
1
Introduction – The Nature of

High-Performance Computation

The need for speed. Since the beginning of the era of the modern digital com-
puter in the early 1940s, computing power has increased at an exponential
rate (see Fig. 1). Such an exponential growth is predicted by the well-known
“Moore’s Law,” first advanced in 1965 by Gordon Moore of Intel, asserting
that the number of transistors per inch on integrated circuits will double every
18 months. Clearly there has been a great need for ever more computation. This
need continues today unabated. The calculations performed by those original
computers were in the fields of ballistics, nuclear fission, and cryptography.
And, today these fields, in the form of computational fluid dynamics, advanced
simulation for nuclear testing, and cryptography, are among computing’s Grand
Challenges.

In 1991, the U.S. Congress passed the High Performance Computing Act,
which authorized The Federal High Performance Computing and Communi-
cations (HPCC) Program. A class of problems developed in conjunction with
the HPCC Program was designated “Grand Challenge Problems” by Dr. Ken
Wilson of Cornell University. These problems were characterized as “funda-
mental problems in science and engineering that have broad economic or scien-
tific impact and whose solution can be advanced by applying high performance
computing techniques and resources.” Since then various scientific and engi-
neering committees and governmental agencies have added problems to the
original list. As a result, today there are many Grand Challenge problems in en-
gineering, mathematics, and all the fundamental sciences. The ambitious goals
of recent Grand Challenge efforts strive to

� build more energy-efficient cars and airplanes,
� design better drugs,
� forecast weather and predict global climate change,
� improve environmental modeling,

3

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

4 1 Introduction – The Nature of High-Performance Computation

20 30 40 50 60

1e
−0

1
1e

+
01

1e
+

03
1e

+
05

1e
+

07

Years since 1940

M
F

LO
P

S

Fig. 1. Computational speed in MFLOPS vs. year.

� improve military systems,
� understand how galaxies are formed,
� understand the nature of new materials, and
� understand the structure of biological molecules.

The advent of high-speed computation has even given rise to computational
subfields in some areas of science and engineering. Examples are computa-
tional biology, bioinfomatics, and robotics, just to name a few. Computational
chemistry can boast that in 1998 the Noble Prize in chemistry was awarded to
John Pope and shared with Walter Kohn for the development of computational
methods in quantum chemistry.

And so it seems that the more computational power we have, the more use we
make of it and the more we glimpse the possibilities of even greater computing
power. The situation is like a Moore’s Law for visionary computation.

1.1 Computing Hardware Has Undergone Vast Improvement

A major factor in the exponential improvement in computational power over
the past several decades has been through advances in solid-state physics: faster
switching circuits, better heat control, faster clock rates, faster memory. Along
with advances in solid-state physics, there has also been an evolution in the
architecture of the computer itself. Much of this revolution was spearheaded by
Seymour Cray.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

1.1 Computing Hardware Has Undergone Vast Improvement 5

Fig. 2. Central processing unit.

Many ideas for parallel architectures have been tried, tested, and mostly dis-
carded or rethought. However, something is learned with each new attempt, and
the successes are incorporated into the next generation of designs. Ideas such as
interleaved memory, cache memory, instruction look ahead, segmentation and
multiple functional units, instruction piplining, data pipelining, multiprocess-
ing, shared memory, distributed memory have found their way into the various
catagories of parallel computers available today. Some of these can be incorpo-
rated into all computers, such as instruction look ahead. Others define the type
of computer; thus, vector computers are data pipelined machines.

The von Neumann Computer

For our purposes here, a computer consists of a central processing unit or CPU,
memory for information storage, a path or bus over which data flow and a
synchronization mechanism in the form of a clock. The CPU itself consists of
several internal registers – a kind of high-speed memory, a program counter
(PC), a stack pointer (SP), a decode unit (DU), and an arithmetic and logic unit
(ALU) (see Fig. 2). A program consists of one or more contiguous memory
locations, that is, chunks of memory, containing a code segment including
subroutines, a data segment for the variables and parameters of the problem, a
stack segment, and possibly additional memory allocated to the program at run
time (see Fig. 3).

