
Chapter 2
Calibration of Omnidirectional Cameras
Using a DLT-Like Approach

Abstract In this chapter, we present a new calibration technique that is valid for
all single-viewpoint catadioptric cameras. We are able to represent the projection of
3D points on a catadioptric image linearly with a 6×10 projection matrix, which uses
lifted coordinates for image and 3D points. This projection matrix can be linearly
computed from 3D to 2D correspondences (minimum 20 points distributed in three
different planes). We show how to decompose it to obtain intrinsic and extrinsic
parameters. Moreover, we use this parameter estimation followed by a nonlinear
optimization to calibrate various types of cameras. Our results are based on the
sphere camera model. We test our method both with simulations and real images,
and we analyze the results performing a 3D reconstruction from two omnidirectional
images.

2.1 Introduction

Since their introduction to the computer vision community, catadioptric
omnidirectional cameras have been utilized in many application areas such as surveil-
lance, tracking, tele-presence, visual navigation, localization and SLAM, structure
from motion, active vision, visual odometry, photogrammetry, camera networks,
reconstruction of cultural heritage, among others.

Camera calibration is essential when we want to extract metric information from
images. It establishes a relationship between the 3D rays and their corresponding
pixels in the image. This relationship makes possible to measure distances in a real
world from their projections on the images (Faugeras 1993). Camera calibration is
basically composed of two steps. The first step consists of modeling the physical and
optical behavior of the sensor through a geometric-mathematical model. There exist
several approaches that propose different models to deal with central catadioptric
systems (Kang 2000; Svoboda and Pajdla 2002; Scaramuzza et al. 2006; Toepfer and
Ehlgen 2007; Geyer and Daniilidis 2000). The second step consists of estimating
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the parameters that compose this model using direct or iterative methods. These
parameters are of two types, intrinsic and extrinsic. The intrinsic parameters basically
consider how the light is projected through the mirror and the lens onto the image
plane of the sensor. The extrinsic parameters describe the position and orientation of
the catadioptric system with respect to a world coordinate system.

Several methods have been proposed for calibration of catadioptric systems.
Some of them consider estimating the parameters of the parabolic (Geyer and
Danilidis 2002a; Kang 2000), hyperbolic (Orghidan et al. 2003), and conical
(Cauchois et al. 1999) mirrors together with the camera parameters. Some others
separate the geometry of the mirror from the calibration of the conventional camera
(Svoboda and Pajdla 2002; Moral and Fofi 2007). Calibration of outgoing rays based
on a radial distortion model is another approach. Kannala and Brandt (2004) used
this approach to calibrate fisheye cameras. Scaramuzza et al. (2006) and Tardit et al.
(2006) extended the approach to include central catadioptric cameras as well. Mei
and Rives (2007), on the other hand, developed another Matlab calibration toolbox
that estimates the parameters of the sphere camera model. Parameter initialization
is done by user input, namely, the location of the principal point and depiction of a
real-world straight line in the omnidirectional image (for focal length estimation).

In this chapter a new method to calibrate central catadioptric systems is proposed.
This method was previously shown in Bastanlar et al. (2008) and an improved version
was presented in Puig et al. (2011), which also includes: the studying of the use
only two planes and additional constraints to perform the calibration; the relation
between the intrinsic parameters of the sphere camera model and the actual camera;
and a 3D reconstruction experiment to show the effectiveness of the approach. In
this work, the calibration theory of central cameras proposed by Sturm and Barreto
(2008) is put into practice. We compute the generic projection matrix, Pcata, with
3D–2D correspondences, using a straightforward DLT-like [Direct Linear Transform
(Abdel-Aziz and karara 1971)] approach, i.e., by solving a linear equation system.
Then, we decompose Pcata to estimate intrinsic and extrinsic parameters. Having
these estimates as initial values of system parameters, we optimize the parameters
based on minimizing the reprojection error. A software version of our method is
available at the webpage.1 When compared with alternate techniques our approach
has the advantage of not requiring input for parameter initialization and being able to
calibrate perspective cameras as well. Although it only requires a single catadioptric
image, it must be of a 3D calibration object.

