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Fault Detection in Dynamic Vehicle
Routing Operations

Antonio G. N. Novaes, Edson T. Bez and Paulo J. Burin

Introduction

The explosive growth in computer, communication, and information technology in
recent years, together with dramatic changes in organizations and markets, have
opened new forms of operating manufacturing and transport activities in an
integrated and collaborative way (Goel 2008). To optimize performance, supply-
chain functions must operate in a coordinated manner. But the actual circum-
stances observed in these operations make it difficult to implement it in many
instances. Truck breakdowns, road traffic congestions, labour absences, customer’s
cancel or postponement of orders, among other random events, generate deviations
from the basic plans. Thus, the management of these integrated systems must be
performed in a dynamic way, revising the plans and schedules whenever it
becomes necessary and when system failures require corrective interventions.

An unbalanced and unstable integration of manufacturing and transport systems
can impair the competiveness of supply chains. This integration is even more
relevant along global supply chains due to longer transport lead-times and the
network complexity of manufacturing processes. Nowadays, production and
transport scheduling are still carried out sequentially, due in part to their
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complexity and current lack of appropriate heuristics for supporting a desirable
integration at the operational level. Especially within dynamic environments,
production and transport systems must be properly integrated so that efficiency,
responsiveness and flexibility could be achieved and sustained. Specially, the
vision of a supply chain as synchronized systems of material and information flows
requires that transport capabilities, level of utilization of resources and transit lead-
times be appropriately employed in order to get the most effective and sustainable
production scheduling (Frazzon et al. 2010).

The increasing complexity of technological processes, the availability of
advanced sensor devices, and the existence of sophisticated information processing
systems, have opened the way to detect abrupt as well as latent changes in some
characteristic properties of a system. Fault detection and diagnosis applied to
automatic control of technical systems have been extensively investigated in the
literature (Basseville and Nikiforov 1993; Isermann 1997, 2005; Simani et al.
2010), but its concepts and methods have not been extended so far to services such
as freight transport and logistics. The objective of fault detection in integrated
manufacturing and logistics systems is to anticipate counteractions in order to
avoid malfunctions and unexpected interruptions. Many fault monitoring problems
can be seen as the problem of detecting a change in the parameters of a dynamic
stochastic system. Model-based fault diagnosis methods are designed to detect
abnormal situations confronting real data with modelling estimates. It is assumed
that a discrepancy signal is directly or indirectly linked to a fault. Care must be
taken to bypass model mismatches or noise in real measurements, which can
erroneously be seen as a fault, giving rise to a false alarm in detection. These
considerations have led to research efforts toward robust methods, with the aim of
minimizing such drawbacks (Simani et al. 2010).

Dynamic vehicle routing problems (DVRP) have received increasing attention
among researchers (Psaraftis 1995; Larsen 2001; Ribeiro and Lorena 2005; Larsen
et al. 2008; Golden et al. 2008; Novaes et al. 2011). These problems are usually
related to efficiently assigning vehicles to tasks, such as picking-up components from
OEM facilities in a row, delivering cargo, or accomplishing other services in a
previously defined order, so that tasks are completed within a certain time limit and
vehicle capacities are not exceeded (Figliozzi 2007, 2010). But in large and
congested urban areas, particularly in developing countries, transport operators tend
to assign larger numbers of visits to their vehicles in order to increase revenue. This
often leads to non-performed orders at the end of the daily cycle-time, impairing the
logistics service level and postponing tasks to next day, or even later. This happens
because, due to the volatile traffic conditions and the great number of random vari-
ables along the route, the vehicle cycle-time usually shows great variability. But even
assuming that the fleet of vehicles has been well dimensioned, there are situations in
which the traffic becomes exceptionally over-congested due to severe accidents,
unpredictable public transport strikes, abnormal weather conditions, etc. However,
when operating in a production schedule, comprising the pick-up of components
from several OEM facilities in a row and carrying them to an assembler company, the
vehicle has to accomplish its tasks within a pre-established JIT service level.
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Traffic information systems, which have been installed in some large cities of
the world, tend to increase the flow of vehicles by allowing higher vehicular
speeds and by offering less-congested alternative routes to drivers (Fleischmann
et al. 2004). The benefits of using such traffic navigational systems in connection
with vehicle routing in congested urban areas cannot be denied. But in developing
countries, the required large investments to install such systems often forbid its
extensive use. One of the objectives of this work is to show that simple dynamic
vehicle routing procedures can dramatically improve the logistics performance of
the servicing system. With an on-board computer, a fault-detection software, and
simple telematics devices linking the vehicle to nearby collaborative agents (other
vehicles and the central depot), it is possible to attain better performance levels. By
analysing vehicle operational data at specific regeneration points along the route, it
is possible to anticipate the occurrence of unperformed tasks, emitting information
to other agents (vehicles, central depot), and transferring part of the tasks to other
participants. With this procedure the occurrence of unperformed tasks at the end of
a vehicle cycle-time can be dramatically reduced.

In a DVRP, not all information relevant to the planning of the routes is known
by the planner when the routing process begins, and information may change after
the initial routes have been constructed (Larsen et al. 2008). In the application
object of this work, although the vehicle service is fully planned in advance, the
possible transfer of tasks to other agents and the eventual reprogramming of visits
lead to changes in the routing process, thus characterizing a dynamic behaviour
(Psaraftis 1995; Larsen 2001).

