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Chapter 2
Review of Wheel-Rail Contact Models

Abstract This chapter describes the evolution of the theories for solving the
wheel-rail contact problem. The determination of the forces acting between wheel
and rail is definitely the most important question for the study of the dynamic
behaviour of a railway vehicle. In fact, the wheel-rail contact forces provide
several fundamental functions for the vehicle: the support action for the vehicle
load, the guidance action during the change of direction and the application of
traction and braking actions.

2.1 Statement of the Problem

The determination of the forces acting between wheel and rail is definitely the
most important question for the study of the dynamic behaviour of a railway
vehicle. In fact, the wheel-rail contact forces provide several fundamental func-
tions for the vehicle: the support action for the vehicle load, the guidance action
during the change of direction and the application of traction and braking actions.

The wheel-rail contact problem can be formulated as a rolling contact problem
between two nonlinear profiles in the presence of friction.

This is a problem of considerable complexity, both from the point of view of
mathematical-analytical formulation, and from the numerical point of view. It has
been studied by many authors in the past and it is still an important focus of rail
research activity in order to discover more accurate and efficient formulations.

According to the methodology adopted by de Pater [6–8], it is possible to split
the solution of the problem into four sub-problems:

• Geometrical Problem: Wheel-Rail profiles coupling for the identification of the
location of contact points and of the geometrical parameters of interest (local
curvatures, etc.);

• Normal Problem: calculation of the constraint forces acting between wheel and
rail, evaluation of shape and dimension of the contact areas and the corre-
sponding pressure distribution;
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• Kinematical Problem: determination of the condition of relative motion between
the wheel and rail, usually defined by the kinematic creepages;

• Tangential problem: calculation of the tangential forces generated by friction
and creepages in the contact area.

Each of the listed sub-problems can be solved with different methodologies; in
the literature, many alternative methods are proposed. In general, the most accu-
rate and complex methods require higher computational times, while simplified
methods give higher errors. In particular, the four sub-problems are not really
independent, but most complex methods require that they must be evaluated
simultaneously or with an iterative process. For example, the tangential forces can
modify the contact area, therefore an iteration between the normal problem and the
tangential problem can be necessary. Simplified methods usually neglect the
interaction between the sub-problems.

The kinematical and the geometrical problems can be solved analytically con-
sidering stylised profiles (e.g., conical wheel on a cylindrical rail), but considering
real non-linear profiles, the solution can be found only using numerical methods.

The forces acting between wheel and rail, generated by the contact constraints
due to the coupling of the two profiles, are strongly influenced by the motion of the
wheelset with respect to the track. On a real track, the presence of curves, gra-
dients, cant and track irregularities produce a variation along the track of the
normal forces and make their calculation more complex. Calculation of normal
forces is therefore usually performed using numerical methods; analytical calcu-
lation is possible only in cases of simplified (stylised) profiles, and is not useful in
cases of real vehicle simulations.

The calculation of the constraint forces can be made using three different
approaches:

2.1.1 Rigid Contact

In this case the wheel-rail interface is expressed by a set of algebraic equations that
therefore form a bilateral constraint given by the equations (for a single wheelset):

Wheelset Roll

h ¼ f1 y;w; sð Þ ð2:1Þ

Wheelset Vertical

z ¼ f1 y;w; sð Þ ð2:2Þ

where the independent variables are the lateral displacement of the wheelset y, the
wheelset yaw angle w and the longitudinal coordinate along the track mean line ‘‘s’’.
Some simplified approaches are only bi-dimensional, and the yaw angle influence is
neglected. In general, Eqs. 2.1 and 2.2 can be obtained by imposing the condition:
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MinjYC
d q; yCð Þ ¼ 0 ð2:3Þ

where d is the distance between the profiles, yC is the lateral coordinate of the
contact point and q is the state vector of the system. Basically, Eq. 2.3 minimises
the distance between the wheel and rail profile and, in cases of regular, monotone
and continuous profiles, can be achieved by imposing the tangent condition of the
two profiles. In a more general case (real profiles), it can be solved numerically by
finding the zeros of the distance function.