2.2 Generic Projection Matrix Pcata

As explained in Sect. 1.2, a 3D point is mathematically projected to two image points.
Sturm and Barreto (2008) represented these two 2D points via the degenerate dual
conic generated by them, i.e., the dual conic containing exactly the lines going

1 http://webdiis.unizar.es/~lpuig/DLTOmniCalibration/Toolbox.tar.gz

http://dx.doi.org/10.1007/978-1-4471-4947-7_1
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through at least one of the two points. Let the two image points be q+ and q−;
the dual conic is then given by

� ∼ q+qT− + q−qT+ (2.1)

The vectorized matrix of the conic can be computed as shown below using the
lifted 3D point coordinates, intrinsic and extrinsic parameters.

vsym(�) ∼ ̂K6×6Xξ
̂R6×6 (I6 T6×4) Q̂10 (2.2)

Here, R represents the rotation of the catadioptric camera. Xξ and T6×4 depend
only on the sphere model parameter ξ and the position of the catadioptric camera
C = (tx , ty, tz) respectively, as shown here:

Xξ =

⎛
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(2.3)
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⎟

⎠

(2.4)

Thus, a 6 × 10 catadioptric projection matrix, Pcata, can be expressed by its
intrinsic and extrinsic parameters, like the projection matrix of a perspective camera.

Pcata = ̂KXξ
︸︷︷︸

Acata

̂R6×6(I6T6×4)
︸ ︷︷ ︸

Tcata

(2.5)

2.2.1 Computation of the Generic Projection Matrix

Here, we show the way used to compose the equations using 3D–2D correspondences
to compute Pcata. Analogous to the perspective case ([q]×PQ = 0), we write the
constraint based on the lifted coordinates (Sturm and Batteto 2008):

̂[q]× Pcata Q̂ = 0 (2.6)
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This is a set of 6 linear homogeneous equations in the coefficients of Pcata. Using
the Kronecker product, this can be written in terms of the 60-vector pcata containing
the 60 coefficients of Pcata:

(Q̂T ⊗ ̂[q]×)pcata = 06 (2.7)

Stacking these equations for n 3D–2D correspondences gives a system of equations
of size 6n × 60, which can be solved by linear least squares, e.g., using the Singular
Value Decomposition (SVD). Note that the minimum number of required correspon-
dences is 20: a 3 × 3 skew symmetric matrix has rank 2, its lifted counterpart rank
3. Therefore, each correspondence provides only 3 independent linear constraints.

2.3 Generic Projection Matrix and Calibration

The calibration process consists of getting the intrinsic and extrinsic parameters of a
camera. Once Pcata has been computed from point correspondences, our purpose is
to decompose Pcata as in (4.10). Consider first the leftmost 6 × 6 submatrix of Pcata:

Ps ∼ ̂KXξ
̂R (2.8)

Let us define M = PsD−1PT
s . Using the properties given in (1.24) and knowing

that for a rotation matrix R−1 = RT, we can write ̂R−1 = D−1
̂RTD. And from that

we obtain D−1 = ̂RD−1
̂RT which we use to eliminate the rotation parameters:

M ∼ ̂KXξ
̂R D−1

̂RTXT
ξ
̂KT = ̂KXξ D−1XT

ξ
̂KT (2.9)

Equation (2.9) holds up to scale, i.e., there is a λ with M = λ̂KXξ D−1XT
ξ
̂KT. For

initialization we assume that the camera is well aligned with the mirror axis, i.e.,

assume that Rp = I, thus K = Ap =
(

f 0 cx
0 f cy
0 0 1

)

.

We then use some elements of M to extract the intrinsic parameters:

M16 = λ
(−( f 2ξ2) + c2

x

(

ξ4 + cx (1 − ξ2)2
))

M44 = λ

(

f 2

2
+ c2

x

(

2ξ4 + (1 − ξ2)2
)

)

M46 = λcx
(

2ξ4 + (1 − ξ2)2
)

M56 = λcy
(

2ξ4 + (1 − ξ2)2
)

M66 = λ
(

2ξ4 + (1 − ξ2)2
)

(2.10)

http://dx.doi.org/10.1007/978-1-4471-4947-7_4
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The intrinsic parameters are computed as follows:

cx = M46

M66
cy = M56

M66
ξ =

√

√

√

√

√

M16
M66

− c2
x

−2
(

M44
M66

− c2
x

)

f =
√

2(2ξ4 + (1 − ξ2)2)

(

M44

M66
− c2

x

)

(2.11)

After extracting the intrinsic parameters matrix Acata of the projection matrix, we
are able to obtain the 6 × 10 extrinsic parameters matrix Tcata by multiplying Pcata
with the inverse of Acata:

Tcata = ̂R6×6(I6T6×4) ∼ (̂KXξ )
−1Pcata (2.12)

Hence, the leftmost 6 × 6 part of Tcata will be the estimate of the lifted rotation
matrix ̂Rest. If we multiply the inverse of this matrix with the rightmost 6 × 4 part of
Tcata, we obtain an estimate for the translation (T6×4). This translation should have
an ideal form as given in (2.4) and we are able to identify translation vector elements
(tx , ty, tz) from it straightforwardly.

