denotes a higher order infinitesimal as ε → 0. In
general, one can prove that t �→ V (t) is a nonincreasing function. If at some time
τ the fire propagation is extinguished, then V (t) = 0 for all t > τ . In the situation
described by Theorem 7, the value of time is actually constant: V (t) ≡ λ during the
interval of time when the free arcs γ1, . . . , γN are being constructed.

5.2 A Single Boundary Arc

Next, assume that during a time interval [t1, t2] the optimal strategy constructs one
single boundary arc γ1 ⊂ ΓS ∩ Γ b . We choose a parameterization t �→ γ1(t) of this
arc so that each point γ (t) lies on the level set {x;T Γ (x) = t}.
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In this case, an equation determining the arc γ1 can already be derived from the
admissibility condition (8), without using any optimality condition. Indeed, let T (·)
be the minimum time function and let

h(x)
.= ∣∣∇T (x)

∣∣−1 (36)

be the propagation speed of the fire front in the normal direction, as in (4). We then
have the identities

∣∣γ̇1(t)
∣∣ ≡ σ, T

(
γ1(t)

) = t for all t ∈ [t1, t2]. (37)

With reference to Fig. 7, let θ1 be the angle between the curve γ1 and the level curve
of the minimum time function T (·), at a point x. By (37), one has

σ · sin θ1(x) = h(x). (38)

If the initial point γ1(t1) is known, from (38) one can recover the entire curve γ1.

5.3 Several Boundary Arcs Constructed Simultaneously

We now consider a more general situation where ν boundary arcs γ1, γ2, . . . , γν ∈
ΓS ∩ Γ b are simultaneously constructed, on a time interval t ∈ [t1, t2]. Let each arc
be parameterized by time, so that

T
(
γi(t)

) = t for all t ∈ [t1, t2], i ∈ {1, . . . , ν}. (39)

The admissibility condition (8) yields
ν∑

i=1

∣∣γ̇i (t)
∣∣ = σ for all t ∈ [t1, t2]. (40)

In the present case where ν ≥ 2, the equations (39)–(40) are not enough to uniquely
determine the arcs γi . Additional conditions, derived from the optimality of the bar-
rier Γ , must be used. Following [5], we will show how the problem of determining
these optimal arcs can be reduced to a standard problem of optimal control.

Call w∗
i (t)

.= σ−1|γ̇i (t)| the portion of overall resources devoted to the construc-
tion of the arc γi , at time t . We regard the map t �→ w∗(t) = (w∗

1(t), . . . ,w∗
ν (t)) ∈

Δν as a control function, taking values in the unit simplex

Δν .=
{

(w1, . . . ,wν);wi ≥ 0,

ν∑

j=1

wj = 1

}

. (41)

We now choose a set of coordinates (t, s) �→ xi(t, s), on a neighborhood of each
arc γi . To fix the ideas (see Fig. 8), for each time t let the map s �→ xi(t, s) provide
an arc-length parametrization of the level set {x;T (x) = t}, in a neighborhood of
γi(t). Moreover, let ei = ∂xi (t,s)

∂s
be the unit tangent vector to this level set.

Consider a second admissible strategy t �→ w(t) = (w1(t), . . . ,wν(t)). This will
result in the construction of different arcs t �→ yi(t), determined by the equations

∣∣ẏi (t)
∣∣ = σwi(t), T

(
yi(t)

) = t,
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Fig. 8 Choice of the
coordinates (t, s) in a
neighborhood of the arc γi

with the same initial conditions at time t = t1:

yi(t1) = γi(t1) for all i ∈ {1, . . . , ν}.
In our coordinate system, let yi(t) = xi(t, si(t)). For each i, the scalar function si(·)
will satisfy an ODE of the form

ṡi = fi

(
t, si(t),wi(t)

)
. (42)

Here the right hand side fi is implicitly determined by the scalar constraint
∣∣∣∣
∂xi(t, si)

∂t
+ fi(t, si ,wi)

∂xi(t, si)

∂si

∣∣∣∣ = σwi. (43)

