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Spin systems and fluids

To study equilibrium statistical physics, we will start with Ising spin systems (here-
after referred to as Ising systems), because they serve as important reference systems
in understanding various phase transitions [1]–[7].1 We will then proceed to one- and
two-component fluids with short-range interaction, which are believed to be isomorphic
to Ising systems with respect to static critical behavior. We will treat equilibrium averages
of physical quantities such as the spin, number, and energy density and then show that
thermodynamic derivatives can be expressed in terms of fluctuation variances of some
density variables. Simple examples are the magnetic susceptibility in Ising systems and
the isothermal compressibility in one-component fluids expressed in terms of the corr-
elation function of the spin and density, respectively. More complex examples are the
constant-volume specific heat and the adiabatic compressibility in one- and two-component
fluids. For our purposes, as far as the thermodynamics is concerned, we need equal-time
correlations only in the long-wavelength limit. These relations have not been adequately
discussed in textbooks, and must be developed here to help us to correctly interpret various
experiments of thermodynamic derivatives. They will also be used in dynamic theories
in this book. We briefly summarize equilibrium thermodynamics in the light of these
equilibrium relations for Ising spin systems in Section 1.1, for one-component fluids in
Section 1.2, and for binary fluid mixtures in Section 1.3.

1.1 Spin models

1.1.1 Ising hamiltonian

Let each lattice point of a crystal lattice have two microscopic states. It is convenient
to introduce a spin variable si , which assumes the values 1 or −1 at lattice point i . The
microscopic energy of this system, called the Ising spin hamiltonian, is composed of the
exchange interaction energy and the magnetic field energy,

H{s} = Hex + Hmag, (1.1.1)

where

Hex = −
∑

<i, j>

Jsi s j , (1.1.2)

1 References are to be found at the end of each chapter.
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4 Spin systems and fluids

Hmag = −H
∑

i

si . (1.1.3)

The interaction between different spins is short-ranged and the summation in Hex is taken
over the nearest neighbor pairs i, j of the lattice points. The interaction energy between
spins is then −J if paired spins have the same sign, while it is J for different signs. In the
case J > 0 the interaction is ferromagnetic, where all the spins align in one direction
at zero temperature. The magnetic field H is scaled appropriately such that it has the
dimension of energy. At zero magnetic field the system undergoes a second-order phase
transition at a critical temperature Tc. The hamiltonian H mimics ferromagnetic systems
with uniaxial anisotropy.

In the case J < 0, the interaction is antiferromagnetic, where the neighboring paired
spins tend to be antiparallel at low temperatures. Let us consider a cubic lattice, which
may be divided into two sublattices, A and B, such that each lattice point and its nearest
neighbors belong to different sublattices. Here, we define the staggered spin variables Si

by

Si = si (i ∈ A), Si = −si (i ∈ B). (1.1.4)

Then, Hex in terms of {Si } has the positive coupling |J | and is isomorphic to the ferromag-
netic exchange hamiltonian.

The Ising model may also describe a phase transition of binary alloys consisting of atoms
1 and 2, such as Cu–Zn alloys. If each lattice point i is occupied by a single atom of either
of the two species, the occupation numbers n1i and n2i satisfy n1i +n2i = 1. Vacancies and
interstitials are assumed to be nonexistent. If the nearest neighbor pairs have an interaction
energy εK L (K , L = 1, 2), the hamiltonian is written as

H{n} =
∑

<i, j>

∑
K ,L

εK LnK i nL j −
∑

i

∑
K

µK nK i , (1.1.5)

where µ1 and µ2 are the chemical potentials of the two components. From (1.1.4) we may
introduce a spin variable,

si = 2n1i − 1 = 1 − 2n2i , (1.1.6)

to obtain the Ising model (1.1.1) with

J = 1

4
(−ε11 − ε22 + 2ε12), H = 1

2
(µ1 − µ2) − z

4
(ε11 − ε22), (1.1.7)

where z is the number of nearest neighbors with respect to each lattice point and is called
the coordination number.