We finally have to handle the fact that the estimated ̂Rest will not, in general, be
an exact lifted rotation matrix. This lifted rotation matrix in particular is oversized
since it considers the lifting of a full rotation matrix ̂R = ̂Rz(γ )̂Ry(β)̂Rx (α). For
illustration in (2.13) we show the lifting of a rotation matrix around the x-axis.

̂Rx (α) =

⎛
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⎠

(2.13)

Since Pcata has been estimated up to scale it is impossible to extract the rotation
components from single elements of ̂Rest. To deal with this problem we algebraically
manipulate the ratios between the elements of this lifted matrix and we extract the
angles one by one. First, we recover the rotation angle around the z axis, γ =
tan−1

(

̂Rest,51

̂Rest,41

)

. Then, ̂Rest is modified by being multiplied by the inverse of the

rotation around the z axis, ̂Rest = ̂R−1
z (γ )̂Rest. Then, the rotation angle around the y
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axis, β, is estimated and ̂Rest is modified β = tan−1
(

−̂Rest,52

̂Rest,22

)

, ̂Rest = ̂R−1
y (β) ̂Rest.

Finally, the rotation angle around the x axis, α, is estimated as α = tan−1
(

̂Rest,42

̂Rest,22

)

.

2.3.1 Other Parameters of Nonlinear Calibration

The intrinsic and extrinsic parameters extracted in closed-form in Sect. 2.3 are not
always adequate to model a real camera. Extra parameters are needed to correctly
model the catadioptric system, namely, tilting and lens distortions.

As mentioned before ̂K = ̂ApRp = ̂Ap̂Rp where Rp is the rotation between
camera and mirror coordinate systems, i.e., tilting. Tilting has only Rx and Ry

components, because rotation around the optical axis, Rz , is coupled with the external
rotation around the z axis of the entire catadioptric system. Note that tilting angles
of the sphere camera model are not equivalent to the tilting angles of the actual
perspective camera looking at the mirror.

As is well known, imperfections due to lenses are modeled as distortions for
camera calibration. Radial distortion models contraction or expansion with respect
to the image center and tangential distortion models lateral effects. To add these
distortion effects to our calibration algorithm, we employed the approach of Heikkila
and Silven (1997).

Radial distortion:

Δx = x(k1r2 + k2r4 + k3r6 + · · · )
Δy = y(k1r2 + k2r4 + k3r6 + · · · ) (2.14)

where r = √

x2 + y2 and k1, k2 . . . are the radial distortion parameters. We observe
that estimating two parameters is enough for an adequate estimation. Tangential
distortion:

Δx = 2p1xy + p2(r2 + 2x2)

Δy = p1(r2 + 2y2) + 2p2xy
(2.15)

where r = √

x2 + y2 and p1, p2 are the tangential distortion parameters.
Once we have identified all the parameters to be estimated we perform a nonlinear

optimization to compute the whole model. We use the Levenberg–Marquardt method
(LM).2 The minimization criterion is the root mean square (RMS) of distance
between a measured image point and its reprojected correspondence. Since the pro-
jection equations we use map 3D points to dual image conics, we have to extract the
two potential image points from it. The one closer to the measured point is selected

2 Method provided by the function lsqnonlin in Matlab.
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and then the reprojection error measured. We take as initial values the parameters
obtained from Pcata and initialize the additional 4 distortion parameters and the tilt
angles in Rp, by zero.

2.3.2 Algorithm to Compute Pcata

Here we summarize the algorithm used to compute the generic projection matrix
Pcata.

1. Linear Solution. Using 3D–2D correspondences we compute Pcata by a DLT-like
approach.

2. Intrinsic/Extrinsic Parameter Extraction. Assuming that the perspective cam-
era is perfectly aligned with the mirror axis, i.e., there is no tilting and that
the images are not distorted. We extract from the linear solution, the intrinsic
(ξ, f, cx , cy) and extrinsic (α, β, γ, tx , ty, tz) parameters in closed-form.

3. Initialization Vector. An initialization vector is constructed with the extracted
parameters. Two parameters are added to consider the tilting angles (rx , ry) and
four more corresponding to the radial (k1, k2) and tangential (p1, p2) distortion.