This accounts for the fact that |ẏi | = σwi . We observe that (43) admits solutions
provided that

h
(
xi(t, si)

) ≤ σwi. (44)

Indeed, the speed |ẏi | at which the barrier is constructed cannot be smaller than the
propagation speed of the fire front, in the normal direction. In the case of a strict
inequality, (43) has exactly two solutions, say f −

i < f +
i . Clearly, the correct choice

depends on the relative position of the burned region. For example, if the burned
region locally has the representation {xi(t, s); s < si(t)} (as in Fig. 8), then one
should choose fi = f −

i .
Consider the control system consisting of the ν equations (42), supplemented by

the initial and terminal constraints

xi

(
t1, si(t1)

) = γi(t1), xi

(
t2, si(t2)

) = γi(t2) i = 1, . . . , ν. (45)

For this system, consider the optimization problem

minimize: Λ(w)
.=

ν∑

i=1

∫ b

a

Li

(
t, si(t),wi(t)

)
dt, (46)

where the running costs have the form

Li(t, si ,wi)
.= βσwi(t) +

∫ si

s̄i

h
(
xi(t, ξ)

)
α
(
xi(t, ξ)

)
dξ, (47)

with h as in (36). The minimum in (46) is sought among all control functions w :
[t1, t2] �→ Δν . Notice that the first term in (47) accounts for the cost of building
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the wall, while the second term is related to the value of the burned area. Here the
choice of the constants s̄i is immaterial, because it does not affect the minimizers.

The system of ODEs (42) and boundary conditions (45), together with the inte-
gral functional at (46)–(47) yields an optimal control problem in standard form. The
optimal control t �→ w(t) = (w∗

1(t), . . . ,w∗
ν (t)) thus satisfies the Pontryagin maxi-

mum principle [8, 16, 22]. In turn, this yields a set of necessary conditions for the
optimal arcs γi .

Theorem 8 Let Γ be an optimal barrier. Let γ1, . . . , γν ⊂ ΓS ∩ Γ b be boundary
arcs simultaneously constructed during the time interval [t1, t2], parameterized as
in (39). Call ei (t) the unit vector tangent to the boundary of the reachable set R(t)

at the point γi(t), oriented toward the exterior of RΓ∞ (see Fig. 8).
Then there exists a constant λ0 ≥ 0 and nontrivial solutions to the adjoint equa-

tions

ṗi(t) = 〈γ̇i (t), ėi (t)〉
〈γ̇i (t), ei (t)〉pi(t) − λ0h

(
γi(t)

)
α
(
γi(t)

)
(48)

for i = 1, . . . , ν, such that the functions

Vi(t)
.=

〈
γ̇i (t)

|γ̇i (t)| , ei (t)

〉−1

· pi(t) (49)

all coincide, at each time t ∈ [t1, t2].

A proof of this theorem was first obtained in [5]. For a more general result, valid
for general functions β(·) and ψ(·), we refer to [11].

With reference to Fig. 8, the inner product in (48) is related to the angle θi be-
tween the barrier and the fire front. Namely

〈
γ̇i (t)

|γ̇i (t)| , ei (t)

〉
= cos θi(t).

According to Theorem 8, the quantity

V (t)
.=

(
pi(t)

cos θi(t)
− β

)
σ (50)

is independent of i = 1, . . . , ν. For a suitable choice of the boundary conditions for
the pi in (48), the function V (·) can be interpreted as the instantaneous value of
time [11].

5.4 Necessary Conditions at Junctions

The optimality conditions derived in the previous subsections provide a set of ODEs
satisfied by the optimal arcs. In order to uniquely determine these arcs, one needs
suitable boundary conditions. These can be obtained by studying what happens at
points where arcs originate, or at junctions between arcs of different types. Referring
to Fig. 9, we recall here two results proved in [5].
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Fig. 9 Left: The boundary arcs γ1, γ2 originate at the same point P . They can be replaced by a
new admissible barrier (the thick dotted line), reducing the total cost. Right: the free arc γ1 and
the boundary arc γ2 join non-tangentially at the point Q. They can again be replaced by a new
admissible barrier (the thick dotted line), reducing the total cost. Here the thin lines are the level
set of the minimum time function, while the arrows give the direction of fire propagation

• A barrier containing two boundary arcs γ1, γ2 originating from the same point
cannot be optimal.

