
Chapter 1
Potential Scattering

In this chapter we introduce the basic concepts of atomic collision theory by consid-
ering potential scattering. While being of interest in its own right, this chapter also
provides a basis for our treatment of electron and positron collisions with atoms,
ions and molecules in later chapters in this monograph. We commence in Sect. 1.1
by considering the solution of the non-relativistic time-independent Schrödinger
equation for a short-range spherically symmetric potential. This enables us to define
the scattering amplitude and various cross sections and to obtain explicit expres-
sions for these quantities in terms of the partial wave phase shifts. We also intro-
duce and define the K -matrix, S-matrix and T -matrix in terms of the partial wave
phase shifts and we obtain an integral expression for the K -matrix and the phase
shift. In Sect. 1.2 we extend this discussion to consider the situation where a long-
range Coulomb potential is present in addition to a short-range potential. We obtain
expressions for the scattering amplitude and the differential cross section for pure
Coulomb scattering and where both a Coulomb potential and a short-range poten-
tial are present. In Sect. 1.3 we turn our attention to the analytic properties of the
partial wave S-matrix in the complex momentum plane and we discuss the connec-
tion between poles in the S-matrix and bound states and resonances. In Sect. 1.4
we extend this discussion of analytic properties to consider the analytic behaviour
of the phase shift and the scattering amplitude in the neighbourhood of threshold
energy both for short-range potentials and for potentials behaving asymptotically as
r−s where s ≥ 2. Also in this section, we consider the threshold behaviour when
a Coulomb potential is present in addition to a short-range potential, corresponding
to electron scattering by a positive or negative ion. Next in Sect. 1.5 we derive
variational principles first obtained by Kohn for the partial wave phase shift and
for the S-matrix. We conclude this chapter by considering in Sect. 1.6 relativistic
scattering of an electron by a spherically symmetric potential. This situation occurs
for relativistic electron scattering energies or when an electron is scattered by heavy
atoms or ions. In this case the time-independent Dirac equation, which takes into
account both the spin and the relativistic behaviour of the scattered electron must
be solved. Finally we note that some of these topics have been discussed in greater
detail in monographs devoted to potential scattering by Burke [158] and Burke and
Joachain [171].
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4 1 Potential Scattering

1.1 Scattering by a Short-Range Potential

We initiate our discussion of potential scattering by considering the solution of the
non-relativistic time-independent Schrödinger equation describing the motion of a
particle of unit mass in a potential V (r). We write this equation in atomic units as

(
−1

2
∇2 + V (r)

)
ψ(r) = Eψ(r) , (1.1)

where E is the total energy and ψ(r) is the wave function describing the motion
of the scattered particle. We assume in this section that the potential V (r) is short
range, vanishing faster than r−1 at large distances. We also assume that the potential
is less singular than r−2 at the origin.

The solution of (1.1), corresponding to the particle incident on the scattering
centre in the z-direction and scattered in the direction Ω ≡ (θ, φ) defined by the
polar angles θ and φ, has the asymptotic form

ψ(r) ∼
r→∞eikz + f (θ, φ)

eikr

r
, (1.2)

where f (θ, φ) is the scattering amplitude and the wave number k of the scattered
particle is related to the total energy E by

k2 = 2E . (1.3)

If the potential behaves as r−1 at large distances, corresponding to a long-range
Coulomb potential, then logarithmic phase factors must be included in the expo-
nentials in (1.2) to allow for the distortion caused by the Coulomb potential. We
consider this possibility in Sect. 1.2.