1.1.2 Vector spin models

Many variations of spin models defined on lattices have been studied in the literature [8].
If the spin si = (s1i , . . . , sni ) on each lattice point is an n-component vector, its simplest
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1.1 Spin models 5

hamiltonian reads

H{s} = −
∑

<i, j>

J si · s j − H
∑

i

s1i . (1.1.8)

The first term, the exchange interaction, is assumed to be invariant with respect to rotation
in the spin space. The magnetic field H favors ordering of the first spin components s1i .
The model with n = 2 is called the xy model, and the model with n = 3 the Heisenberg
model. It is known that the static critical behavior of the three-dimensional xy model is
isomorphic to that of 4He and 3He–4He mixtures near the superfluid transition, as will be
discussed later. However, there are many cases in which there is some anisotropy in the spin
space and, if one direction is energetically favored, the model reduces to the Ising model
asymptotically close to the critical point. Such anisotropy becomes increasingly important
near the critical point (or relevant in the terminology of renormalization group theory). As
another relevant perturbation, we may introduce a long-range interaction such as a dipolar
interaction.

1.1.3 Thermodynamics of Ising models

Each microscopic state of the Ising system is determined if all the values of spins {s} are
given. In thermal equilibrium, the probability of each microscopic state being realized is
given by the Boltzmann weight,

Peq({s}) = Z−1 exp(−βH{s}), (1.1.9)

where

β = 1/T . (1.1.10)

In this book the absolute temperature multiplied by the Boltzmann constant kB = 1.381 ×
10−16 erg/K is simply written as T and is called the temperature [1], so T has the dimension
of energy. The normalization factor Z in (1.1.9) is called the partition function,

Z =
∑
{s}

exp(−βH{s}), (1.1.11)

where the summation is taken over all the microscopic states. The differential form for the
logarithm ln Z becomes

d(ln Z) = −〈H〉dβ + β〈M〉d H = −〈Hex〉dβ + 〈M〉dh, (1.1.12)

where the increments are infinitesimal,

h = β H = H/T, (1.1.13)

and M is the sum of the total spins,2

M =
∑

i

si . (1.1.14)

2 In this book the quantities, H, M, N , . . . in script, are fluctuating variables (dependent on the microscopic degrees of
freedom) and not thermodynamic ones.
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6 Spin systems and fluids

Hereafter 〈· · ·〉 is the average over the Boltzmann distribution (1.1.9). The usual choice of
the thermodynamic potential is the free energy,

F = −T ln Z , (1.1.15)

and the independent intensive variables are T and H with

d F = −SdT − 〈M〉d H, (1.1.16)

where S = (〈H〉 − F)/T is the entropy of the system.
We also consider the small change of the microscopic canonical distribution in (1.1.9)

for small changes, β → β + δβ and h → h + δh. Explicitly writing its dependences on β

and h, we obtain

Peq({s}; β + δβ, h + δh) = Peq({s};β, h) exp
[−δHexδβ + δMδh + · · ·], (1.1.17)

where δHex = Hex − 〈Hex〉 and δM = M − 〈M〉. To linear order in δβ and δh, the
change of the distribution is of the form,

δPeq({s}) = Peq({s})
[−δHexδβ + δMδh + · · ·]. (1.1.18)

Therefore, the average of any physical variable A = A{s} dependent on the spin configu-
rations is altered with respect to the change (1.1.18) as

δ〈A〉 = −〈AδHex〉δβ + 〈AδM〉δh + · · · . (1.1.19)

We set A = M and Hex to obtain

V χ = ∂2 ln Z

∂h2
= ∂〈M〉

∂h
= 〈(δM)2〉, (1.1.20)

∂2 ln Z

∂β2
= −∂〈Hex〉

∂β
= 〈(δHex)

2〉, (1.1.21)

∂2 ln Z

∂h∂β
= ∂〈M〉

∂β
= −∂〈Hex〉

∂h
= −〈δMδHex〉, (1.1.22)

where V is the volume of the system, χ is the isothermal magnetic susceptibility per unit
volume, h and β are treated as independent variables, and use has been made of (1.1.12).
Another frequently discussed quantity is the specific heat CH at constant magnetic field
defined by3

CH = T

V

(
∂S

∂T

)
H

= 1

V

(
∂〈H〉
∂T

)
H

. (1.1.23)

Here we use −(∂〈H〉/∂β)H = (∂2 ln Z/∂β2)H to obtain

CH = 〈(δH)2〉/T 2V . (1.1.24)