The Static Routing Problem

When modelling dynamic logistics problems it is necessary to quantify a number
of random parameters to be used in the main mathematical model. Larsen (2001)
dedicates a full chapter of his work to the computer simulation of such data. The
reason is that real-life datasets are very often not available in such detail and
accuracy as to support a thorough investigation of dynamic problems. Then,
randomly generated data and simulation are frequently used when designing
dynamic logistics systems. We make use of such a technique to analyse important
parameters related to the routing vehicle cycle.

Throughout the paper an empirical case study will be examined based on a real-
life Brazilian urban scenario. Let us consider an operating district of area A con-
taining n OEM suppliers. The vehicle assigned to the district leaves the depot early
in the morning, goes to the assigned district, performs the collecting service vis-
iting the OEM suppliers, and goes to the assembler plant when all tasks are
completed, or when the maximum allowed working time per day is to be reached,
whichever occurs first. This complete time sequence makes up the vehicle cycle.
In some practical circumstances more than one tour per day can be assigned to the
same truck. This implies extra line-haul costs, but depending on the cargo
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characteristics, vehicle size restrictions and other factors, multiple daily tours per
vehicle might sometimes be appropriate. For the sake of simplicity, we assume
that the vehicles perform just one cycle per day. The model can be easily modified
to take into account multiple daily cycles. It is assumed a district of area
A ¼ 40 sq.km. located 7 km from the depot. The expected driving line-haul time
from the depot to the district is tLH1 = 14 min and the line-haul time from the last
service to the depot is admitted to be the same, i.e. tLH2 ¼ tLH1 ¼ 14 min, with a
standard deviation rLH2 ¼ rLH1 ¼ 2:8 min, being both normally distributed. The

servicing time tðSTÞ
j at a generic client location, from the instant the vehicle stops

until it leaves to attend another client, is assumed to be described by a lognormal

distribution, with constant E½tðSTÞ
j � ¼ 11 min, and rðSTÞ

j ¼ 4:5 min. Assuming
n servicing points randomly generated over the district, a combination of farthest
insertion and 3-OPT algorithms (Syslo et al. 2006) was applied in order to get the
Travelling Salesman Problem (TSP) Euclidean route. A corrective coefficient
(route factor) was then applied to the Euclidean distance to take into consideration
the road network impedance (Novaes and Burin 2009).

The vehicle average speed within the district under standard traffic conditions,
is s0 ¼ 28 km/h, with the velocity reduced to s1 ¼ 15 km/h during over-con-
gested situations. The speed, both in a normal traffic condition and during an over-
congested situation, is represented by lognormal distributions (section Sequential
Analysis for Detecting Incipient Faults). It is assumed that over-congested situa-
tions occur with probability p1 ¼ 0:20 (hypothesis H1), while standard conditions
prevail with probability p0 ¼ 0:80 (hypothesis H0).

Let H ¼ 8 h be the maximum vehicle crew working time per day and TC the
vehicle cycle time, with TC � H. Assuming a number n of servicing points in the
district route, one is interested in estimating the expected number of visits that will
be effectively performed during the daily cycle-time, with the objective of keeping
it within a pre-established service level. Since n is sufficiently large in our
applications, TC can be assumed to be normally distributed according to the central
limit theorem. Thus, it is necessary to estimate an upper extreme value for TC in
order to select an appropriate value for n.

Statistics of extremes have applications in many engineering domains (Gumbel
1967; Smith 2003; Haan and Ferreira 2006). Consider M samples of an i.i.d.
continuous random variable X, each sample of size m taken from the same
population. The asymptotic configuration, provided it exists, must be such that
the largest value of any sample of size m taken from the population must have the
same distribution (Gumble 1967). Let X1;X2; . . .;Xmf g represent one such sample.
Let Ym ¼ maxðX1; . . .;XmÞ be the sample maximum. The probability that the
largest value is below a generic value x is

Pr Ym� xf g ¼ FðxÞm; ð1Þ

FðxÞ being the cumulative probability distribution function of x. Since a linear
transformation does not change the form of the probability distribution, the
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probability that the largest value is below x is equal to the probability of a linear
function of x (Gumbel 1967)

FðxÞm ¼ F amx þ bmð Þ; ð2Þ

the two parameters am and bm being functions of m. It has been proved that, as
m!1, expression (2) tends to the cumulative probability distribution H xð Þ of
the Gumbel type in case X is described by exponential, normal, lognormal, or
gamma distributions. The Gumbel distribution is (Gumbel 1967; Smith 2003)

lim
m!1

FðxÞm ¼ H xð Þ ¼ exp �exp �aðx� uÞ½ �f g; ð3Þ

where a and u are coefficients obtained via calibration. Let Ê½X� and r̂½X� be,
respectively, the expected value and the standard variation of a sample formed by
the upper extreme values extracted from M sets containing, each set, m values of a
continuous variable X. Then, the estimated values of a and u are (Gumbel 1967)

1
â
¼
p

6
p

r̂ [X]; and ð4Þ

r̂ û ¼ p
CV
p

6
� c; ð5Þ

where CV ¼ br X½ �=bE½X� is the coefficient of variation and c ¼ 0:57722. From (4)
and (5) one gets

bu ¼ bE X½ � � 0:57722
â

: ð6Þ

We are interested in determining the maximum value of the vehicle cycle time

T ðmaxÞ
C . Letting x ¼ TðmaxÞ

C , making H TCð Þ ¼ # in (3), where # is a pre-assumed
confidence level, and simplifying