The differential cross section can be obtained from (1.2) by calculating the out-
ward flux of particles scattered through a spherical surface r2dΩ for large r divided
by the incident flux and by the element of solid angle dΩ . This gives

dσ

dΩ
= | f (θ, φ)|2 , (1.4)

in units of a2
0 per steradian. The total cross section is then obtained by integrating

the differential cross section over all scattering angles giving

σtot =
∫ 2π

0

∫ π

0
| f (θ, φ)|2 sin θdθdφ , (1.5)

in units of a2
0. A further cross section, of importance in the study of the motion of

electron swarms in gases, is the momentum transfer cross section defined by

σM =
∫ 2π

0

∫ π

0
| f (θ, φ)|2 (1− cos θ) sin θdθdφ . (1.6)
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In order to determine the scattering amplitude it is necessary to solve (1.1) for
ψ(r) subject to the asymptotic boundary condition (1.2). For low and intermediate
energy scattering this is most conveniently achieved by making a partial wave anal-
ysis. This method was originally used in the treatment of scattering of sound waves
by Rayleigh [779] and was first applied to the problem of scattering of electrons by
atoms by Faxén and Holtsmark [314].

We consider the case of a spherically symmetric “reduced” potential U (r) =
2V (r). We can expand the wave function ψ(r) as

ψ(r) =
∞∑
	=0

B	(k)r
−1u	(r)P	(cos θ) , (1.7)

where 	 is the orbital angular momentum quantum number of the particle, P	(cos θ)
are Legendre polynomials defined in Appendix B and the coefficients B	(k) are
determined below by requiring that the asymptotic boundary condition (1.2) is sat-
isfied. The equation satisfied by the reduced radial wave function u	(r), which does
not include the r−1 factor in (1.7), is determined by substituting (1.7) into (1.1),
premultiplying by P	(cos θ) and integrating with respect to cos θ . We find that u	(r)
satisfies the radial Schrödinger equation

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
u	(r) = 0 . (1.8)

We note that the effective potential in this equation is the sum of the reduced poten-
tial U (r) and the repulsive centrifugal barrier term 	(	+1)/r2. We also remark that
since we are considering real potentials U (r), as well as real energies and angular
momenta, there is no loss of generality in assuming that u	(r) is real.

We look for a solution of (1.8) satisfying the boundary conditions

u	(0) ∼
r→0

nr	+1 ,

u	(r) ∼
r→∞ s	(kr)+ c	(kr) tan δ	(k) , (1.9)

where n is a normalization factor and s	(kr) and c	(kr) are solutions of (1.8) in the
absence of the potential U (r), which are, respectively, regular and irregular at the
origin. We show in Appendix C.2 that they can be written for integral values of 	 in
terms of spherical Bessel and Neumann functions j	(kr) and n	(kr) as follows:

s	(kr) = kr j	(kr) =
(
πkr

2

) 1
2

J
	+ 1

2
(kr) ∼

r→∞ sin(kr − 1
2	π) (1.10)

and

c	(kr) = −krn	(kr) = (−1)	
(
πkr

2

) 1
2

J−	− 1
2
(kr) ∼

r→∞ cos(kr − 1
2	π) . (1.11)
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The remaining quantity in (1.9) is the partial wave phase shift δ	(k) which is a real
function of the wave number k when the reduced potential U (r), energy E and
angular momentum 	 are real.

It is also convenient to introduce the S-matrix, whose matrix elements are defined
in terms of the phase shifts. We first note that (1.8) satisfied by u	(r) is homogeneous
so that u	(r) is only defined up to an arbitrary multiplicative complex normalization
factor N . Hence it follows from (1.9) that

uN
	 (r) ∼r→∞N [s	(kr)+ c	(kr) tan δ	(k)] (1.12)

is also a solution of (1.8) for arbitrary N . If we choose N = −2i cos δ	 exp(iδ	) then
we can rewrite (1.12) as

u	(r) ∼
r→∞ exp(−iθ	)− exp(iθ	)S	(k) , (1.13)

where θ	 = kr − 1
2	π . The quantity S	(k) in (1.13) is then a diagonal element of

the S-matrix defined by

S	(k) = exp[2iδ	(k)] = 1+ iK	(k)

1− iK	(k)
, (1.14)

where we have also introduced the K -matrix, whose diagonal elements are defined
by

K	(k) = tan δ	(k) . (1.15)

We see from (1.9) that the phase shift, and hence the K -matrix, is a measure of the
departure of the radial wave function from the form it has when the potential U (r)
is zero.