4. Nonlinear Optimization Process. Using this vector as an initialization vector,
we perform a nonlinear optimization process using the LM algorithm. The mini-
mization criterion is the reprojection error.

2.4 Theoretical and Practical Issues

In the last section, we explained that twenty 3D–2D correspondences are enough to
compute the calibration of the central catadioptric systems. In principle these twenty
correspondences can be located anywhere inside the FOV of the catadioptric system.
Since we want to construct a feasible calibration system based on planar patterns
we restrict the 3D points to be located in planes. From simulations we observed that
the minimum number of planes where the 3D points should be located is three in
the general case. In particular, two planes can be used to compute Pcata if several
constraints are imposed, but the simplicity of using linear equations is lost.

Since we restrict the calibration points to lie on planes (planar grid-based
calibration) some degeneracies can appear if the calibration points are located in
a particular configuration. Something similar to the pin-hole camera case with the
twisted cubic (Buchanan 1988), for which calibration fails even if the points lie on
more than two planes. However, a complete analysis of such degeneracies is out of
the scope of this book.

In this section, we present a proof that points lying in three different planes are
required to linearly and uniquely compute the generic projection matrix Pcata. We
also show that under several assumptions we can compute Pcata from points lying in
just two planes.
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2.4.1 Three Planes are Needed to Compute Pcata
Using Linear Equations

Here we show that in order to compute Pcata, the 3D calibration points must lie in at
least 3 different planes. We first prove that two planes are not sufficient. Let 	1 and
	2 be the two planes. Hence, each calibration point Q satisfies

(

	T
1 Q

) (

	T
2 Q

) = 0.

This can be written as a linear constraint on the lifted calibration points: pTQ̂ = 0,
where the 10-vector p depends exactly on the two planes. Thus, if Pcata is the true
6 × 10 projection matrix, then adding some multiple of pT to any row of Pcata
gives another 6 × 10 projection matrix, P̄cata, which maps the calibration points to
the same image entities as the true projection matrix. We may write the ambiguity as

P̄cata = Pcata + vpT (2.16)

where v is a 6-vector and represents the six degrees of freedom (DoF) on Pcata that
can not be recovered using only linear projection equations and calibration points
located in only two planes. This is not the case for perspective cameras, where two
planes are enough to compute the 3 × 4 perspective projection matrix.

For three planes, there is no linear equation as above that holds for all calibration
points. Hence, also supported by our experiments, it seems plausible that three planes
are sufficient for uniquely computing the projection matrix. Note that by planes we
do not mean that calibration grids have to be composed of three or more planar grids.
The planes can be virtual: whenever it is possible to fit the two planes to the whole
set of 3D points, Pcata can not be computed.

2.4.2 Adding Constraints to Estimate the Projection
Matrix from Points on Two Planes Only

In the last section we observe that to compute Pcata linearly and uniquely, 3D points
must be sufficiently well distributed, such that no two planes contain all of them. In
this section, we analyze what prior information allows nevertheless to compute the
calibration parameters using two planes. We know by (2.16) that the true projection
matrix is related to any other solution by

Pcata = P̄cata − vpT (2.17)

Consider the equation to eliminate the extrinsic parameters:

M ∼ PsD−1PT
s (2.18)

where Ps is the leftmost 6 × 6 submatrix of Pcata. Now we redefine it as follows:
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M ∼ (P̄s − vpT
s )D−1(P̄s − vpT

s )
T

(2.19)

where P̄s is the leftmost 6 × 6 submatrix of P̄cata and ps is the first 6 elements of
the 10-vector p. Assuming that the two planes are perpendicular to each other, we
can write 	1 = [1, 0, 0, 0]T and 	2 = [0, 1, 0, 0]T which gives us ps =
[0, 1, 0, 0, 0, 0]T (we obtain p by vsym(	1	

T
2 + 	2	

T
1 ) since 	1	

T
2 represents a

degenerate dual conic on which all Q lie).
Let us develop ( 2.19):

M ∼ P̄sD−1P̄T
s

︸ ︷︷ ︸

M̄

− P̄sD−1ps
︸ ︷︷ ︸

b

vT − v pT
s D−1P̄s

︸ ︷︷ ︸

bT

+v pT
s D−1ps

︸ ︷︷ ︸

ρ

vT (2.20)

M ∼ M̄ − bvT − vbT + ρvvT (2.21)

We can compute ρ, it is 1
2 (D22 = 2). So we just need to obtain elements of v to

recover Pcata. The principal point can be computed using different approaches, one
of these is shown in Mei and Rives (2007), which requires the user interaction. Let
us suppose we know the principal point (cx , cy), and we put the origin of the image
reference system on it (cx = 0, cy = 0). Then we have:

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f 4 0 0 0 0 − f 2ξ2

0 f 4

2 0 0 0 0

0 0 f 4 0 0 − f 2ξ2

0 0 0 f 2

2 0 0

0 0 0 0 f 2

2 0

− f 2ξ2 0 − f 2ξ2 0 0 2ξ4 + (1 − ξ2)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.22)

From this matrix we can extract 6 equations to solve for the elements of v. For
example: M11 − M33 = 0, M11 − 2M22 = 0, M44 − M55 = 0, M13 = 0, M35 = 0,
M56 = 0.

We test the case where fx = fy using simulated data with perfect 3D–2D
correspondences. We observe that as explained in theory, the only modified col-
umn is the second one, described by the vector ps = [0, 1, 0, 0, 0, 0]T. In this case
we are able to obtain the correct Pcata. However, when we added Gaussian noise to
the 3D–2D correspondences, more than one column is modified making very diffi-
cult to recover the real projection matrix. Therefore, we conclude that the approach
using points lying in just two planes is not suitable to compute the generic projection
matrix in real situations. We continue our experiments with calibration grids having
three planes.
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2.5 Calibration Experiments with a Simulated
Environment

We use a simulated calibration object having 3 planar faces which are perpendicular
to each other. The size of a face is 50 × 50 cm. There are a total of 363 points,
since each face has 11 × 11 points and the distance between points is 5 cm. The
omnidirectional image fits in a 1 Megapixel square image. To represent the real
world points we expressed the coordinates in meters, so they are normalized in
a sense. This is important because we observed that using large numerical values
causes bad estimations with noisy data in the DLT algorithm. Normalization of image
coordinates is also performed since we observed a positive effect both on estimation
accuracy and the convergence time. Therefore, in the presented experiments, 3D point
coordinates are in meters and image coordinates are normalized to be in the same
order of magnitude, this is performed by dividing the image coordinates by a constant.

We performed experiments for different settings of intrinsic parameters and
varying position of the 3D calibration grid. We especially tested the accuracy of
calibration to variations in the intrinsic parameters (ξ and f ), the distance between
the camera and the grid and the orientation of the grid w.r.t. the camera. In all these
cases, we measure the errors in final estimates of ξ and f , the main parameters
of the sphere camera model. Errors are depicted in Fig. 2.1, where an individual
graph is plotted for each case for clarity. In all experiments, Gaussian noise with
σ = 1 pixel is added to the actual coordinates of grid corners. The plotted errors are
errξ = 100 · |ξnonlin − ξreal| /ξreal and err f = 100 · | fnonlin − freal| / freal. For all the
nodes in the graphs, the experiment was repeated 100 times and the mean value of
estimates is plotted.

Figure 2.1a shows the effect of changing distance between the camera and the
grid. From left to right in the graph distance-to-grid increases and distance values

(a) (b) (c)

Fig. 2.1 Relative errors for ξ and f after nonlinear optimization (in percent) for varying intrinsic
parameters and varying position of the 3D calibration grid. For all the nodes in the graphs, the
experiment was repeated 100 times and the mean value of estimates is plotted. Real intrinsics,
distance and orientation values are selected randomly from the ranges given in x-axis. Intrinsic
parameters range 1: (ξ, f ) = [(0.96, 360) (0.84, 300)], range 2: (ξ, f ) = [(0.84, 300) (0.72, 250)],
range 3: (ξ, f ) = [(0.72, 250) (0.60, 210)]. Distance-to-grid (in cm) range 1: [40 50], range 2: [50
60], range 3: [60 70]. In a, b and c, errors depicted versus increasing distance-to-grid, decreasing
(ξ, f ) pairs and increasing rotation angle respectively
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are selected randomly within the given ranges. When the distance is small, we reach
an “optimal” position, such that the grid fills the image well. As the grid moves
away from the omnidirectional camera, its image gets smaller and smaller. Exam-
ples of the omnidirectional images generated are shown in Fig. 2.2. In Fig. 2.2a,
distance-to-grid is 45 cm, whereas in Fig. 2.2b it is 60 cm. The quality of parameter
estimation decreases with increasing distance. Since the grid covers a smaller area,
the same amount of noise (in pixels) affects the nonlinear optimization more and
errors in nonlinear results increase as can be expected. We observe the importance
of a good placement of the calibration grid, i.e., such that it fills the image as much
as possible.