TðmaxÞ
C ¼ bu � ln �lnð#Þ½ �

â
: ð7Þ

A simulated data set was generated consisting of daily cycle times forming
M ¼ 15 blocks, each block containing m ¼ 30 simulated sample values of TC,
representing a total of 450 samples for each value of n. To perform the simulation
it is necessary to assume a value for n beforehand. The objective is to get a
maximum value of n such that TC �H. Five values of n were tested, as shown in
Table 1. For a specific value of n, fifteen simulated blocks were produced, yielding

15 values of T ðmaxÞ
C , one for each block. The average and standard deviation of

T ðmaxÞ
C were obtained as shown in Table 1. Expressions (4) and (6) yielded the

values of â and û. Assuming a # ¼ 0:98 confidence level, expression (7) furnishes

the overall maximum bT ðmaxÞ
C . We selected n ¼ 22, with a value of bT ðmaxÞ

C close to
the permitted limit of 8 h.
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Table 2 shows the static vehicle tour simulation framework. The line-haul
travelling times from the depot to the district (outbound) and vice versa (inbound)
are represented by tLH1 and tLH2 respectively in Table 2. The occurrence of

hypothesis H0 or H1 is represented by h. Variables di�1;i and tðhÞi�1;i are the distance
and the travelled time, respectively, from point i� 1 to point i in the route.
The vehicle speed s is represented by log-normal distributions, which depend on the
occurrence of H0 or H1 (section Sequential Analysis for Detecting Incipient Faults).

The stopping time at point i is tðSTÞ
i ; and si is the cumulative elapsed time up to stage i.

Table 1 Searching for n such that TC �H

N Ê½TC � r̂½TC � â û T̂ maxð Þ
C (h)

20 7.12 0.2122 6.0443 7.0285 7.58
21 7.40 0.1987 6.4547 7.3086 7.84
22 7.61 0.2100 6.1074 7.5208 8.04
23 7.96 0.1983 6.4677 7.8687 8.36
24 8.14 0.2117 6.0589 8.0480 8.53

Table 2 Static route simulation framework

1. Assume a value for n and compute point density d ¼ n=A;
2. i 0;
3. Generate line-haul travelling times, tLH1 and tLH2, both normally distributed;
4. Set s0  tLH1 þ tLH2;
5. Generate random number e; if e� p0, h 0; if e [ p0, h 1 �ð Þ;
6. i iþ 1 ði is the servicing point sequencial numberÞ;
7. Generate value for di�1;i, Erlang distributed with parameter h ¼ 3;

8. Generate value for the route factor k2 (log-normal);

9. Generate stopping time tðSTÞ
i at point i, log-normally distributed;

10. If h ¼ 0, then E s½ �  s0; else E s½ �  s1:Generate speed value s (log-normal)
11. ti�1;i  di�1;i � k2=s;

12. si  si�1 þ ti�1;i þ tðSTÞ
i

(a) If si�H and i\n, then nðPÞ  n and TC ¼ si; go to (6);
(b) If si�H and i ¼ n; then
Begin

nðPÞ  n; TC  si; go to (14);
End
(c) If si [ H then
Begin

nðPÞ  ½n� i� 1ð Þ� ; TC  si�1; go to (14);
End

13. nðUÞ  ½n� n Pð Þ�
14. Repeat the process from (2) on until the number of replications is complete

(*) h = 0, hypothesis H0 and h ¼ 1, hypothesis H1;
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The vehicle cycle time is TC; the number of performed tasks in the cycle is nðPÞ, and
the number of unperformed tasks is represented by nðUÞ.

Running the simulation model for n ¼ 22; with 20,000 replications and
assuming over-congested traffic conditions in 20 % of the working days, it led to a
1.94 % rate of unperformed tasks during a typical working cycle. Figure 1 shows
the distribution of unperformed tasks per cycle. Most frequent situations are the
ones with 1 or 2 unperformed visits per cycle (1.26 % of de cases from a total of
1.94 %). On the other hand, considering only the days when over-congested traffic
conditions occur, the average rate of unperformed visits raised to 10.5 %, more
than five times the former value, leading to a service level much lower than the
desired value.

This result deserves some considerations. First, certain traffic disruptions have
severe impacts on vehicle movement as, for example, the ones caused by public
transport strikes, heavy rains, etc., and they may last for some days. Those situations,
when covering somewhat longer periods, may generate excessive back-logs of tasks,
thus impairing the logistics operations for some time. Second, since JIT operations
are quite common in global supply chains, unpredictable delays, as the mentioned
situations, will lead, in the long term, to additional safety stock compensations in
order to maintain the manufacturer’s production line uninterrupted. With these
aspects in mind, it is apparent that some improving measures are opportune.

The Dynamic Routing Problem

To avoid unexpected backlog in the pick-up process described in section The
Static Routing Problem, a simple alternative is available to the logistics operator,
although potentially costly: reduce the number of visiting points per vehicle by
putting more trucks to perform the service. With this measure, the risk of
unperformed tasks obviously will be reduced. But, as a result of the great number
of random components that form the vehicle cycle time, its average value will be

Fig. 1 Static routing:
unperformed tasks per
vehicle cycle
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relatively small, meaning a low fleet usage rate. Another operating alternative is to
establish a cooperative scheme, where part of the planned tasks assigned to a truck
can be transferred to auxiliary vehicles whenever an excessive service load is
foreseen by the on-board computer system.