3 In this book all the specific heats in spin systems and fluids have the dimension of a number density.
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1.1 Spin models 7

Namely, CH is proportional to the variance of the total energy. We also introduce the
specific heat CM at constant magnetization 〈M〉 by

V CM = T

(
∂S

∂T

)
M

= V CH − T

(
∂〈M〉
∂T

)2

H

/(
∂〈M〉
∂ H

)
T
. (1.1.25)

From (∂〈M〉/∂β)H = −〈δHδM〉 we obtain

CM = [〈(δH)2〉 − 〈δHδM〉2/〈(δM)2〉]/V T 2, (1.1.26)

where δH may be replaced by δHex because δH−δHex = −HδM is linearly proportional
to M. It holds the inequality CH ≥ CM . These two specific heats coincide in the disordered
phase at H = 0 where 〈δHδM〉 = 0. We shall see that CM in spin systems corresponds to
the specific heat CV at constant volume in one-component fluids.

Positivity of CM

Combinations of the variances of the form,

CAB = 〈(δA)2〉 − 〈δAδB〉2/〈(δB)2〉 ≥ 0, (1.1.27)

will frequently appear in expressions for thermodynamic derivatives. Obviously CAB is the
minimum value of 〈(δA − xδB)2〉 = 〈(δA)2〉 − 2x〈δAδB〉 + x2〈(δB)2〉 ≥ 0 as a function
of x , so it is positive-definite unless the ratio δA/δB is a constant. Thus we have CM > 0.

1.1.4 Spin density and energy density variables

We may define the spin density variable ŝ(r) by4

ψ̂(r) =
∑

i

siδ(r − ri ), (1.1.28)

where ri is the position vector of the lattice site i . Then M = ∫
drψ̂(r) is the total spin

sum in (1.1.14). Through to Chapter 5 the equilibrium equal-time correlation functions will
be considered and the time variable will be suppressed. For the deviation δψ̂ = ψ̂ − 〈ψ̂〉
of the spin density, the pair correlation is defined by

g(r − r′) = 〈δψ̂(r)δψ̂(r′)〉, (1.1.29)

which is expected to decay to zero for a distance |r − r′| much longer than a correlation
length in the thermodynamic limit (V → ∞). The Fourier transformation of g(r) is called
the structure factor,

I (k) =
∫

drg(r) exp(ik · r), (1.1.30)

4 Hereafter, the quantities with a circumflex such as ψ̂, m̂, n̂, . . . are fluctuating quantities together with those in script such as
H,A,B, . . .. However, the circumflex will be omitted from Chapter 3 onward, to avoid confusion.
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8 Spin systems and fluids

which is expected to be isotropic (or independent of the direction of k) at long wavelengths
(ka � 1, a being the lattice constant). The susceptibility (1.1.20) is expressed as

χ =
∫

drg(r) = lim
k→0

I (k). (1.1.31)

However, in the thermodynamic limit, χ is long-range and the space integral in (1.1.31) is
divergent at the critical point. We may also introduce the exchange energy density ê(r) by

ê(r) = −
∑

<i, j>

Jsi s jδ(r − ri ). (1.1.32)

Then,
∫

drê(r) = Hex, and the (total) energy density is

êT(r) = ê(r) − H ψ̂(r), (1.1.33)

including the magnetic field energy. From (1.1.24) CH is expressed in terms of the devia-
tion δêT = êT − 〈eT〉 as

CH = T −2
∫

dr〈δêT(r + r0)δêT(r0)〉, (1.1.34)

which is independent of r0 in the thermodynamic limit.
Hereafter, we will use the following abbreviated notation (also for fluid systems),

〈â : b̂〉 =
∫

dr〈δâ(r)δb̂(r′)〉, (1.1.35)

defined for arbitrary density variables â(r) and b̂(r), which are determined by the micro-
scopic degrees of freedom at the space position r. The space correlation 〈δâ(r)δb̂(r′)〉 is
taken as its thermodynamic limit, and it is assumed to decay sufficiently rapidly for large
|r − r′| ensuring the existence of the long-wavelength limit (1.1.35). Furthermore, for any
thermodynamic function a = a(ψ, e), we may introduce a fluctuating variable by