We can obtain useful integral expressions for the K -matrix and the phase shift.
We consider the solution v	(r) of the radial Schrödinger equation, obtained from
(1.8) by setting the potential U (r) = 0. Hence v	(r) satisfies the equation

(
d2

dr2
− 	(	+ 1)

r2
+ k2

)
v	(r) = 0 . (1.16)

We choose v	(r) to be the regular solution of this equation, given by

v	(r) = s	(r) , (1.17)

where s	(r) is defined by (1.10). We then premultiply (1.8) by v	(r), premultiply
(1.16) by u	(r) and then integrate the difference of these two equations from r = 0
to∞. We obtain



1.1 Scattering by a Short-Range Potential 7

∫ ∞
0

(
v	(r)

d2u	
dr2

− u	(r)
d2v	

dr2

)
dr =

∫ ∞
0
v	(r)U (r)u	(r)dr . (1.18)

The left-hand side of this equation can be evaluated using Green’s formula and
the boundary conditions satisfied by u	(r) and v	(r), given by (1.9) and (1.10),
yielding the result −k tan δ	(k). We then substitute for v	(r) in terms of j	(kr) on
the right-hand side of (1.18) using (1.10) and (1.17). Combining these results we
find that (1.18) reduces to

K	(k) = tan δ	(k) = −
∫ ∞

0
j	(kr)U (r)u	(r)rdr , (1.19)

which is an exact integral expression for the K -matrix element and the phase shift.
If the potential U (r) is weak or the scattered particle is moving fast, the distortion
of u	(r) in (1.19) will be small. In this case u	(r) can be replaced by v	(r) and, after
using (1.10) and (1.17), we find that (1.19) reduces to

K B
	 (k) = tan δB

	 (k) = −k
∫ ∞

0
U (r) j2

	 (kr)r2dr . (1.20)

This is the first Born approximation for the K -matrix element and the phase shift
which we will use when we discuss effective range theory for long-range potentials,
in Sect. 1.4.2.

We will also need to consider solutions of (1.8) satisfying the following orthonor-
mality relation

∫ ∞
0

[
uN
	 (k, r)

]∗
uN
	 (k

′, r)dr = δ(E − E ′) , (1.21)

where we have displayed explicitly the dependence of the solution uN
	 (r) on the

wave number k and where [uN
	 (k, r)]∗ is the complex conjugate of uN

	 (k, r). Also
in (1.21) we have introduced the Dirac δ-function [263], which can be defined by
the relations

δ(x) = 0 for x �= 0 ,
∫ ∞
−∞
δ(x)dx = 1 . (1.22)

Of particular importance in applications are the following three solutions satisfying
(1.21), corresponding to different choices of the normalization factor N in (1.12).
Using (C.53) and (C.54) we define the real solution

u	(k, r) ∼
r→∞

(
2

πk

) 1
2

[sin θ	 + cos θ	K	(k)] [1+ K 2
	 (k)]−

1
2 , (1.23)

the outgoing wave solution

u+	 (k, r) ∼r→∞

(
2

πk

) 1
2 [

sin θ	 + (2i)−1 exp(iθ	)T	(k)
]

(1.24)
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and the ingoing wave solution

u−	 (k, r) ∼r→∞

(
2

πk

) 1
2 [

sin θ	 − (2i)−1 exp(−iθ	)T
∗
	 (k)

]
, (1.25)

where in (1.24) and (1.25) we have introduced the T -matrix element T	(k) which is
related to the K -matrix and the S-matrix elements by

T	(k) = 2iK	(k)

1− iK	(k)
= S	(k)− 1 . (1.26)

It is clear that if the reduced potential U (r) is zero so that there is no scattering, then
the phase shift δ	(k) = 0 and hence S	(k) = 1 and T	(k) = 0.