Such a scheme is part of a new form of managing integrated logistic services in
the supply chain, in which a set of intelligent agents, each responsible for one or
more activities and interacting with other agents in planning and performing their
tasks. In this new form of acting, an agent is an autonomous goal-oriented software
process that operates asynchronously, communicating and coordinating with other
participant agents as needed (Fox et al. 2000; Davidsson et al. 2005; Berger and
Bierwirth 2010).

The smallest controlling entity in this approach (an agent) is described as
anything that is able to ‘‘perceive its environment through sensors (hardware and
software) and act upon that environment through actuators’’ (Russel and Norvig
2003). A Multi-Agent System (MAS) is a system consisting of independent
intelligent control units linked to physical or functional entities such as vehicles,
orders, etc. (Mes et al. 2007). Agents act autonomously by pursuing their own
objectives and interact with each other using informational exchange and nego-
tiation mechanisms (Mes et al. 2007). In this application the agents are the vehicles
which perform the on-route tasks, plus the central depot which has supplementary
vehicles that can be eventually assigned to the routes in case other agents do not
reach agreement to exchange tasks. The objective is to eliminate or reduce as
much as possible the number of unperformed tasks in the pick-up vehicle routing
problem described in section The Static Routing Problem.

Fault detection and fault diagnosis methods will be employed in this work to
dynamically anticipate operational counteractions in order to avoid unexpected
unperformed tasks along the route. A fault-detection software is to be installed
aboard, and the vehicle is assumed to be provided with a geo-referencing device
and telecommunication equipment linking the vehicle to nearby collaborative
agents (other vehicles and the central depot). The rationale involved will permit to
infer, during the servicing process, if traffic conditions will impair the accom-
plishment of the planned tasks during a working day, thus transferring part of the
jobs to other vehicles (agents), and leading to a collaborative scheme among them.

Fault Detection and Fault Diagnosis

The concepts and definitions of fault detection and diagnosis set forth in this section
are based mostly on Isermann (1997, 2005). Other references are Basseville and
Nikiforov (1993), Haan and Ferreira (2006) and Simani et al. (2010). A fault is
defined as an unpermitted deviation of at least one characteristic property of a
variable from an acceptable behaviour. Therefore, the fault is a state that may lead to
a malfunction or failure of the system. The time dependency of faults can be clas-
sified as (a) abrupt fault (stepwise), (b) incipient fault (drift like), and (c) intermittent
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fault. One calls abrupt fault any change in the parameters of a system that occurs
either instantaneously or at least very fast with respect to the sampling period of the
measurements. Abrupt faults do not refer to changes in the process with large
magnitude; in fact, in most applications the main question is how to detect small
changes. On the other hand, incipient faults are also of interest: they are behaviour
deviations that occur cumulatively over time, yet not failures, but leading to future
underperformance or disruptions in the system. In our application we will deal with
detection of incipient and abrupt faults.

To control technical systems, supervisory functions are installed to indicate
undesired or unpermitted process states, as well as to take appropriate actions in order
to maintain the operation within a pre-established service level and to avoid unex-
pected disruptions. Three basic function types can be distinguished (Isermann 1997):
(a) monitoring, in which measurable variables are checked with regard to tolerances
and warnings are generated for the operator; (b) automatic protection, normally used
to control dangerous processes that cannot wait for external interventions; and (c)
supervision with fault diagnosis which is based on the measurement of some key
variables and the calculation of parameters, resulting in the identification of symp-
toms via change detection, followed by fault diagnosis, and leading to counteraction
decisions. Type (c) function is compatible with in-depth fault diagnosis, either with
abrupt or incipient time behaviour, being more comprehensive. In our application
supervisory functions of type (a) and (c) will be employed.

The goal for early fault detection and diagnosis is to have enough time for
counter-actions such as adding supplementary operations, reconfiguration, main-
tenance or repair, etc. The earlier detection can be achieved by gathering more
information, especially by using the relationship among the measurable quantities in
the form of mathematical models. For fault diagnosis, the knowledge of cause-effect
relationships has to be used. In our analysis, two types of faults will be considered:
(a) incipient faults, occasioned by over-congested traffic conditions, in which the
measurement and analysis of commanding parameters occur cumulatively over
time, and (b) abrupt faults, represented by unpredictable delays that may occur at
OEM premises when transferring goods to the logistics operator, as well as vehicle
breakdowns during the cycle, or another sort of exceptional random interruptions.

Incipient Faults Occasioned by Exceptional
Traffic Congestion

Traffic congestion is seen as a condition of traffic delay (i.e., when vehicle flow is
slowed below reasonable speeds) because the number of vehicles trying to use a
road exceeds the capacity of the network to handle it (Weisbrod et al. 2003). In
addition to speed reduction, congestion also introduces variability in traffic con-
ditions, which is known as travel time reliability (Cambridge Systematics 2005).
The resulting traffic slowdowns and travel time reliability produce negative effects
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on supply chain activities, including impacts on vehicle traveling costs, air quality
and noise, labour efficiency, industrial and commercial productivity, customer
service level, etc. The severity and pattern of congestion, as well as the effec-
tiveness of alternative policies and interventions to address it, vary widely from
place to place. That can depend on the size and layout of the urban area, its
available transportation options, and the nature of traffic generators (Weisbrod
et al. 2003). Congestion is usually the result of seven root causes, often interacting
with one another (Cambridge Systematics 2005):

1. Physical bottlenecks, such as reduced number of lanes, narrow lane and
shoulder widths, inadequate roadway grades and curves, etc., leading to
reduced road capacity.