• If an optimal barrier contains a free arc γ1 and a boundary arc γ2 with a point in
common, then they must be tangent at the point of junction.

Further necessary conditions, valid at junction points, can be found in [11]. In
particular, at the time t when a free arc joins a boundary arc, the two expressions for
the instantaneous value of time (35) and (50) coincide.

6 Sufficient Conditions for Optimality

We shall consider the isotropic case, where the fire is initially burning on the open
unit disc B1 ⊂ R

2 and propagates with unit speed in all directions. Let a construc-
tion speed σ > 2 and constant costs α > 0, β ≥ 0 be given. As suggested by the
necessary conditions derived in [5, 11], the optimal barrier Γ ∗ which minimizes the
cost J in (19) should consist of an arc of circumference and two arcs of logarithmic
spirals.

We now describe more precisely this barrier (Fig. 10). For every τ > 0 small
enough, there exists a unique arc of circumference γ̃τ with the following properties:

(i) γ̃τ is symmetric w.r.t. the x1-axis and has length m1(γ̃τ ) = στ ,
(ii) the endpoints P −,P + lie on the circumference {|x| = 1 + τ },

(iii) the angle α between the two circumferences at P − and at P + satisfies sinα =
2/σ .

In addition, consider the two arcs of logarithmic spirals γ +
τ , γ −

τ , defined as

γ ±
τ = {

(r cos θ,±r sin θ); r = r0e
λθ , r ≥ 1 + τ, θ ≤ π

}
. (51)

Here λ =
√

4
σ 2−4

, while the constant r0 is chosen so that the two arcs start from the

points P +,P − respectively. The above choice of the constants α,λ implies that the
arcs γ ±

τ meet the circular arc γ̃τ tangentially at P ±.
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Fig. 10 Construction of the
barrier Γτ = γ̃τ ∪ γ +

τ ∪ γ −
τ

For every fixed τ , the union Γτ
.= γ̃τ ∪ γ +

τ ∪ γ −
τ of these three arcs is a simple

closed curve. By minimizing the cost J (Γτ ) over the scalar parameter τ , we single
out the curve

Γ ∗ .= Γτ∗ , τ ∗ .= arg min
τ>0

J (Γτ ). (52)

At present, it is not known whether the barrier Γ ∗ is a global minimizer. A partial
result in this direction was recently proved in [12].

Theorem 9 The barrier Γ ∗ is optimal within the family of all admissible Jordan
curves with finite length.

In other words, if Γ is any simple closed curve with length m1(Γ ) < ∞, which
is admissible according to (8), then

J
(
Γ ∗) ≤ J (Γ ). (53)

In fact, one can show that the inequality in (53) is strict, except when Γ is the image
of Γ ∗ by a rotation around the origin. Observe that, if the construction cost β is
strictly positive, then any optimal curve must have finite length.

Referring to Fig. 11, we sketch the three main steps in the proof of Theorem 9.

Fig. 11 The mains steps in the proof of Theorem 9
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Proof 1. Consider any admissible, simple closed curve Γ . Thinking of Γ as a wall
which blocks the light, let Ω ⊂ R

2 be the set of points illuminated by a light source
located at the origin 0 ∈R

2. Then, using techniques developed in [2], one can show
that the boundary Γ ′ .= ∂Ω is also an admissible, simple closed curve. Moreover,
J (Γ ′) ≤ J (Γ ).