We are now in a position to determine an expression for the scattering amplitude
in terms of the phase shifts. To achieve this we expand the plane wave term in
(1.2) in partial waves and equate it with the asymptotic form of (1.7). The required
expansion of the plane wave term in terms of Legendre polynomials, discussed in
Appendix B.1, is

eikz =
∞∑
	=0

(2	+ 1)i	 j	(kr)P	(cos θ) . (1.27)

Since the second term in (1.2) contributes only to the outgoing spherical wave in
(1.7), we can determine the coefficients B	(k) by equating the coefficients of the
ingoing wave e−ikr in (1.7) and (1.27). Using (1.9), (1.10), and (1.11) we find that

B	(k) = k−1(2	+ 1)i	 cos δ	(k) exp[iδ	(k)] . (1.28)

Substituting this result into (1.7) and comparing with (1.2), then gives the following
expression for the scattering amplitude:

f (θ, φ) = 1

2ik

∞∑
	=0

(2	+ 1){exp[2iδ	(k)] − 1}P	(cos θ) . (1.29)

We notice that the scattering amplitude does not depend on the azimuthal angle φ
since we have restricted our consideration to an incident beam in the z-direction
scattering from a spherically symmetric potential. Also, for short-range potentials
considered in this section, δ	(k) tends rapidly to zero as 	 tends to∞ and hence the
summation in (1.29) gives accurate results at low energies when only a few terms
are retained.

An expression for the total cross section is obtained by substituting (1.29) into
(1.5). We obtain

σtot =
∞∑
	=0

σ	 = 4π

k2

∞∑
	=0

(2	+ 1) sin2 δ	(k) , (1.30)



1.1 Scattering by a Short-Range Potential 9

where σ	 is called the partial wave cross section. Also substituting (1.29) into (1.6)
yields the following expression for the momentum transfer cross section:

σM = 4π

k2

∞∑
	=0

(	+ 1) sin2[δ	+1(k)− δ	(k)] . (1.31)

Finally, we observe that the imaginary part of the scattering amplitude in the
forward direction can be related to the total cross section. Since P	(1) = 1 we
obtain from (1.29)

Im f (θ = 0, φ) = 1

k

∞∑
	=0

(2	+ 1) sin2 δ	(k) . (1.32)

Comparing this result with (1.30) gives immediately

σtot = 4π

k
Im f (θ = 0, φ) , (1.33)

which is known as the optical theorem [316]. This result, which can be generalized
to multichannel collisions, can be shown to be a direct consequence of conservation
of probability.

We conclude our discussion of scattering by a short-range potential by observing
that the procedure of adopting a partial wave analysis of the wave function and the
scattering amplitude is appropriate at low and intermediate energies when only a
relatively small number of partial wave phase shifts are significantly different from
zero. This situation is relevant to our discussion of R-matrix theory of atomic colli-
sions in Part II of this monograph. On the other hand, at high energies this procedure
breaks down because of the large number of partial waves which are required to
determine the cross section accurately. It is then necessary to obtain a solution of the
Schrödinger equation (1.1) which directly takes account of the boundary condition
of the problem. This is the basis of the procedure introduced by Lippmann and
Schwinger [600]. In this procedure the Schrödinger equation (1.1) is written in the
form

(E − H0)ψ(r) = V (r)ψ(r) . (1.34)

We can then solve this equation to yield a solution with the required asymptotic
form by introducing the Green’s function for the operator on the left-hand side. We
obtain the formal solution

ψ± = φ + 1

E − H0 ± iε
Vψ± , (1.35)

where the term ±iε in the denominator defines the contour of integration past the
singularity E = H0 and φ is the solution of the free-particle wave equation

(E − H0)φ = 0 . (1.36)
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The Lippmann–Schwinger equation (1.35) is the basic integral equation of time-
independent scattering theory and an iterative solution of this equation yields the
Born series expansion. The solution of this equation is discussed in detail in the
monographs by Burke [158] and Burke and Joachain [171].

1.2 Scattering by a Coulomb Potential

The discussion in the previous section must be modified when a long-range
Coulomb potential is present in addition to the short-range potential V (r).