This condition allows the finding of the contact point locations which is a
fundamental task in order to calculate the contact forces. The calculation of the
contact points, since the profiles are usually defined using a wide number of points
(200 or more) is one of the most time consuming tasks in the contact force
calculation process. For this reason, the condition is usually pre-calculated for
different values of the lateral and yaw coordinates by generating bi-dimensional
tables. This approach is efficient and can be adopted in case the profiles are not
changed or moved (due to track irregularities) along the track. The case of track
irregularities can be included in a pre-calculated approach by using N-dimensional
tables (usually track irregularities can be defined using 4 or 6 additional coordi-
nates depending if those are defined with respect to the track or the rail).

The rigid approach has two important defects, the first depending on the fact
that the constraint is considered as bi-lateral, and therefore allows that traction
forces can act between wheel and rail preventing the lifting of the wheel even in
the case of track irregularities or other physical phenomena able to realistically
generate uplift.

The second problem is the fact that, in order to obtain a constraint equation
from the wheel and rail profiles, it is necessary that those profiles are regular
enough in order to be always tangent in a single point for each possible reciprocal
position. This formulation does not allow consideration of the case of double or
multiple point contact, and makes it difficult to apply it to the case or worn profiles.

Despite those limitations, the rigid contact is still one of the most commonly
used approaches in commercial multi body codes; this is because the algebraic
equations can be easily integrated into the differential algebraic equation solution
scheme of the codes, achieving a high computational efficiency.

2.1.2 Elastic Contact

In this case, wheel-rail constraint in the normal direction is simulated thought a
single side elastic contact element. The relative motion between the profiles
originates areas of possible intersection between the profiles, where a reaction
force proportional to the profiles intersection is applied. Normal contact forces can
be calculated as:
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KyC
� d q,yCð Þ if d q,yCð Þ\0

�

ð2:4Þ

This approach allows the use of worn profiles and the simulation of multiple
contact points (this obviously requires the definition of a normal force for each
contact point). The contact stiffness (Kyc) is very high, is non-linear and depends
on the contact area, therefore it should be calculated at each time step. Simplified
methods use a constant stiffness that can be estimated using an average Hertzian
stiffness for the nominated axle load.

In any case, this stiffness is very high (109 N/m) and creates computational
problems related to the high frequency arising for the vertical direction. Further-
more, in cases of elastic contact, the determination of the normal load and of the
contact points in cases of single/multiple contacts, does not depend only on the
independent variables of the wheelset (y, s, w) as shown by Eqs. 2.1 and 2.2, but
depends on the dynamic behaviour of the entire vehicle. All the state variables
defining the wheelset position (6 coordinate) are in this case independent, and
therefore no table approximation can be adopted. In the literature, many methods
have been proposed to solve the elastic contact problem; those can be basically
divided into Constant stiffness, Hertzian (single contact patch), Multi-Hertzian and
Non-Hertzian methods.

2.1.3 Quasi-Elastic Contact

This model has been developed [9–11] in order to allow the simulation using
simple algebraic equations of worn profiles and situations that would produce
multiple contact points. The result has been obtained by an opportune regulari-
sation of the function defining the profile distance, no longer expressed as a point
by point function, but as an averaged function. This has been made by Shupp,
Weidemann and Mauer [9] by averaging the distance function in the area of the
possible contact, by using the following formulation instead of Eq. 2.3:

e � ln

R yC;max

yC ;min
exp

d q; yCð Þ
e

� �

ds
R yC;max

yC;min
ds

0

@

1

A ¼ 0 with e [ 0 ð2:5Þ

where the distance function is weighted on the entire contact area (yc,max, yc,min).
This method is implemented in the Sim pack simulation package (see an example
in Fig. 2.1) and allows an important reduction of calculation times compared to the
elastic contact method. The method still has the problem of preventing the wheel
uplift.
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2.2 Tangential Problem: Evolution of Theories

The resolution of the tangential problem has been however the question that has
focused the attention of researchers, leading to define different contact theories.
Tangential forces arise due the relative motion between wheel and rail. From early
studies it was observed that the behaviour of a wheelset running on the rail could
not be considered as a ‘‘pure rolling’’ motion. In fact, the evidence shows the
motion is characterised by a ‘‘slow’’ sliding phenomena occurring at the contact.
This phenomena of small sliding has been described as a pseudo sliding (or pseudo
glissement) or micro-creepage or simply creepage; the forces arising from this
motion are therefore indicated as creep forces.