The various hardware elements are synchronized by the clock whose fre-
quency f characterizes the speed at which instructions are executed. The

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

6 1 Introduction – The Nature of High-Performance Computation

Fig. 3. Organization of main memory.

frequency is the number of cycles of the clock per second measured in
megaHertz (mHz), 1 mHz = 106 Hz or gigaHertz, (gHz), 1 gHz = 109 Hz. The
time t for one clock cycle is the reciprocal of the frequency

t = 1

f
.

Thus a 2-ns clock cycle corresponds to a frequency of 500 mHz since 1 ns =
10−9 s and

f = 1

2 × 10−9
= 0.5 × 109 = 500 × 106.

If one instruction is completed per clock cycle, then the instruction rate, IPS,
is the same as the frequency. The instruction rate is often given in millions of

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

1.1 Computing Hardware Has Undergone Vast Improvement 7

instructions per second or MIPS; hence, MIPS equals megaHertz for such a
computer.

The original computer architecture, named after John von Neumann, who
was the first to envision “stored programming” whereby the computer could
change its own course of action, reads instructions one at a time sequentially and
acts upon data items in the same way. To gain some idea of how a von Neumann
computer works, we examine a step-by-step walk-through of the computation
c = a + b.

Operation of a von Neumann Computer: c = a + b Walk-Through

On successive clock cycles:

Step 1. Get next instruction
Step 2. Decode: fetch a
Step 3. Fetch a to internal register
Step 4. Get next instruction
Step 5. Decode: fetch b
Step 6. Fetch b to internal register
Step 7. Get next instruction
Step 8. Decode: add a and b (result c to internal register)
Step 9. Do the addition in the ALU (see below)
Step 10. Get next instruction
Step 11. Decode: store c (in main memory)
Step 12. Move c from internal register to main memory

In this example two floating point numbers are added. A floating point num-
ber is a number that is stored in the computer in mantissa and exponent form
(see Section 4.1); integer numbers are stored directly, that is, with all mantissa
and no exponent. Often in scientific computation the results materialize after
a certain number of floating point operations occur, that is, additions, subtrac-
tions, multiplications, or divisions. Hence computers can be rated according to
how many floating point operations per second, or FLOPS, they can perform.
Usually it is a very large number and hence measured in mega-FLOPS, writ-
ten MFLOPS, or giga-FLOPS written GFLOPS, or tera-FLOPS (TFLOPS). Of
course, 1 MFLOPS = 106 FLOPS, 1 GFLOPS = 103 MFLOPS = 109 FLOPS,
and 1 TFLOPS = 1012 FLOPS.

The addition done at step 9 in the above walk-through consists of several steps
itself. For this illustration, assume 0.9817 × 103 is to be added to 0.4151 × 102.

Step 1. Unpack operands: 9817 | 3 4151 | 2
Step 2. Exponent compare: 3 vs. 2

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

8 1 Introduction – The Nature of High-Performance Computation

Step 3. Mantissa align: 9817 | 3 0415 | 3
Step 4. Mantissa addition: 10232 | 3
Step 5. Normalization (carry) check: 1 0232 | 3
Step 6. Mantissa shift: 1023 | 3
Step 7. Exponent adjust: 1023 | 4
Step 8. Repack result: 0.1023 × 104

So if the clock speed is doubled, then each computer instruction takes place
in one half the time and execution speed is doubled. But physical laws limit the
improvement that will be possible this way. Furthermore, as the physical limits
are approached, improvements will become very costly. Fortunately there is
another possibility for speeding up computations, parallelizing them.

Parallel Computing Hardware – Flynn’s Classification

An early attempt to classify parallel computation made by Flynn is somewhat
imprecise today but is nevertheless widely used.