2. Traffic incidents, occasioned by events that disrupt the normal flow of traffic,
such as vehicular crashes, breakdowns, etc.

3. Work zones temporally reserved for construction and repair activities on the
roadway, generating lane reduction, narrower traffic spaces, lane shifts, detours,
speed reduction, etc.

4. Weather conditions such as snow, flood, fog, etc., that can lead to substantial
changes in driver behaviour,

5. Traffic control devices, which leads to intermittent disruption of traffic flow,
such as railroad grade crossings, poorly timed light signals, traffic interferences
with street cars and bus ways, etc.

6. Special events that cause severe traffic flow variations in its vicinity, being
radically different from typical day-to-day patterns. For instance, a rapid transit
labor strike in a city with heavy public transport patronage and generating
additional flow of cars and busses.

7. Fluctuations in normal traffic which shows, on a day-to-day basis, fluctuations
with days with higher traffic volumes than others. In cities with constant heavy
traffic volumes, even random fluctuations can result in unreliable and over-
congested traffic conditions.

Another important traffic congestion classification is due to Brownfield et al.
(2003). The first type is recurrent congestion, which can be anticipated by road
users that are acquainted with the route. The other type is non-recurrent conges-
tion, which occurs at non-regular times at a site. It is unexpected and unpredictable
to the driver. In our analysis, it is assumed that the logistics entity in charge of the
urban transport service is aware of all programmed events, i.e. it is fully prepared
to cope with recurrent congestion. Thus, from the seven factors listed above,
causes (1), (3) and (5) are not considered in our application. Conversely, it is
assumed that over-congested situations are originated by causes (2), (4), (6) or (7).

Although there is no existing, universally accepted, quantitative definition for
traffic congestion, its analysis must rely on easy to measure elements if its impacts
are to be evaluated and compared across the range of situations considered in the
investigation (Brownfield et al. 2003). One frequent assumption is to assume that an
urban road link is congested if its average speed is below a given upper threshold.
In addition to average speed reduction to travellers, the sources of congestion also

22 A. G. N. Novaes et al.



produce time variability known as travel time reliability (Cambridge Systematics
2005), which can be defined in terms of how travel times vary within a pre-defined
period. In practical terms, it is useful to fit statistical frequency distributions to travel
time, to see how much variability exists in critical sites of the road network.

Exceptionally, unpredictable and heavy traffic congestions caused by severe
accidents, public transport strikes, heavy storms, etc., may occur during certain
working days. In these situations the travelling speed decreases sharply. Let s0 be
the average travelling speed in a route in a generic working day, and suppose the
average speed reduces to a level s1 � s0 when over-congested situations occur.
Then, one could say that the traffic conditions are normal if s � s0, and over-
congested if s � s1. Moreover, if s1 \ s \ s0, one would not decide immediately
for either alternative, waiting for more information to take a decision. Of course,
this is a typical statistical hypothesis testing. Nevertheless, an instantaneous
travelling time increase is not, in itself, an indication of an over congested situ-
ation. In fact, many non-recurrent events have short duration, and their effects
dissipate more or less rapidly. Furthermore, some recurrent events have local
impact only, and their effects do not extend to other parts of the served region.
Over-congested situations that are of interest in our analysis are the ones with
broader geographical extension and longer duration, although in many cases they
are no longer than 24 h. Thus, travel time reliability covering an expressive subset
of the urban region, seems to be a good judgmental criterion to evaluate it. And, in
order to measure travel time reliability it is necessary to sequentially collect and
analyse traffic data. With today’s on-board telematics and computing devices it is
not difficult to collect and analyse real-time information on travelled distance, time
and speed with satisfactory accuracy (Goel 2008). In our study, the statistical
inference process to detect an over-congested condition follows a sequential
analysis methodology (Wald 1947; Basseville and Nikiforov 1993; Lai 2001),
which is described in the next section.

Dynamic Detection of Over-Congested Traffic Conditions

Day-to-day traffic flow variability in urban networks produces typical traffic pat-
terns, but unexpected events cause occasional surges in traffic volumes that
overwhelm the road system. Such events, of a ‘‘hectic’’ pattern, are generated by
accidents with severe traffic interruptions, extensive public transport strikes, and
long duration storms, among others. Strong changes in some characteristic prop-
erties of a system may occur occasionally in both technological and natural
environments. And due to today’s availability of information processing systems,
complex monitoring algorithms have been developed and implemented (Basseville
and Nikiforov 1993). The key difficulty in detecting a fault occurrence through the
observation of some properties of a system is to separate noise from the relevant
factors. In addition, some failures have a catastrophic nature, leading to an abrupt
change in the control variables. But some faults occur with gradual changes in the
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system attributes over time. One way of tackling the latter is Sequential Analysis
(Wald 1947; Basseville and Nikiforov 1993; Lai 2001).

Classical techniques of statistical inference and hypotheses testing adopt a fixed
sample size. With this kind of approach one seeks to minimize the error proba-
bilities for a given sample size. The size of the sample is defined beforehand, and
following its statistical analysis one of two possible actions is taken: accept the
null hypothesis H0, or accept the alternative hypothesis H1. The null hypothesis
represents in our analysis the standard or basic situation, whereas the alternative
hypothesis indicates the occurrence of an abnormal condition, leading to a fault in
the system. Another way to solve hypotheses testing problems, when the sample
size is not fixed a priori but depends upon the data that have already been
observed, is Sequential Analysis. Now the problem is: for given error probabilities,
try to minimize the sample size, or equivalently, make the decision with as few
observations as possible. Contrary to the fixed sample size approach, a third
possible course of action may occur in sequential analysis when the evidence is
ambiguous: take more observations until the evidence strongly favours one of the
two hypotheses. Thus, sequential analysis follows a dynamic sequence of obser-
vations in such a way that the decision to terminate or not the experiment depends,
at each stage, on the previous test results.