Although from the physical- mathematical point of view, the problem can be
considered as solved with the theory developed by Kalker [12] in 1967, research is
still relevant to develop algorithms computationally more efficient than those
proposed by Kalker.

The first models of contact formulated by Kliegens [13] and others were limited
to a simplified geometric solution of the problem, identifying a rigid contact point
between wheel and rail, and assuming a relative motion of pure rolling governed
by Coulomb’s law for necessary dynamic assessments.

The first experiments performed on steam locomotives by Carter in the 1930’s
to study issues related to traction (even using roller rigs), showed that the motion
of the vehicle was not of pure rolling either in stationary conditions; this means
that the peripheral speed of the wheel was not equal to the speed of the vehicle, but
it was lower for the trailing axles and higher for traction axles. By increasing the
traction torque applied to the axle, it was observed that, instead of a sudden
transition from a condition of perfect adhesion to a full slide condition that could
be assumed on the basis of a Coulomb friction model, the sliding condition
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Fig. 2.1 Differences between the rigid and quasi-elastic contact model in case of new profiles
(S1002/UIC60), obtained using Simpack
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gradually increased depending on the applied torque: this was the first observation
of creepage.

Considering a mono dimensional model referring only to the longitudinal
direction, according to Carter’s theory, the relative motion condition can be
expressed by defining the (longitudinal) kinematic creepage as:

n ¼ V0 � x � r0

V0
ð2:6Þ

where V0 is the longitudinal velocity of the vehicle, x is the angular velocity of the
wheel and r0 is the rolling radius.

Increasing the traction force F, the experimental results show that in a first
phase of the traction force is directly proportional to the creepage; the law can be
expressed as:

F¼ c � n ð2:7Þ

In this area, the phenomenon is governed by an elastic deformation of the
bodies and c is an appropriate constant depending on the geometry and the normal
load.

When the force approaches the saturation of the friction force, the trend
becomes non-linear; at this stage, in a portion of the contact area, a loss of
adhesion (localised slip) is generated. Further increasing the traction force causes
the proportion of sliding to increase until it reaches the limit set by Coulomb’s law,
when sliding occurs over the entire area:

F¼ l � N ð2:8Þ

Qualitative force behaviour is shown in Fig. 2.2 and compared with Coulomb’s
friction law.

Carter has developed a model of contact [14], considering elastic bodies and
therefore finite contact areas and assuming that the contact area is divided into a
portion where sliding occurs and another where there is adhesion with varying
proportions depending on the applied traction force.

The model proposed to calculate the size of the contact areas on the basis of the
Hertz theory for the case of contact between a cylinder and a plane. The total

a) b)

ε

FF

ε00

(a) (b)Fig. 2.2 a Coulomb friction
force, and b wheel-rail
friction force
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tangential forces exchanged between wheel and rail are calculated by integrating
the tangential stress on the entire contact area. To calculate the distribution of
tangential efforts, Carter introduced the hypothesis of an elastic half-space and
obtained an analytical solution.

In summary, the shear stress s can be calculated as the difference between two
circles, the first with a diameter equal to the size of the contact area (C1 shown in
Fig. 2.3) and the second with a radius a2 (C2), which varies depending on the
creepage n.

Carter assumed that the position of the lower circle represented the area of
adhesion, tangent to the bigger circle at the leading edge, on the side of the area
that is ‘‘coming’’ into contact because of the rolling of the wheel.

The main limitations of the Carter’s theory are that it is a mono-dimensional
theory that is not suitable for the study of lateral dynamics of vehicles, and sec-
ondly that the value of the coefficient of proportionality in the elastic region has
been incorrectly calculated using the formula:

c¼A �
ffiffiffiffiffiffiffiffiffi

r � N
p

ð2:9Þ

The first tri-dimensional contact model was proposed by Johnson, who in 1958
published two works considering a sphere running on a plane. The resulting model
was tri-dimensional because a sphere in contact with a plane has 3 degrees of
freedom: the longitudinal displacement in the direction of movement, the lateral
displacement (laying on the plane and normal to the direction of movement), and
the spin rotation defined around the axis originated from the contact point and
normal to the plane. For each of these degrees of freedom it is possible to define a
specific relative slide between the two bodies, and therefore to define the corre-
sponding kinematic creepages. Johnson has, in the first work [15], analysed the
influence of spin, and in the second [16], the effects of lateral and longitudinal
creepages. The model had the limitation of considering only circular contact areas,
therefore, with the cooperation of Vermeulen in 1964, he extended the theory to