â(r) = a +
(

∂a

∂ψ

)
e
δψ̂(r) +

(
∂a

∂e

)
ψ

δê(r), (1.1.36)

where a is treated as a function of the thermodynamic averages ψ = 〈ψ̂〉 and e = 〈ê〉. From
(1.1.19) its incremental change for small variations, δβ = −δT/T 2 and δh, is written as

δ〈â〉 = 〈â : ê〉δT

T 2
+ 〈â : ψ̂〉δh + · · · . (1.1.37)

From the definition, the above quantity is equal to δa = (∂a/∂T )hδT +(∂a/∂h)Tδh. Thus,

T 2
(

∂a

∂T

)
h

= 〈â : ê〉,
(

∂a

∂h

)
T

= 〈â : ψ̂〉. (1.1.38)
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1.1 Spin models 9

The variances among ψ̂ and ê are expressed as

χ =
(

∂ψ

∂h

)
T

= 〈ψ̂ : ψ̂〉, T 2
(

∂e

∂T

)
h

= 〈ê : ê〉,

T 2
(

∂ψ

∂T

)
h

=
(

∂e

∂h

)
T

= 〈ψ̂ : ê〉. (1.1.39)

The specific heats are rewritten as

CH = 1

T 2
〈êT : êT〉, CM = 1

T 2

[〈ê : ê〉 − 〈ê : ψ̂〉2/〈ψ̂ : ψ̂〉]. (1.1.40)

1.1.5 Hydrodynamic fluctuations of temperature and magnetic field

In the book by Landau and Lifshitz (Ref. [1], Chap. 12), long-wavelength (or hydrody-
namic) fluctuations of the temperature and pressure are introduced for one-component
fluids. For spin systems we may also consider fluctuations of the temperature and magnetic
field around an equilibrium reference state. As special cases of (1.1.36) we define

δT̂ (r) =
(

∂T

∂ψ

)
e
δψ̂(r) +

(
∂T

∂e

)
ψ

δê(r), (1.1.41)

δĥ(r) =
(

∂h

∂ψ

)
e
δψ̂(r) +

(
∂h

∂e

)
ψ

δê(r). (1.1.42)

We may regard δT̂ and δ Ĥ = T δĥ + hδT̂ as local fluctuations superimposed on the
homogeneous temperature T and magnetic field H = T h, respectively. Therefore, (1.1.38)
yields

〈ĥ : ψ̂〉 = 1

T 2
〈T̂ : ê〉 = 1, 〈ĥ : ê〉 = 〈T̂ : ψ̂〉 = 0. (1.1.43)

More generally, the density variable â in the form of (1.1.36) satisfies

〈â : T̂ 〉 = T 2
(

∂a

∂e

)
ψ

, 〈â : ĥ〉 =
(

∂a

∂ψ

)
e
. (1.1.44)

In particular, the temperature variance reads5

〈T̂ : T̂ 〉 = T 2/CM . (1.1.45)

The variances among δĥ and δT̂ /T constitute the inverse matrix of those among δψ̂ and
δê/T . To write them down, it is convenient to define the determinant,

D = 1

T 2

[〈ψ̂ : ψ̂〉〈ê : ê〉 − 〈ψ̂ : ê〉2] = χCM . (1.1.46)

5 In the counterpart of this relation, CM will be replaced by CV in (1.2.64) for one-component fluids and by CVX in (1.3.44)
for binary fluid mixtures.
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10 Spin systems and fluids

The elements of the inverse matrix are written as6

Vττ ≡ 1

T 2
〈T̂ : T̂ 〉 = 1

CM
, Vhh ≡ 〈ĥ : ĥ〉 = 〈ê : ê〉/T 2D,

Vhτ ≡ 1

T
〈T̂ : ĥ〉 = −〈ψ̂ : ê〉/TD. (1.1.47)

In the disordered phase with T > Tc and H = 0, we have no cross correlation 〈ψ̂ : ê〉 =
0, so that Vττ = 1/CH , Vhh = 1/χ , and Vhτ = 0. For other values of T and H , there is
a nonvanishing cross correlation (Vhτ �= 0). The following dimensionless ratio represents
the degree of mixing of the two variables,

Rv = 〈ψ̂ : ê〉2/[〈ψ̂ : ψ̂〉〈ê : ê〉]

= T 2
(

∂ψ

∂T

)2

h

/(
∂ψ

∂h

)
T

(
∂e

∂T

)
h
, (1.1.48)

where 0 ≤ Rv ≤ 1 and use has been made of (1.1.39) in the second line. From (1.1.40) we
have

CM = CH (1 − Rv), (1.1.49)

for h = 0 (or for sufficiently small h, as in the critical region). In Chapter 4 we shall see
that Rv ∼= 1/2 as T → Tc on the coexistence curve (T < Tc and h = 0) in 3D Ising
systems.