Figure 2.1b shows the effect of real ξ and f values on the estimation error (for two
different distance-to-grid value ranges). From left to right in the graph, ξ and f values
decrease. They decrease in parallel, otherwise decreasing ξ with fixed f would cause
grid to get smaller in the image. We truncated (ξ , f ) pairs at ξ = 0.6 since even smaller
ξ values are unlikely for omnidirectional cameras. We observe that larger (ξ , f ) values
produce slightly better results especially for increased distances. This observation
can also be made in Fig. 2.1a since the errors are depicted with two different ranges
of intrinsic parameter values. The reason is that for fixed distance-to-grid values,
higher (ξ , f ) spreads the grid points to a larger area in the image, which decreases
the effect of noise. Observe Fig. 2.2b with Fig. 2.2c, where distance-to-grid values
are equal but Fig. 2.2b has higher (ξ , f ).

Figure 2.1c shows the effect of changing orientation of the grid w.r.t. the camera.
This is expressed in terms of the angle between the optical axis of the omnidirectional
camera and the grid center. The grid is not rotated independently from the camera
axis because camera (mirror) has to see the inside of the 3D grid always. Figure 2.2d
shows the case when the grid is rotated so that the angle between its center and
camera optical axis is 40◦. Compared with Fig. 2.2b, where the intersection of the
three planes of the grid is at the image center. We observe improvement with rotation
specially for increased distance-to-grid since grid points are more spread and effect
of noise decreases.

In Table 2.1, we list the results of the algorithm after linear (DLT) and nonlinear
steps for a few cases. Our main observation is that the errors in linear estimates,
ξDLT and fDLT, are biased (values are smaller than they should be). For all the
cases, however, the true intrinsic parameters are reached after nonlinear optimization,
modulo errors due to noise.

2.5.1 Estimation Errors for Different Camera Types

Here we discuss the intrinsic and extrinsic parameter estimation for the two most
common catadioptric systems: hypercatadioptric and paracatadioptric, with hyper-
bolic and parabolic mirrors respectively. We also discuss calibration results for per-
spective cameras.
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(a) (b)

(c) (d)

Fig. 2.2 Omnidirectional images generated with varying intrinsics, distance-to-grid, and orien-
tation. a (ξ, f ) = (0.96, 360), distance = 45 cm, no rotation. b (ξ, f ) = (0.96, 360), dis-
tance = 60 cm, no rotation. c (ξ, f ) = (0.76, 270), distance = 60 cm, no rotation. d (ξ, f ) =
(0.96, 360), distance = 60 cm, rotated by 40◦

2.5.1.1 Hypercatadioptric System

Table 2.2 shows nonlinear optimization results including the rotation and translation
parameters for fixed intrinsic parameters which corresponds to a hypercatadioptric
system. 3D pattern is used at the “optimal” grid position, i.e., it fills the omnidirec-
tional image like Fig. 2.2a. Results are in accordance with Table 2.1 and Fig. 2.1.

2.5.1.2 Paracatadioptric System

Here ξ = 1, which has a potential to disturb the estimations because Xξ becomes a
singular matrix. We observe that the results of the DLT algorithm are not as close
to the real values when compared to the hypercatadioptric system (cf. initial values
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Table 2.1 Initial and optimized estimates with different intrinsics and distance-to-grid values

Distance-to-grid

45 cm 60 cm

ξreal 0.96 0.8 0.96 0.80
freal 360 270 360 270
ξDLT 0.54 0.40 0.04 0.03
fDLT 361 268 243 190
ξnonlin 0.96 0.80 0.98 0.78
fnonlin 360 270 365 266
errξ 0.0 0.0 2.1 2.5
err f 0.0 0.1 1.4 1.5

Amount of noise: σ = 1 pixel. ξDLT, fDLT and ξnonlin, fnonlin are the results of the DLT algorithm and
nonlinear optimization respectively, errξ and err f are the relative errors, in percent after nonlinear
optimization

Table 2.2 Nonlinear optimization results for a hypercatadioptric system, 10 parameters (rotation,
translation, and intrinsic) are optimized

Real values σ = 0.5 σ = 1

Initial Estimated Initial Estimated

f 360 361 360 354 360
cx 500 503 500 505 500
cy 500 498 500 509 500
ξ 0.96 0.84 0.96 0.53 0.96
Rx (α) −0.62 −0.60 −0.62 −0.40 −0.62
Ry(β) 0.62 0.62 0.62 0.65 0.62
Rz(γ ) 0.17 0.15 0.17 0.18 0.17
tx 0.30 0.38 0.30 0.45 0.30
ty 0.30 0.40 0.30 0.44 0.30
tz 0.20 0.05 0.20 0.01 0.20
RMSE – – 0.70 – 1.42

Distance-to-grid is 45 cm and grid center coincides with camera optical axis (no rotation)

in Table 2.2). However, the nonlinear optimization estimates the parameters as suc-
cessful as the hypercatadioptric examples given in Table 2.2.