O
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τ = 

Γ

Γ − Γ2
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-a 2

a-a

Fig. 2.3 Tangential stress
behaviour according to
Carter’s theory
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the case of elliptical contact areas in the presence of lateral and longitudinal
creepages [17].

The pressure distribution in the model of Vermeulen and Johnson was such as
to predict that the adhesion area was elliptical, as for the contact area, and tan-
gential to the contact area at a single point corresponding to the leading edge.

Johnson himself observed that the assumption of an elliptical adhesion area,
tangential to the contact area at a single point could not be correct due to the
presence in the area of a transition of sliding- adhesion-sliding.

In 1963 Haines and Ollerton [18] developed a method to obtain a more accurate
distribution for tangential stresses for the case of pure longitudinal creepage; this
method, the strip theory, allowed them to obtain the traction force by integrating
the tangential stress using strips parallel to the creepage, starting from the leading
edge (where new particles of the wheel enter into the contact area) and assuming
slip at the trailing edge (s = lp). The integration was complex from the mathe-
matical point of view, and this method was only fully implemented later by Kalker
[19], who also extended its application to a more general case.

At the Delft University, Kalker performed his studies using limitations as low
as possible, considering an elliptical contact area with the simultaneous presence
of creepage n (longitudinal), g (lateral) and u (spin). During his activity he
developed several theories and algorithms that can be considered as the knowl-
edge-base of the modern wheel-rail contact theories. Equation 2.6 gives a sim-
plified formulation of the longitudinal creepage for a wheelset whose motion is not
affected by lateral movements and yaw rotations. In order to study a more general
case, Kalker considered a different formulation for the three creepages (also in
agreement with definitions given previously by Johnson), given by a ratio between
the relative velocity in the relevant direction and the vehicle reference velocity V0.

Figure 2.4 shows a comparison of the different theories and the behaviour of the
slip/adhesion region for different combination of the creepages.

The creepages can be calculated as follows:

n¼ vx

V0
g¼ vy

V0
/¼ xu

V0
ð2:10Þ

where vx, vy are the relative velocities between wheel and rail in the longitudinal
and lateral directions and x/ is the relative angular velocity around the normal
direction at the contact point.

In his Ph.D. thesis [12], starting from the Hertz theory, assuming that the
contact area could be considered as an elastic half-space and that a condition of
steady state rolling existed, Kalker has described an exact analytical method to
calculate the contact forces in the linear portion of the force-creepage curve; this is
known as the Kalker linear-theory. In matrix form, the forces exchanged between
wheel and rail can be expressed as function of the creepage as follows:
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/

8

<

:

9

=

;
ð2:11Þ

where G is the tangential elasticity modulus and the Cij coefficients are known as
Kalker’s coefficients and can be calculated as functions of the a/b ratio and of the
Poisson’s module (m).

To obtain the distribution of the tangential tension and therefore the behaviours
of the creep forces in the non-linear part of the curve, Kalker developed a first
theory specifically for the case of elliptical contact areas.

This theory, which is still nowadays the reference for the tangential force
calculation, is based on the Hertz theory to determine the contact areas. Therefore
it is based on the same assumptions made by Hertz which were:

• Bodies directly pressed in contact;
• Bodies in contact are elastic and isotopic;
• Non-conformal contact: the contact area is small with respect to the radii of

curvature of the bodies;

O
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Fig. 2.4 Comparison between the tangential stress distributions obtained by Haines and
Ollerton, Vermeulen and Johnson and Kalker for different creepage combinations
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• Absence of friction.