We consider first scattering by a pure Coulomb potential acting between a particle
of unit mass and charge number Z1 and a particle of infinite mass and charge number
Z2. The time-independent Schrödinger equation is then

(
−1

2
∇2 + Vc(r)

)
ψc(r) = Eψc(r) , (1.37)

where the Coulomb potential

Vc(r) = Z1 Z2

r
, (1.38)

in atomic units. The solution of (1.37) was obtained by Gordon [403] and Temple
[913] by introducing parabolic coordinates

ζ = r − z, ξ = r + z, φ = tan−1 y

x
. (1.39)

In these coordinates the Laplacian becomes

∇2 = 4

ζ + ξ
[
∂

∂ζ

(
ζ
∂

∂ζ

)
+ ∂

∂ξ

(
ξ
∂

∂ξ

)]
+ 1

ζ ξ

∂2

∂φ2
. (1.40)

The solution of (1.37), corresponding to an incident wave in the z-direction and an
outgoing scattered wave, can then be written as

ψc(r) = exp(− 1
2πη)Γ (1+ iη)eikz

1 F1(−iη; 1; ikζ ) , (1.41)

where

η = β

2k
= Z1 Z2

k
, (1.42)

and Γ (z) is the gamma function. Also the function 1 F1 is defined by

1 F1(a; b; z) = 1+ a

b
z + a(a + 1)

b(b + 1)

z2

2! + · · ·

=
∞∑

n=0

Γ (a + n)Γ (b)

Γ (a)Γ (b + n)

zn

n! (1.43)
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and is related to the confluent hypergeometric function Mk,m(z), defined by
Whittaker and Watson [964], by

Mk,m(z) = zm+1/2 exp(− 1
2 z) 1 F1(

1
2 + m − k; 2m + 1; z) . (1.44)

The asymptotic form of 1 F1 can be obtained by writing

1 F1(a; b; z) = W1(a; b; z)+W2(a; b; z) , (1.45)

where

W1(a; b; z) ∼|z|→∞
Γ (b)

Γ (b − a)
(−z)−av(a; a − b + 1;−z), −π < arg(−z) < π

(1.46)
and

W2(a; b; z) ∼|z|→∞
Γ (b)

Γ (a)
ez za−bv(1− a; b − a; z), −π < arg(z) < π , (1.47)

where v has the asymptotic expansion

v(α;β; z) = 1+ αβ
z
+ α(α + 1)β(β + 1)

2!z2
+ · · ·

=
∞∑

n=0

Γ (n + α)Γ (n + β)
Γ (α)Γ (β)

(z)−n

n! . (1.48)

The W1 term corresponds to the Coulomb-modified incident wave and the W2 term
to the outgoing scattered wave in ψc(r). Thus we can write

ψc(r) ∼
|r−z|→∞I + fc(θ)J , (1.49)

where

I = exp[ikz + iη ln(kζ )]
(

1+ η2

ikζ
+ · · ·

)
(1.50)

and

J = r−1 exp[ikr − iη ln(2kr)]
(

1+ (1+ iη)2

ikζ
+ · · ·

)
. (1.51)

The Coulomb scattering amplitude is then given by

fc(θ) = − η

2k sin2(θ/2)
exp[−iη ln sin2(θ/2)+ 2iσ0] , (1.52)
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where

σ0 = argΓ (1+ iη) , (1.53)

and the differential cross section is given by

dσc

dΩ
= | fc(θ)|2 = η2

4k2 sin4(θ/2)
= (Z1 Z2)

2

16E2 sin4(θ/2)
. (1.54)

This result was first obtained by Rutherford [802] using classical mechanics to
describe the scattering of α-particles by nuclei. Since the differential cross section
diverges like θ−4 at small θ , the total Coulomb cross section obtained by inte-
grating over all scattering angles is infinite. A further difference from the result
obtained in Sect. 1.1 for scattering by short-range potentials is the distortion of
both the incident and scattered waves, defined by (1.50) and (1.51), by logarith-
mic phase factors. These phase factors are a direct consequence of the long-range
nature of the Coulomb potential. However, we see that they do not affect the form
of the differential cross section for scattering by a pure Coulomb potential given
by (1.54).