2.5.1.3 Perspective Camera

In the sphere camera model, ξ = 0 corresponds to the perspective camera. Our
estimations in linear and nonlinear steps are as successful as with the hypercatadiop-
tric case and thus not shown in detail here.
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2.5.2 Tilting and Distortion

It seems intuitive that small amounts of tangential distortion and tilting have a similar
effect on the image. In our simulations we observed that trying to estimate both of
them does not succeed. Therefore, we investigate if we can estimate tangential dis-
tortion of camera optics by tilt parameters, or estimate tilt in the system by tangential
distortion parameters.

When there exists no tilt but tangential distortion and we try to estimate tilting
parameters, we observed that the direction and amount of tiltx , tilty , cx and cy

changes proportionally to the tangential distortion applied and the RMSE decreases.
However, the RMSE does not reach as low values as when there is no distortion. In
the noiseless case, for example, the RMSE is not zero. Hence, we concluded that
tilt parameters compensate the tangential distortion effect up to some extent, but not
perfectly. We also investigated if tilting can be compensated by tangential distortion
parameters and we had very similar results. Thus, tangential distortion parameters
have the same capability to estimate tilting.

2.6 Experiments with Real Images Using a 3D Pattern

In this section we perform experiments of camera calibration using a 3D pattern, cf.
Fig. 2.3a. The 3D pattern has been measured accurately doing a photogrammetric
reconstruction by bundle adjustment. We use 6 convergent views taken with a cali-
brated high-resolution camera (Canon EOS 5D with 12.8 Megapixel) and software
PhotoModeler. The estimated accuracy of the 3D model is better than 0.1 mm. The
omnidirectional images were acquired using a catadioptric system with a hyperbolic

(a) (b)

Fig. 2.3 a 3D pattern, b Omnidirectional image of the 3D pattern (1024 × 768 pixels)
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Table 2.3 Parameters
estimated using either
tangential distortion or
tilting angles

Real Using distortion Using tilting

f 279.84 297.24 306.11
cx 531.83 528.08 552.75
cy 407.98 406.28 427.89
ξ 0.96 0.86 0.93
RMSE 0 0.34 0.27

mirror.3 We computed the projection matrix Pcata from a total of 144 3D to 2D cor-
respondences and extracted the intrinsic and extrinsic parameters as explained in
Sect. 2.2. From simulations, we observed that we have better and faster estimations
if the 3D–2D correspondences are in the same order of magnitude. So 3D points are
given in meters and 2D points are normalized in all the experiments. A second evalu-
ation of the calibration accuracy is performed by a Structure from Motion experiment
from two omnidirectional images.

2.6.1 Intrinsic Parameters

The first experiment is focused on obtaining the intrinsic parameters from Pcata to
get initial estimates of these values. As mentioned previously, we do not compute
tilting and distortion parameters from Pcata but it is possible to include them in the
nonlinear optimization. From simulations we observed that we can compute either
the tangential distortion or the tilting parameters which are coupled and cannot be
separated. We tested which one of these (tangential distortion and tilting) can deal
better with the intrinsic parameter estimation. Table 2.3 shows a comparison of the
estimations performed with these two options. The real values given in the table were
computed using the calibration data of the perspective camera (previously calibrated)
and the mirror parameters (provided by the manufacturer).

Catadioptric camera calibration using tilting gives a better RMSE but the intrinsic
values obtained are far from the real ones. Estimation using distortion parameters
increase slightly the RMSE but the intrinsic parameters are close to the real ones,
except for ξ but this error can be attached to the configuration of the system (the
optical center of the perspective camera may not be exactly located at the other focal
point of the hyperbola describing the mirror) and not to the model.

After these results, we decided to use tangential distortion because it gives better
results and depicts better the real catadioptric system.