The last assumption obviously cannot be met in the wheel-rail cases studied due
to the presence of the tangential forces. Therefore Kalker has considered two
additional assumptions to ensure that the contact area and the normal stress dis-
tribution cannot be modified by the tangential stresses:

• Elastic half-space: if the contact area is small with respect to the curvatures of
the bodies, it is possible to solve the problem as bi-dimensional by approxi-
mating the contact surfaces using a plane;

• Quasi-identity: the elastic properties of the two half-spaces of the bodies in
contact are considered identical in which case the tangential stress does not
affect the normal stress distribution.

Using the Hertz theory, it is possible to evaluate the contact area C once the
curvatures of the profiles around the contact point are known; this area can be
described by the equation:

C ¼ x; yð Þ x

a

� �2
�
�
�
�

þ y

b

� �2
� 1

� �

ð2:12Þ

The normal pressure distribution is found to be semi-elliptical in the contact
area, and is given by:

pZ x; yð Þ ¼ G � f00 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x

a

� �2
þ y

b

� �2
r

ð2:13Þ

The reference system has an origin at O(x,y) in the centre of the contact ellipse,
which has semi-axes a and b, G being the tangential elasticity modulus and f00 an
appropriate coefficient obtained using Hertz’s theory. Therefore in each point of
the contact area, the maximal tangential tension is shown to be:

psj j � l � pz ð2:14Þ

By introducing the local slip ss:

ps x; yð Þ ¼ � l � pz � ss

ssj j
con ssj j 6¼ 0

ps x; yð Þ ¼ 0 con ssj j ¼ 0
ð2:15Þ

Starting from the kinematic creepages, it is possible to define a displacement
field us(x,y) on the contact area, and under the assumption of the elastic half space,
it is possible to use the laws of elasticity to relate the stresses (ps) to the defor-
mations (us).

Note that only under the assumption of quasi-identity does the tangential stress
not affect the normal stress distribution given by Eq. 2.13 and the shape of the
contact area. In this case, according to what is known as the ‘‘Johnson process’’, it
is possible to evaluate the normal stress according to the Hertz theory (not
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considering the tangential stresses) and, depending on the normal stress (that
remain unchanged during the iteration process), evaluate the tangential stresses.

The two fields of tangential stress and deformation, and therefore the areas of
adhesion and slip, have been found by Kalker solving a constrained optimisation
problem (the constraints are given by Eqs. 2.14 and 2.15) and implemented in the
DUVROL algorithm [19] and later improved with the CONTACT [20] algorithm.

The determination of a field of stress as a solution of an optimisation problem
has been found by Kalker on the basis of the variational theory developed by
several authors [21–23], and according to this approach it is possible to obtain the
stress tangential distribution by minimising the elastic energy potential or maxi-
mising the complementary energy over the contact area (the latter being the
strategy chosen by Kalker). The existence of a solution has been proven by Fichera
[22] for a field of normal stresses and by Oden [23] for a field of tangential
stresses.

Kalker in the DUVROL algorithm has imposed for the tangential stress dis-
tribution a polynomial form, and the solution of the optimisation problem requires
finding the coefficient of the polynomial; this process however, solved numeri-
cally, requires a high computational effort. In order to be able to use a contact
algorithm within a numerical code to simulate an entire vehicle, a faster solution is
needed. For this reason, Kalker himself has developed his simplified theory, and
then implemented it using a faster algorithm called FASTSIM [3] which is faster
by a factor of thousands than the more accurate codes.

The simplified theory is based on a relaxation of the elastic relations between
surface deformations and tangential stresses, which is given by a single equivalent
flexibility parameter instead of three parameters used in the exact theory. The
solution is obtained by numerical strip integration over the contact area which is a
dimensionalised and discretised over a small number of elements (usually
20 9 20).

Results obtained using FASTIM, according to the calculation performed by
Kalker [20], can give errors up to 25 % on the tangential forces; in any case, the
code requires an iterative process and is still highly time consuming to ensure a
good calculation for complex vehicle models on a long track.

Many authors have therefore proposed to use interpolation methods that, in
general, can be defined as a non-linear function of several variables, where the
function can be defined either by tables or specific formulas:

FX

FY

MZ

8

<

:

9

=

;
¼ f n; g;u; a=b;N; lð Þ ð2:16Þ

Those methods are indeed more efficient than FASTSIM because they do not
require any iterative cycles; furthermore, the interpolation method can be applied
with more accurate codes (e.g., CONTACT) or experimental results.