For electron–ion scattering problems of practical interest, the interaction poten-
tial experienced by the scattered electron is not pure Coulombic but is modified at
short distances by the interaction of the scattered electron with the target electrons.
In this case it is appropriate at low scattering energies to make a partial wave analysis
of the scattering wave function in spherical polar coordinates, as in Sect. 1.1 where
we considered short-range potentials.

We commence our discussion by making a partial wave analysis of the pure
Coulomb scattering problem. Following (1.7) we expand the wave function in (1.37)
in partial waves as

ψc(r) =
∞∑
	=0

Bc
	 (k)r

−1uc
	(r)P	(cos θ) , (1.55)

where uc
	(r) satisfies the radial Schrödinger equation

(
d2

dr2
− 	(	+ 1)

r2
−Uc(r)+ k2

)
uc
	(r) = 0 , (1.56)

and where

Uc(r) = 2Vc(r) = 2Z1 Z2

r
(1.57)

is the reduced Coulomb potential. Equation (1.56) is the Coulomb wave equation
that has been discussed extensively in the literature (e.g. by Yost et al. [984], Hull
and Breit [479], Fröberg [343] and Chap. 14 of Abramowitz and Stegun [1]). The
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solutions of this equation, which are regular and irregular at the origin, known as
Coulomb wave functions, are defined, respectively, by

F	(η, kr) = C	(η)eikr (kr)	+1
1 F1(	+ 1+ iη; 2	+ 2;−2ikr)

∼
r→∞ sin(kr − 1

2	π − η ln 2kr + σ	) (1.58)

and

G	(η, kr) = iC	(η)eikr (kr)	+1 [W1(	+ 1+ iη; 2	+ 2;−2ikr)

− W2(	+ 1+ iη; 2	+ 2;−2ikr)]

∼
r→∞ cos(kr − 1

2	π − η ln 2kr + σ	) , (1.59)

where η is defined by (1.42). Also in (1.58) and (1.59)

C	(η) = 2	 exp(− 1
2πη)|Γ (	+ 1+ iη)|
Γ (2	+ 2)

= C0(η)
2	

Γ (2	+ 2)

	∏
s=1

(s2 + η2)1/2 , (1.60)

with

C0(η) =
(

2πη

e2πη − 1

)1/2

, (1.61)

and σ	 is the Coulomb phase shift

σ	 = argΓ (	+ 1+ iη) . (1.62)

In order to determine the coefficients Bc
	 (k) in (1.55), we choose uc

	(r) to be
the regular Coulomb wave function F	(η, kr) and require that ψc(r) has the nor-
malization defined by (1.41). Using the orthogonality properties of the Legendre
polynomials and matching ψc(r), given by (1.41) and (1.55), in the neighbourhood
of r = 0 gives

Bc
	 (k) = k−1(2	+ 1)i	 exp(iσ	) , (1.63)

so that

ψc(r) =
∞∑
	=0

(2	+ 1)i	 exp(iσ	)(kr)−1 F	(η, kr)P	(cos θ) . (1.64)

This equation reduces to the expansion of the plane wave given by (1.27) when
η = 0.
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We now define the Coulomb S-matrix, in analogy with our discussion of scat-
tering by a short-range potential, by considering the asymptotic form of the 	th
partial wave component of ψc(r). From (1.58) and (1.64) this component has the
asymptotic form

F	(η, kr) ∼
r→∞N

[
exp(−iθc

	 )− exp(iθc
	 )S

c
	(k)

]
, (1.65)

where the normalization factor N = − exp(−iσ	)/2i, the phase factor θc
	 =

kr − 1
2	π − η ln 2kr and the Coulomb S-matrix Sc

	(k) is given by

Sc
	(k) = exp(2iσ	) = Γ (	+ 1+ iη)

Γ (	+ 1− iη)
. (1.66)

It follows from the asymptotic properties of the Gamma function that the Coulomb
S-matrix is analytic in the entire complex k-plane except for poles where 	+1+iη =
−n̄ with n̄ = 0, 1, 2, . . . . Using (1.42) we see that the corresponding values of k are
given by

kn̄ = −i
Z1 Z2

n̄ + 	+ 1
, n̄ = 0, 1, 2, . . . . (1.67)