2. By the previous construction, the domain Ω is star-shaped. Indeed, it can be
represented in polar coordinates as

Ω = {
(r cos θ, r sin θ); r ≤ r(θ), θ ∈ [−π,π]} (54)

for some (possibly discontinuous) function θ �→ r(θ) having bounded variation. As
in [14], let θ �→ r̃(θ) be the symmetric, non-decreasing rearrangement of the map
θ �→ r(θ). Consider the symmetric domain

Ω̃ = {
(r cos θ, r sin θ); r ≤ r̃(θ), θ ∈ [−π,π]}. (55)

The boundary Γ ′′ .= ∂Ω̃ of this new domain is an admissible, simple closed curve.
Moreover, J (Γ ′′) ≤ J (Γ ′).

3. Since the barrier Γ ′′ is optimal within the class of simple closed curves, it
must satisfy the necessary conditions stated in Sect. 5. As a result, we conclude that
the symmetric curve Γ ′′ is a concatenation of

– free arcs, which must be arcs of circumferences
– boundary arcs, which must be arcs of logarithmic spirals of the form

{
(r cos θ,±r sin θ); r = ceλθ , r ∈ [r1, r2]

}
, with λ =

√
4

σ 2 − 4
.

Moreover, each arc must join tangentially with the previous one.
A simple geometric argument now shows that the curves Γτ considered at (52),

and their images under rigid rotations around the origin, are the only symmetric
curves with θ �→ r(θ) nondecreasing, which satisfy all these necessary conditions.
This concludes the proof. For all details we refer to [12]. �

7 Numerical Computation of Optimal Barriers

A first algorithm for the computation of optimal barriers was developed in [9]. This
construction relies on two basic assumptions about the optimal barrier, namely:

(i) The optimal barrier Γ is a simple closed curve, which can be represented as

Γ = {
(r cos θ, r sin θ); r = ρ(θ)

}

for some positive continuous function ρ(·). In particular, the corresponding set
RΓ∞ burned by the fire is star-shaped.

(ii) The optimal barrier does not contain delaying arcs. Hence, restricted to the set
RΓ∞ enclosed by the curve Γ , the minimal time function satisfies T Γ (x) =
T (x). In particular, the function T (·) can be determined in advance, before the
computation of Γ .



Dynamic Blocking Problems for a Model of Fire Propagation 35

Fig. 12 A polygonal
approximation to the optimal
barrier

Under the assumptions (i)–(ii), barriers can be approximated by polygonal curves,
whose vertices lie on a family of rays through the origin (see Fig. 12). To define
one of these approximations, we fix an integer n ≥ 3 and consider closed polygo-
nal curves P having vertices at points Qk = (ρk coskθ,ρk sinkθ), 0 ≤ k ≤ n. Here
ρ0, . . . , ρn are positive numbers with ρ0 = ρn, while θ

.= 2π/n. We call Sk the edge
of the polygonal joining Qk−1 with Qk . Its length is computed by

‖Sk‖ =
√

ρ2
k + ρ2

k−1 − 2ρkρk−1 cos θ.

Setting ρ
.= (ρ1, . . . , ρn), the area enclosed by the polygonal is computed as

A(ρ) = 1

2
sin θ ·

n∑

k=1

ρkρk−1,

while the total length is

L(ρ) =
n∑

k=1

√
ρ2

k + ρ2
k−1 − 2ρkρk−1 cos θ.

Moreover, the minimum time needed by the fire to reach some point on the segment
Sk is defined as

T (Sk)
.= inf

{
T (x);x ∈ Sk

}
.

A discrete approximation to the constrained optimization problem (19), (8) with
α(x) ≡ α and β(x) ≡ β constant, is given by

min
ρ

{
α · A(ρ) + β · L(ρ)

}
, (56)

subject to the family of constraints
m∑

k=1

‖Sik‖ − σ · T (Sim) ≤ 0 for all m = 1,2, . . . , n. (57)

Here (i1, i2, . . . , in) is some permutation of the indices (1,2, . . . , n) such that

T (Si1) ≤ T (Si2) ≤ · · · ≤ T (Sin).
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We denote by Fρ the collection of all such possible permutations, for a given ρ.
Observe that, if the constraints (57) are satisfied for one permutation α ∈ Fρ , then
they are necessarily satisfied for every permutation β ∈ Fρ .