Although some authors date the rudiments of sequential analysis to the works of
Huyghens, Bernoulli, and Laplace, such methodology was effectively born in
response to demands for more efficient testing of anti-aircraft gunnery during
World War II, culminating with the development of the Sequential Probability
Ratio Test (SPRT) by Wald, in 1943 (Lai 2001). A typical case of sequential
estimation arises when only two unknown parameters l and r are required to
define the distribution of the random variable x object of our analysis. Let f ðx; l; rÞ
denote the probability density function of x, when x is continuous. Conversely, if
x is discrete, f ðx; l; rÞ represents its probability. Let x1; x2; . . .; xm be a set of
m sequential and independent observations on x. Due to the independence of the
observations, the joint probability density function is

f x1; l; rð Þf x2; l; rð Þ . . . f xm; l; rð Þ: ð8Þ

Suppose that the distribution of the random variable x under consideration is
defined by q unknown parameters (in our case, q ¼ 2). A statement about the
values of the q parameters is called a simple hypothesis if it determines uniquely
the values of all q parameters. It is called a composite hypothesis if it is consistent
with more than one value for some parameter (Wald 1947). Let us analyse the test
of simple hypothesis that l ¼ l0 and r ¼ r0, where l and r are the expected value
and the standard deviation of the probability distribution of x. This hypothesis is
the null hypothesis denoted by H0. The alternative hypothesis that l ¼ l1 and
r ¼ r1 will be denoted by H1. Thus, we shall deal with the problem of testing the
simple hypothesis H0 against the alternative simple hypothesis H1, on the basis of
a sample of m independent observations x1; x2; . . .; xm on x. According to the
developments of Neyman and Pearson, errors of two kinds are present when one
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accepts or rejects hypothesis H0. We commit an error of first kind if we reject H0

when it is true. On the other hand, we commit an error of the second kind if we
accept H0 when H1is true. We denote the probability of an error of the first kind by
a, and the probability of an error of second kind by b.

To apply the SPRT developed by Wald (1947) for testing H0 : l ¼ l0; r ¼ r0

against H1 : l ¼ l1; r ¼ r1, two positive constants A and B (B \ A) are computed

A ¼ 1� bð Þ=a and B ¼ b=ð1� aÞ ð9Þ

Suppose one has drawn m samples leading to the independent observations
x1; x2; . . .; xm on the random variable x. At this stage of the experiment the SPRT
(Wald 1947; Basseville and Nikiforov 1993; Lai 2001) is computed as

pm ¼
f x1; l1; r1ð Þf x2; l1; r1ð Þ . . . f xm; l1; r1ð Þ
f x1; l0; r0ð Þf x2; l0; r0ð Þ . . . f ðxm; l0; r0Þ

: ð10Þ

Three situations may occur:

1. If B \ pm \ A, the experiment continues by taking an additional observation;
2. If pm � A, the experiment terminates with the rejection of H0;
3. If pm � B, the experiment terminates with the acceptance of H0.

For purposes of mathematical simplification, it is more convenient to compute
the logarithm of the ratio pm. Let

zi ¼ ln
f ðxi; l1; r1Þ
f ðxi; l0; r0Þ

� �

: ð11Þ

Define

p�m ¼ ln pmð Þ ¼ z1 þ z2 þ 	 	 	 þ zm: ð12Þ

The test is addictive now. The experiment continues if ln B \ p�m \ lnA by
taking an additional observation; the process terminates with the rejection of
H0 if pm �� lnA; and it terminates with the acceptance of H0 if pm � � lnB.

In practical cases, composite hypothesis may occur. One way to solve
sequential analysis problems with composite hypothesis is the method of a
weighting function associated with the generalized likelihood ratio algorithm
(Basseville and Nikiforov 1993). To do this, two weighting probability distribu-
tions, with density functions gðH0Þ and gðH1Þ, depending on H0 and H1 respec-
tively, are introduced into the model. The SPRT is now transformed into a
weighted likelihood ratio test (Basseville and Nikiforov 1993). But, in order to do
this, it is necessary to fit distributions gðH0Þ and gðH1Þ to the data, which depends
on detailed information not commonly available in real settings. In the application
considered in this paper, a more tractable composite hypothesis test is adopted.
This composite hypothesis testing is represented by H

0
0 : l � l0; r � r0 versus

H
0
1 : l � l1; r � r1, such that l1 [ l0 and r1 [ r0. This model is usually suf-

ficient for practical purposes (Lai 2001). Assuming that the probabilities of the

Fault Detection in Dynamic Vehicle Routing Operations 25



errors of first and second kind also do not exceed a and b, one can use the SPRT of
the simple hypothesis H0 : l ¼ l0; r ¼ r0 versus H1 : l ¼ l1;r ¼ r1, with the
same error probabilities a and b. However, while this SPRT has minimum
expected sample size at l ¼ l0; r ¼ r0 and at l ¼ l1; r ¼ r1, its maximum
expected sample size over l and r can be larger than the optimal fixed sample size
(Lai 2001). This means that sometimes the sequential test will not be sufficient to
detect hypothesis H1 during the daily tour, generating unperformed tasks at the end
of the working day. But unperformed tasks will be eliminated or drastically
reduced when compared with the static alternative, as it will be shown in sec-
tion Sequential Analysis for Detecting Incipient Faults, a fact that justifies the
adoption of the dynamic setting in our model.