In order to verify our approach we compare our intrinsic parameter estimates to
the ones obtained by Mei and Rives (2007) (Table 2.4). As we can see neither Mei’s
approach nor Pcata approach can estimate the theoretic f and ξ parameters, but they
give a good estimation to cx and cy . Mei computes the initial values directly from the

3 Neovision H3S with XCD-X710 SONY camera.
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Table 2.4 Comparison between our method and Mei’s

Theoretic Pcata approach Mei and Rives (2007)

f 279.84 297.24 298.65
ξ 0.96 0.86 0.72
cx 531.83 528.02 528.15
cy 407.98 406.28 403.39

Table 2.5 Rotation and translation of the camera with respect to the 3D pattern

Experiment 1 Experiment 2 Experiment 3

Real Estimated Real Estimated Real Estimated

Rx –0.01 –0.02 –0.01 –0.003 –0.01 –0.002
Ry 0.02 0.02 0.02 0.01 0.02 0.03
Rz – – – – – –
tx 0.39 0.39 0.39 0.39 0.39 0.38
ty 0.21 0.21 0.33 0.33 0.23 0.23
tz –0.18 –0.18 –0.18 –0.18 –0.18 –0.18

RMSE 0.26 0.20 0.26

Rotation angles are in radians. Translations are in meters. Real values were computed by the
PhotoModeler software and a high-resolution camera

inner circle of the omnidirectional image and using information given by the user.
Our approach computes all the initial values from Pcata in closed form.

2.6.2 Extrinsic Parameters

To obtain ground truth extrinsic parameters we have taken two additional images with
the high-resolution camera, observing the omnidirectional camera and the pattern.
These images are added to the ones used to measure the 3D pattern. From this set of
images the orientation and translation of the camera with respect to the pattern are
computed. Location of the focal point was difficult since the points are not easy to
identify in the images and indeed inside the mirror.

We performed experiments with 3 different camera locations. Table 2.5 shows
the rotations and translations obtained from these experiments. Using PhotoMod-
eler software we were just able to compute the direction of the z-axis but not
the rotation around it. So we just show rotation estimations for the x and y axis.
We can observe that the extrinsic parameter estimation is performed with a good
accuracy having an average error of 0.0096 radians for rotations and 0.0022 m for
translations.
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(a) (b)

Fig. 2.4 a 3D pattern with the angles between the planes. b SfM configuration

2.6.3 Structure from Motion

The second experiment to evaluate the accuracy of our approach consists of obtain-
ing the Structure and Motion (SfM) from two omnidirectional images observing
the 3D pattern. Figure 2.4a shows the 3D pattern with the angles between the
planes composing it. Figure 2.4b depicts the configuration used to perform the SfM
experiment. Using the internal calibration provided by our method we compute the
corresponding 3D rays from each omnidirectional image (Fig. 2.5). We use these
correspondences of 3D rays to compute the essential matrix E which relates them.
From this matrix we compute two projection matrices P1 = [I|0] and P2 = [R|t].
Then, with these projection matrices and the 3D rays as input for a linear triangula-
tion method (Hartley and Zisserman 2000) we compute an initial 3D reconstruction.

Fig. 2.5 Images used in the SfM experiment
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Both the 3D reconstruction and the camera location are later refined by a nonlin-
ear optimization process. We use 144 points which were extracted manually from
the images. We measure the average error between the real 3D points and their
estimations and the angle between the planes. We use as ground truth the data com-
puted by the photogrammetric software. The angles between the planes as depicted
in Fig. 2.4a are α = 90.06◦, β = 89.60◦ and γ = 90.54◦. The estimated val-
ues are α = 89.22◦, β = 90.55◦ and γ = 89.73◦. We have an average error of
0.86◦. We also measure the accuracy of the 3D points. The dimensions of the pla-
nar grids used in the 3D pattern are 210 mm × 294 mm. We compute the Euclidean
distance between each reconstructed point and the ground truth. The average error
is 1.03 mm.

2.7 Closure

In this chapter, we presented a new calibration technique based on the sphere camera
model which is able to represent every single-viewpoint catadioptric system. We
employed a generic 6×10 projection matrix, which uses lifted coordinates for image
and 3D points. We estimated this projection matrix using 3D–2D correspondences.
We use a single catadioptric image of a 3D calibration pattern. From the decom-
position of this matrix we obtain an initial estimation of the intrinsic and extrinsic
parameters of the catadioptric system. We used this parameter estimation as the
initialization for a nonlinear optimization process. We are able to calibrate various
types of cameras. This method was tested both with simulations and real images.
Since the reprojection error is not definitive to show the good behavior of calibration
approaches, we also present a Structure from Motion experiment to test the accuracy
of our calibration method. For that reason we can provide error measurements in
both pixels and millimeters.
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