In a first step, the algorithm constructs a local minimum for the finite-dimensional
problem (56)–(57). In the next step, the number of vertices is doubled, replacing
θ with θ/2. A further minimization process is carried out, starting with the local
minimizer constructed at the previous step, etc. . . .

The results of some numerical experiments using this algorithm are reported
in [9].

8 Open Problems

8.1 Isotropic Blocking Problem

On the entire plane R
2, assume that F(x) ≡ B1, so that the fire propagates with

unit speed in all directions. Let the barrier be constructed at speed σ > 0. For any
(nonempty, open, bounded) initial set R0, it is then known that a blocking strategy
exists if σ > 2, and does not exist if σ ≤ 1. The case 1 < σ ≤ 2 remains open.
A reasonable conjecture is that, if σ ≤ 2, then the fire cannot be blocked. In this
direction, the following observations may be useful.

– As shown in Sect. 3, it is not restrictive to assume that the initial set R0 ⊂ R
2 is

the unit disc centered at the origin.
– If the barrier Γ is a simple closed curve, then the estimate (27) can be replaced

by

m1(γ2) + m1(γ3) ≤ m1(Γ ).

The same is true if Γ is the union of finitely many simple closed curves. In this
case, the argument given at (26)–(28) already implies that the construction speed
for a blocking strategy must be σ > 2. We conclude that, if a blocking strategy
exists for σ ≤ 2, the barrier Γ must also contain purely delaying arcs.

– Since the fire front propagates with unit speed in the normal direction, to be ef-
fective any boundary arc γi must be constructed at speed σi(t) > 1. Indeed, let
t �→ γi(t) be a parameterization of this arc according to the construction time, so
that T Γ (γi(t)) = t . Then (see Fig. 8), the angle θi between the barrier and the
level curve {x;T Γ (x) = t} is determined by

∣
∣γ̇i (t)

∣
∣ = σi(t) = 1

sin θi(t)
.

If σ ≤ 2, then only one boundary arc can be constructed, at any given time.

For example, assume that the initial set R0 is the unit disc. Then the construction
of one single arc γ1 along the edge of the advancing fire front produces a spiraling
curve (see Fig. 13). As shown in [6], this curve eventually closes on itself, blocking
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Fig. 13 Left: if the fire front advances with unit speed, and the barrier γ1 is constructed at speed σ ,
then the angle θ is determined by sin θ = 1/σ . Right: a fire starting on the unit disc is encircled by a
spiraling barrier. Shaded areas denote regions reached by the fire at various times. The first portion
of the wall, between Q0 and Q1, is exactly a logarithmic spiral. This is a delaying arc. For example,
the minimum time needed to reach the point P without crossing Γ is T Γ (P ) > T (P ) = |P | − 1.
As proved in [6], if σ > σ † ≈ 2.614430844, then the spiraling barrier eventually closes on itself

the fire, only if the construction speed is |γ̇1(t)| = σ > σ † = 2.614430844 . . . . More
precisely, the constant σ † is here defined as

σ † .= max
λ>0

1

cos θ(λ)
,

where λ �→ θ(λ) ∈ [2π,5π/2] is the function implicitly defined by

eλθ cos θ − 1 = λeλθ sin θ.

In particular, this analysis shows that a strategy constructing a single spiraling wall
cannot block the fire if σ ≤ 2.

For additional remarks on this problem, and a cash prize for its solution, one may
look at the author’s web page: http://www.math.psu.edu/bressan/

8.2 Existence of Optimal Strategies

The existence theorem proved in [7, 15] already covers very general situations.
However, it relies on one key assumption: every velocity set F(x) should contain a
neighborhood of the origin. In other words, the fire should propagate with strictly
positive speed in every direction. This assumption guarantees the Lipschitz continu-
ity of the minimum time function T Γ , away from the barrier.