Sequential Analysis for Detecting Incipient Faults

In this application, the variable that commands the decision whether to seek help
from another agent or to proceed along the planned routing process is the vehicle
speed s. In fact, since link lengths vary along the route, and consequently the resulting
displacement times also vary, speed is a more appropriate variable to measure traffic
variations. The renewal epoch (stochastic regenerating point) of the sequential
decision process is defined as the instant when the vehicle crew has just terminated a
task at an OEM location and is ready to depart for the next visit. At such an instant, the
on-board computer evaluates the displacement time ti�1;i over the traveled segment
linking the last visiting stop i� 1 to the present one i. The corresponding speed s is
simply obtained by dividing the travelled segment extension by its respective dis-
placement time, both elements assumed to be available on the on-board system. For
the district under analysis it is assumed that there are enough historical data on speed
values covering the standard traffic condition and the over-congested scenario. In
particular, the average speed s � s0 is related to standard traffic conditions and
s � s1 represents the over-congested scenario. This information, together with the
series of data collected up to that point, will serve as the basis for inferring whether
the traffic is normally behaved or is over-congested, thus leading to the appropriate
operational decision.

As discussed in section Dynamic Detection of Over-Congested Traffic Condi-
tions, it is necessary to define a probability distribution f ðx; l; rÞ to represent the
random variable that commands the decision process. A sample was gathered in a
representative route located in the urban area under analysis, involving 40 vehicle
travel speeds during typical working days. A log-normal distribution was fitted to
the data (Fig. 1):

f sð Þ ¼ 1
r
p

2p
exp � 1

2
ln sð Þ � l

r

� �2
( )

; s [ 0; ð13Þ
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where s is the speed in km/h, and l and r are the parameters of the log-normal
distribution given by

l ¼ ln
E½s�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var s½ � þ E½s�2
q

8

>

<

>

:

9

>

=

>

;

and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
var½s�
E½s�2

þ 1

( )

v

u

u

t ; ð14Þ

where E½s� and var½s� are the expected value and the variance of s respectively. For
the mentioned sample of travelling times, assumed to represent the normal traffic
conditions in our application, one has E s½ � ¼ 28 km/h and var s½ � ¼ 44:84; leading
to l0 ¼ 3:3044 and r0 ¼ 0:2354:

For the over-congested traffic conditions one has E s1½ � ¼ 15 km/h. It was
assumed that, for this situation, the speed is also represented by a log-normal dis-
tribution. It was assumed further that the coefficient of variation is the same for
hypotheses H1 and H0, i.e. CV ¼

ffiffiffiffiffiffiffiffiffiffiffi

44:84
p

=28:0 ¼ 0:239. Depending on real data,
this assumption may be changed, fitting a value of var s1½ � directly over the real data.

Thus, for the over-congested traffic condition in our application one has var s1½ � ¼
C2

V � E½s1�2 ¼ 12:852; leading to l1 = 2.680 and r1 ¼ r0 ¼ 0:2354: Substituting
(13) into (11) and (12), and making the necessary simplifications, one gets the SPRT
parameter,

p�m ¼ m ln
r0

r1

� �

þ 1
2

Xm

i¼1

lnðsðiÞÞ � l0

r0

� �2

� 1
2

Xm

i¼1

ln sðiÞ
� �

� l1

r1

" #2

; ð15Þ

where m is the sequential number of the test and sðiÞ is the vehicle speed measured
at stage i along the route within the district (Fig. 2).

At each regeneration point (stage) the SPRT value p�m (15) is computed.
Depending on the SPRT value, three scenarios are defined:

(a) scenario sc ¼ 0; when p�m�B;
(b) scenario sc ¼ 1; when p�m�A;
(c) scenario sc ¼ 2;when B\p�m\A.

Countermeasures are taken if scenario sc ¼ 1 occurs; otherwise, the routing
process continues unchanged until the next stage. Figure 3 shows a schematic
representation of the vehicle routing sequence and the decision stage where the
SPRT is performed. Assume that the vehicle agent AGA left the depot with the
assignment of n visits. Suppose the sequential test indicates the occurrence of
hypothesis H1 at stage 3, as shown in Fig. 3. At that point, the on-board computer
checks how many of the remaining visits should be transferred to another vehicle
agent. Let k be the number of visits to be transferred. Upon negotiation, agent AGB

agrees to perform the k tasks. Of course, depending on the number of visits to be
transferred, more than one agent can be involved in the transference.
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Transference of Tasks

Let i be the actual stage of the routing process. Recall that stage i corresponds to
the instant when the ith pick-up service has just terminated, and the vehicle is
ready to depart to the next stop. Let us analyse first the occurrence of incipient

faults. Define sðhÞi as the cumulative vehicle time along the route, measured from
the departure from the depot, up to stage i, given hypothesis h (either h ¼ 0, or
h ¼ 1) occurs. It is given by

sðhÞi ¼ tLH1 þ
Xi

j¼2
tðhÞj�1; j þ

Xi

j¼1
tðSTÞ
j : ð16Þ

Fig. 2 Fitting a log-normal distribution to the local speed

Fig. 3 The vehicle routing sequence and the decision stage
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On the other hand, let xðhÞi;j be the elapsed time from the actual stage i to stage
j (j [ i), assuming hypothesis h occurs, and also assuming that the vehicle returns
to the depot just after visit j

xðhÞi;j ¼
X j

m¼iþ1
tðhÞm�1;m þ

X j

m¼i
tðSTÞ
m þ tLH2 ð17Þ

We have assumed in the application that all random variables are independent.