Single-data Multiple-data
stream streams

Single
instruction von Neumann SIMD

Multiple
instructions MIMD

As we saw above, the original computer architecture, the von Neumann
computer, reads instructions one at a time sequentially and acts upon data in
the same way; thus, they are single instruction, single data, or SISD machines.

An early idea for parallelization, especially for scientific and engineering
programming, has been the vector computer. Here it is often the case that the
same instruction is performed on many data items as if these data were a single
unit, a mathematical vector. For example, the scalar multiplication of a vector
multiplies each component by the same number. Thus a single instruction is
carried out on multiple data so these are SIMD machines. In these machines
the parallelism is very structured and fine-grained (see Section 1.3).

Another term for this kind of computation is data parallelism. The parallelism
stems from the data while the program itself is entirely serial. Mapping each
instruction of the program to its target data is done by the compiler. Vector
compilers automatically parallelize vector operations, provided the calculation
is vectorizable, that is, can be correctly done in parallel (see Section 3.6).

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

1.2 SIMD–Vector Computers 9

Modern languages incorporate special instructions to help the compiler with the
data partitioning. For example, the following statements in High Performance
Fortran (HPF)

real x(1000)

!HPF$ PROCESSORS p(10)

!HPF$ DISTRIBUTE x(BLOCK) ONTO p

invokes 10 processors and instructs the 1,000 elements of x to be distributed
with 1,000/10 = 100 contiguous elements going to each.

Another approach to SIMD/data partitioned computing, massively parallel
SIMD, is exemplified by the now extinct Connection Machine. Here instruc-
tions are broadcast (electronically) to thousands of processors each of which is
working on its own data.

True, flexible, parallel computation comes about with multiple independent
processors executing, possibly different, instructions at the same time on differ-
ent data, that is, multiple instruction multiple data or MIMD computers. This
class is further categorized according to how the memory is configured with
respect to the processors, centralized, and shared or distributed according to
some topology.

We consider each of these in more detail below.

1.2 SIMD–Vector Computers

In the von Neumann model, much of the computer hardware is idle while other
parts of the machine are working. Thus the Decode Unit is idle while the ALU
is calculating an addition for example. The idea here is to keep all the hard-
ware of the computer working all the time. This is parallelism at the hardware
level.

Operation of a Vector Computer – Assembly-Line Processing

First the computer’s hardware is modularized or segmented into functional
units that perform well-defined specialized tasks (see, for example, the Cray
architecture diagram Fig. 16). The vector pipes are likewise segmented. Figure 4
shows the segments for the Cray add pipe.

It is desirable that the individual units be as independent as possible. This
idea is similar to the modularization of an assembly plant into stations each of
which performs a very specific single task. Like a factory, the various detailed
steps of processing done to the code and data of a program are formalized, and
specialized hardware is designed to perform each such step at the same time as

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

10 1 Introduction – The Nature of High-Performance Computation

a + b

b

a Steer-

ing

module

Sign

control

Ex-

ponent

comp-

are

Align-

ment

shift

Add

Normal-

ize

count

Normal-

ize

shift

Steer-

ing

module

Fig. 4. A block diagram of the Cray add unit.

all the other steps. Then the data or code is processed step by step by moving
from segment to segment; this is pipelining.

In our model of a computer, some of the main units are the fetch and store
unit, the decode unit, and the arithmetic and logic unit. This makes it possible,
for example, for the instructions of the program to be fetched before their turn
in the execution sequence and held in special registers. This is called caching,
allowing for advance decoding. In this way, operands can be prefetched so as
to be available at the moment needed. Among the tasks of the decode unit is to
precalculate the possible branches of conditional statements so that no matter
which branch is taken, the right machine instruction is waiting in the instruction
cache.

The innovation that gives a vector computer its name is the application of
this principle to floating point numerical calculations. The result is an assembly
line processing of much of the program’s calculations. The assembly line in
this case is called a vector pipe.