In the long-wavelength limit, the probability distribution of the gross variables, ψ̂(r)
and m̂(r), tends to be gaussian with the form exp(−βHhyd), where the fluctuations with
wavelengths shorter than the correlation length have been coarse-grained. From (1.1.39),
(1.1.43), and (1.1.46) the hydrodynamic hamiltonian Hhyd in terms of δψ̂ and δT̂ is
expressed as

Hhyd = T
∫

dr
{

1

2χ
[δψ̂(r)]2 + 1

2T 2
CM [δT̂ (r)]2

}
. (1.1.50)

Another expression for Hhyd can also be constructed in terms of δê and δĥ.

1.2 One-component fluids

1.2.1 Canonical ensemble

Nearly-spherical molecules, such as rare-gas atoms, may be assumed to interact via a
pairwise potential v(r) dependent only on the distance r between the two particles [4]–[6].
It consists of a short-range hard-core-like repulsion (r � σ ) and a long-range attraction
(r � σ ). These two behaviors may be incorporated in the Lenard-Jones potential,

v(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
. (1.2.1)

6 These relations will be used in (2.2.29)–(2.2.36) for one-component fluids and in (2.3.33)–(2.3.38) for binary fluid mixtures
after setting up mapping relations between spin and fluid systems.
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1.2 One-component fluids 11

This pairwise potential is characterized by the core radius σ and the minimum −ε attained
at r = 21/6σ . In classical mechanics, the hamiltonian for N identical particles with mass
m0 is written as

H = 1

2m0

∑
i

|pi |2 +
∑

<i, j>

v(ri j ), (1.2.2)

where pi is the momentum vector of the i th particle, ri j is the distance between the particle
pair i, j, and <i, j> denotes summation over particle pairs. The particles are confined in
a container with a fixed volume V and the wall potential is not written explicitly in (1.2.2).

In the canonical ensemble T , V , and N are fixed, and the statistical distribution is
proportional to the Boltzmann weight as [1]–[3]

Pca(�) = 1

Z N
exp[−βH], (1.2.3)

in the 2d N -dimensional phase space � = (p1 · · · pN , r1 · · · rN ) (sometimes called the
�-space). The spatial dimensionality is written as d and may be general. The partition
function Z N of N particles for the canonical ensemble is then given by the multiple
integrations,

Z N = 1

N !(2π h̄)d N

∫
dp1 · · ·

∫
dpN

∫
dr1 · · ·

∫
drN exp(−βH)

= 1

N !λd N
th

∫
dr1 · · ·

∫
drN exp(−βU), (1.2.4)

where h̄ = 1.054 57×10−27 erg s is the Planck constant. In the second line the momentum
integrations over the maxwellian distribution have been performed, where

λth = h̄(2π/m0T )1/2 (1.2.5)

is called the thermal de Broglie wavelength, and

U =
∑

<i, j>

v(ri j ) (1.2.6)

is the potential part of the hamiltonian.
The Helmholtz free energy is given by F = −T ln Z N . The factor 1/N !(2π h̄)d N

in (1.2.4) naturally arises in the classical limit (h̄ → 0) of the quantum mechanical
partition function [2]. Physically, the factor 1/N ! represents the indistinguishability be-
tween particles, which assures the extensive property of the entropy. That is, a set of
classical microscopic states obtainable only by the particle exchange, i → j and j → i ,
corresponds to a single quantum microscopic state.7 The factor 1/(2π h̄)d N is ascribed to
the uncertainty principle (�p�x ∼ 2π h̄).

7 The concept of indistinguishability is intrinsically of quantum mechanical origin as well as the uncertainty principle. It is not
necessarily required in the realm of classical statistical mechanics. Observable quantities such as the pressure are not affected
by the factor 1/N !.
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