An interpolation method that had a wide usage in commercial codes due to its
efficiency (computation times are approximately 10 % of the time required using
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FASTSIM) and accuracy (the method has been obtained by interpolating the
results of the CONTACT code) is the Polach’s method [4, 24]. Polach’s method
also allows the study of non steady state conditions [5] by using a friction coef-
ficient which varies with the vehicle velocity, while FASTSIM has been developed
to operate in a steady state condition (constant velocity).

2.3 Non-Hertzian Contact Methods

The assumption of elliptical contact areas is found to be correct using simplified
profiles (conical wheel and cylindrical rails), but in cases of real profiles it can be
inaccurate.

In particular, the elliptical areas are related to non conformal contact between
the profiles; this condition can be unrealistic near the flange contact, especially
considering worn profiles. In fact, for worn profiles, the radius of curvature of the
bodies are approximately of the same dimension as the contact area, as shown in
Fig. 2.5.

The problem of non conformal contact has been studied by many authors
(Johnson [25], Kalker [1, 20, 26], Novell and others [28], Knothe [29]) and two
possible solutions have been found. The simpler solution consists of considering
equivalent Hertzian areas instead of the non-Hertzian areas; the equivalent areas
are usually pre-calculated. This approach achieves good computational times, and
values of the creep forces are in good agreement with the results from more
complex methods.

This approach can be inaccurate when studying complex phenomena related to
the contact area, such as wear prediction, where it is necessary to know the stress
distribution over the contact areas. A problem can be also found when studying
profiles which are variable along the track (switch simulation for example [30]),
because it is not possible to pre-calculate the equivalent elliptical areas, and this
make the method inefficient.

The other approach consists of developing more realistic non-elliptical contact
areas that can be found by intersecting the profiles considering the local elasticity
and, in more complex methods, the deformation caused by all the stresses
(including the tangential stresses).

The problem has also been studied by Kalker, who has improved his theory
based on an assumption of quasi-identity is not applicable leading to non-Hertzian
contact areas, and this more general approach has been implemented in the
CONTACT algorithm [20]. In the case where the quasi-identity assumption is not
applicable, a normal stress distribution cannot be defined a priori for the tangential
force calculation; to solve this problem, Kalker has used the Pangiotopulos
[31, 32] iterative process that can be described as follows:

Step 1: i = 0; pi
x ¼ pi

y ¼ 0.

Step 2: calculation of pi
z with pi

x; p
i
y as tangential stresses.
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Step 3: calculation of piþ1
x ; piþ1

y with pi
z as normal stress and u(x, y) as the assigned

displacement field using the optimisation algorithm.
Step 4: iteration of steps 2 and 3 until convergence of piþ1

x ; piþ1
y to pi

x; p
i
y with the

desired error.

It is evident that the process includes a double iteration to calculate both the
normal and tangential stress distribution, therefore this leads to a huge computa-
tional complexity.

Kalker has also studied, together with other authors (Kalker-Piotrowsky [26],
Li-Kalker [27]) an extension of his theories to the case of conformal contact.

An interesting approach for studying the problem of non conformal contact is
given by the use of the Multi-Hertzian approach [2, 26, 33, 34]. Conformal contact

UIC 60 / S 1002 (worn)

UIC 60   (worn) / S 1002

UIC 60 / S1002

Fig. 2.5 Examples of non-conformal contact and non-Hertzian contact areas
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results in wide contact areas, that cannot be described by a single value of the
curvature of the profiles. The Multi-Hertzian approach consists of the represen-
tation of a non-elliptical contact area with the superposition of several elliptical
areas, the a/b ratio of each ellipse being obtained from the local value of the
curvature, and the size of each ellipse is given by the portion of normal load acting
on it. The distribution of the normal load can be found by considering a Hertzian
stiffness acting on each area that gives a parallel system of stiffness where the load
is distributed.

The method requires non-trivial corrections to account for the fact that the
multiple Hertzian ellipses are not disjointed but often superimposed for large
portions. Another complexity is related to the determination of the Hertzian
stiffness on each area, which is dependent on the normal load acting on the
considered ellipse.
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