Assembly line processing is effective especially for the floating point oper-
ations of a program. Consider the sum of two vectors x + y of length 200. To
produce the first sum, x1 + y1, several machine cycles are required as we saw
above. By analogy, the first item to roll off an assembly line takes the full time
required for assembling one item. But immediately behind it is the second item
and behind that the third and so on. In the same way, the second and subsequent
sums xi + yi , i = 2, . . . , 200, are produced one per clock cycle. In the next
section we derive some equations governing such vector computations.

Example. Calculate yi = xi + x2
i for i = 1, 2, . . . , 100

loop i = 1...100

yi = xi*(1+xi) or? yi = xi + xi * xi
end loop

Not all operations on mathematical vectors can be done via the vector pipes. We
regard a vector operation as one which can. Mathematically it is an operation on
the components of a vector which also results in a vector. For example, vector
addition x + y as above. In components this is zi = xi + yi , i = 1, . . . , n, and
would be coded as a loop with index i running from 1 to n. Multiplying two

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

1.2 SIMD–Vector Computers 11

Table 1. Vector timing data∗

Type of arithmetic operation Time in ns for n operations

Vector add/multiply/boolean 1000 + 10n
Vector division 1600 + 70n
Saxpy (cf. pp 14) 1600 + 10n
Scalar operation∗∗ 100n
Inner product 2000 + 20n
Square roots 500n

∗ For a mid-80’s memory-to-memory vector computer.
∗∗ Except division, assume division is 7 times longer.

vectors componentwise and scalar multiplication, that is, the multiplication
of the components of a vector by a constant, are other examples of a vector
operation.

By contrast, the inner or dot product of two vectors is not a vector operation in
this regard, because the requirement of summing the resulting componentwise
products cannot be done using the vector pipes. (At least not directly, see the
exercises for pseudo-vectorizing such an operaton.)

Hockney’s Formulas

Let tn be the time to calculate a vector operation on vectors of length of n. If s
is the number of clock cycles to prepare the pipe and fetch the operands and l
is the number of cycles to fill up the pipe, then (s + l)τ is the time for the first
result to emerge from the pipe where τ is the time for a clock cycle. Thereafter,
another result is produced per clock cycle, hence

tn = (s + l + (n − 1))τ,

see Table 1.
The startup time is (s + l − 1)τ in seconds. And the operation rate, r , is

defined as the number of operations per unit time so

r = n

tn
.

Theoretical peak performance, r∞, is one per clock cycle or

r∞ = 1

τ
.

Thus we can write

r = r∞
1 + s+l−1

n

.

This relationship is shown in Fig. 5.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

12 1 Introduction – The Nature of High-Performance Computation

One-half maximum rate

Operation

Vector length, n

rate
r

%
Maximum

0

20

40

60

80

100

0 50 100 150 200

Fig. 5. Operation rate vs. vector length.

Hockney’s n1/2 value is defined as the vector length for achieving one-half
peak performance, that is,

1

2τ
= n1/2

(s + l − 1 + n1/2)τ
.

This gives

n1/2 = s + l − 1

or equal to the startup time. Using n1/2, the operation rate can now be written

r = r∞
1 + n1/2

n

.

Hockney’s break-even point is defined as the vector length for which the
scalar calculation takes the same time as the vector calculation. Letting r∞,v

denote the peak performance in vector mode and r∞,s the same in scalar mode,
we have

vector time for n = scalar time for n

s + l − 1 + nb

r∞,v
= nb

r∞,s
.

Solving this for nb gives

nb = n1/2
r∞,v

r∞,s
− 1

.

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-86478-7 - An Introduction to Parallel and Vector Scientific Computing
Ronald W. Shonkwiler and Lew Lefton
Excerpt
More information

http://www.cambridge.org/052186478X
http://www.cambridge.org
http://www.cambridge.org