It is not known whether Theorem 6, on the existence of optimal strategies, re-
mains valid if we only assume that 0 ∈ F(x) for every x ∈R

2. This extension would
cover situations where the wind pushes the fire only in one direction. For example,
consider the “ice-cream cone” case:

F(x) = {
(λx1, λx2); (x1 − 2)2 + x2

2 ≤ 1, λ ∈ [0,1]} ⊂ R
2.

http://www.math.psu.edu/bressan/
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8.3 Sufficient Conditions for Optimality

At the present date, not one single example is known of a blocking strategy which
is provably optimal.

In the isotropic case, according to Theorem 9, the barrier Γ ∗ consisting of an
arc of circumference and two arcs of logarithmic spirals is the one which encloses
the minimum area, among all simple closed curves satisfying the admissibility con-
dition (16). One conjectures that Γ ∗ is the global minimizer among all admissible
curves, regardless of their topological structure.

In the classical setting of Calculus of Variations and optimal control, sufficient
conditions for optimality are obtained by studying the value function [4, 8, 13, 16].
If the state space is finite-dimensional, this value function can be often characterized
as the unique (viscosity) solution to a Hamilton-Jacobi PDE.

For a dynamic blocking problem, the “state” of the system at time t ≥ 0 can be
described by the couple (Rγ (t), γ (t)). Here Rγ (t) is the set burned by the fire at
time t , as in (11), while γ (t) is the portion of the barrier constructed up to time t .
One can now introduce a value function: V = V (R0, γ0), defined as the infimum
among the costs of all admissible strategies, assuming that at the initial time t = 0
the fire is burning on the region R0 and a barrier is already in place along the recti-
fiable set γ0.

We remark that the space of all couples (R0, γ0), where R0 ⊂ R
2 is Lebesgue

measurable and γ0 ⊂ R
2 is a rectifiable set, does not have the structure of a vector

space. A characterization of the value function V in terms of a PDE is out of the
question. Yet, it may be of interest to study some properties of the function V ,
possibly related to a dynamic programming principle.

An alternative approach relies on the observation that the couple (Rγ (t), γ (t))

can be recovered from the truncated minimum time function x �→ min{T γ (x), t},
which is a Special function of Bounded Variation. One may thus consider a corre-
sponding value function V (·) defined on elements of the functional space SBV.

8.4 Regularity

According to the existence results proved in [7, 15], under the general hypotheses
of Theorem 6 the optimal barrier Γ ∗ is a complete rectifiable set, which can be
decomposed as

Γ ∗ =
(⋃

i≥1

Γi

)
∪ Γ0.

Here the countably many sets Γi are disjoint, compact, and connected, while Γ0 is
a set with 1-dimensional Hausdorff measure m1(Γ0) = 0.

Unfortunately, the above result does not allow us to derive any of the necessary
conditions for optimality in [5, 11, 23], which require stronger regularity assump-
tions. Indeed, at the present date these optimality conditions are known to hold only
for an optimal barrier which is the union of finitely many regular arcs.
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It would be of interest to close this gap, proving that any optimal barrier Γ ∗ must
satisfy additional regularity conditions. In particular, assuming that the initial set R0
has a smooth boundary and the cost functions α(·), β(·) are smooth, the following
questions naturally arise:

• What is the regularity of an optimal barrier? Is Γ ∗ the union of finitely many C1

arcs?
• If R0 is connected, does this imply that the optimal barrier Γ ∗ is connected?
• Does the optimal barrier contain purely delaying arcs γi ⊂ Γ d \ Γ b?

All the above problems are open even in the case where α,β are constant, and R0
is a convex set. In particular, no example is known of an optimal barrier containing
a purely delaying arc.

Results in this direction would be relevant also toward an understanding of the
isotropic blocking problem. Indeed, for a given speed σ ≤ 2, assume that a blocking
strategy exists. Then there exists also an optimal blocking strategy, minimizing the
total area of the burned region. Hence the search for blocking strategies can be
restricted to barriers which satisfy necessary optimality conditions. Of course, this
approach is useful only if some a priori regularity of optimal barriers is known, in
order to apply the necessary conditions in [5, 11, 23].
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