Due to the central limit theorem and for i sufficiently large, variable xðhÞi;j can be
approximately represented by a normal distribution. Thus, for a 98 % significance

level, the maximum expected value of xðhÞi;j is

xðhÞi;j ¼ max xðhÞi;j ffi E½xðhÞi;j � þ 2:06
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var½xðhÞi;j

q

ð18Þ

At the beginning of the routing process is not yet known which traffic condition
is prevailing, thus hypothesis H0 (which shows higher probability) is assumed, i.e.
h ¼ 0. Further, at every stage i the SPRT is performed. Suppose scenario h ¼ 0
occurs. This indicates that the routing process should proceed unchanged, with
hypothesis H0 prevailing. On the other hand, suppose scenario h ¼ 1 occurs,
meaning one should accept hypothesis H1. Then, in order to define the possible
number of visits to be performed in the route, one has to seek for the largest value
of j such that the expected total time to accomplish the tasks is not greater than H

sðhÞi þ �xðhÞi; j �H; with h ¼ 1 and j [ i: ð19Þ

Thus, the total number of visits to be performed in the tour is n
0 ¼ iþ j, and the

number of visits to be transferred to other agents is nT ¼ n� ðiþ jÞ, which rep-
resents the expected number of incipient faults in the application. Of course, since
nT tasks are transferred, there will be less tasks remaining to be considered at the
next stages of the process, i.e. n n0, with n

0
\n:

After handling incipient faults, the model investigates the occurrence of abrupt
faults. Here, an abrupt fault refers to the occurrence of unperformed tasks at the
end of a daily vehicle cycle occasioned by exceptional unpredictable delays at
OEM premises when picking-up manufactured orders, lorry breakdowns when
travelling along the route, etc. At each decision stage the on-board system esti-
mates the maximum cycle time to perform all visits, considering the effective
elapsed time so far, plus the eventual observed delays and the remaining visits to
be done. If the daily cycle time limit is surpassed, the on-board system estimates
how many visits are to be transferred to other agents.

Suppose an exceptional and unpredictable manufacturing delay Di occurs at
stage i. Care must be taken not to consider as exceptional delays situations already
contemplated in historical data variability. An exceptional delay rm may also
occur at a transport link m. Relation (19) is now modified as follows
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sðhÞi þ xðhÞi;j þ Di þrm�H; with h ¼ 0 or 1: ð20Þ

Again, one looks for the largest value of j such that the cycle time constraint is
respected, and estimating the number of remaining visits that will be performed
and the tasks that have to be transferred to other agents.

Simulation Results

The simulation of the dynamic model for n ¼ 22; with 20,000 replications and
assuming over-congested traffic conditions in 20 % of the working days, resulted
in a 1.63 % rate of transferred tasks during a typical working cycle. From that,
1.50 % of the transferences were generated by incipient faults, and 0.13 % by
abrupt faults. The transference total of 1.63 % is less than the 1.94 % level of
unperformed tasks observed in the static case. This happens because, as the
sequential test is performed, followed by abrupt fault detection, the number of
remaining tasks to be done decreases, thus reducing the possibility of occurring
other additional faults. Figure 4 shows that the occurrence of four transferred tasks
per cycle is the most frequent situation in the dynamic case. In fact, since it takes
some time until the SPRT can detect hypothesis H1, the number of prospective
tasks to be transferred tends to increase, and are likely to happen all at the same
moment. Abrupt tasks also occur, but at a significantly reduced frequency.

On the other hand, considering only the days when hypothesis H1 occurred, the
rate of transferred tasks was 7.93 %, from which 7.50 % was generated by
incipient faults and 0.43 % by abrupt faults. In those two situations it was admitted
Di ¼ 0 and rm ¼ 0 in (20), meaning that abrupt faults were not generated by
exceptional delays, but were occasioned by intrinsic variations in the random
variables that form the cycle time. Of course, if those elements were not nil, the
results would reflect their presence.

Fig. 4 Dynamic routing:
transferred tasks per vehicle
cycle
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Conclusions

Although potentially suitable for applications, a number of points are still open for
further research. First, it remains to be investigated the criteria to decide which
tasks should be transferred to other agents, considering the vehicle routing con-
figuration and the corresponding schemes of other prospective agents. Another
important point is that, depending on the OEM plant locations and the time of the
day, it might be impossible to transfer tasks, requiring other anticipating measures
from the central depot. A third question refers to the routing optimization process
based on the TSP criterion, which is the prevalent case in most dynamic routing
problems reported in the literature, where one searches for the route that minimizes
travelled distance or time. If the components or products of the diverse OEM
manufacturing plants show different added values, the ones with the highest values
should not be located at the end of the picking up process due to the higher
inventory costs occasioned by unperformed tasks. Further research is planned with
the objective of developing new heuristics to solve this kind of vehicle routing
problem incorporating product value considerations in the optimization criteria.
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