Thus for an attractive Coulomb potential (Z1 Z2 < 0) the poles of Sc
	(k) lie on the

positive imaginary axis of the complex k-plane. At these poles it follows from (1.65)
that the wave function decays exponentially asymptotically and hence these poles
correspond to the familiar bound states with energies

En = −1

2

Z2
1 Z2

2

n2
, n = 	+ 1, 	+ 2, . . . , (1.68)

where we have introduced the principal quantum number n = n̄ + 	 + 1. The
location of poles in the S-matrix in the complex k-plane, corresponding to bound
states and resonances, is discussed further in Sect. 1.3.

We now consider the situation where an additional short-range potential V (r),
which vanishes asymptotically faster than r−1, is added to the Coulomb potential.
Again, carrying out a partial wave analysis as in (1.7), we expand the total wave
function as follows:

ψ(r) =
∞∑
	=0

Bs
	(k)r

−1us
	(r)P	(cos θ) , (1.69)

where us
	(r) satisfies the radial Schrödinger equation

(
d2

dr2
− 	(	+ 1)

r2
−U (r)−Uc(r)+ k2

)
us
	(r) = 0 , (1.70)
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where U (r) = 2V (r) and, following (1.57), the reduced Coulomb potential Uc(r) =
2Vc(r) = 2Z1 Z2/r . For large r , the potential U (r) can be neglected compared
with Uc(r) and (1.70) then reduces to the Coulomb equation (1.56). The solution
of (1.70) that is regular at the origin can thus be written asymptotically as a linear
combination of the regular and irregular Coulomb wave functions F	(η, kr) and
G	(η, kr). Hence, in analogy with (1.9), we look for a solution satisfying the bound-
ary conditions

us
	(0) ∼r→0

nr	+1 ,

us
	(r) ∼r→∞ F	(η, kr)+ G	(η, kr) tan δ	(k) . (1.71)

The quantity δ	(k) defined by these equations is the phase shift due to the short-
range potential V (r) in the presence of the Coulomb potential Vc(r). We note that
δ	(k) vanishes when the short-range potential is not present and contains all the
information necessary to describe the non-Coulombic part of the scattering.

The coefficients Bs
	(k) in (1.69) are determined by equating the coefficients of

the ingoing wave in (1.49) and (1.69). This gives

Bs
	(k) = k−1(2	+ 1)i	 cos δ	(k) exp {i[σ	 + δ	(k)]} . (1.72)

Substituting this result into (1.69) then gives

ψ(r) ∼
r→∞ ψc(r)+ (2kr)−1

∞∑
	=0

(2	+ 1)i	 exp(2iσ	){exp[2iδ	(k)] − 1}H+	 (η, kr)

× P	(cos θ) , (1.73)

where we have defined the function

H+	 (η, ρ) = exp(iσ	) [F	(η, ρ)+ iG	(η, ρ)] . (1.74)

We then find that

ψ(r) ∼
r→∞ exp[i(kz + η ln kζ )] + [ fc(θ)+ fs(θ)

] exp[i(kr − η ln 2kr)]
r

, (1.75)

where fc(θ) is the Coulomb scattering amplitude given by (1.52) and fs(θ) is the
scattering amplitude arising from the additional short-range potential V (r). We find
that

fs(θ) = 1

2ik

∞∑
	=0

(2	+ 1) exp(2iσ	){exp[2iδ	(k)] − 1}P	(cos θ) , (1.76)

which is analogous to the result given by (1.29) when there is only a short-range
potential.
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The differential cross section can be obtained in the usual way from (1.75) by
calculating the outward flux of particles scattered through a spherical surface r2dΩ
for large r per unit solid angle divided by the incident flux. This gives

dσ

dΩ
= | fc(θ)+ fs(θ)|2

= | fc(θ)|2 + | fs(θ)|2 + 2Re
[

f ∗c (θ) fs(θ)
]
. (1.77)

At small scattering angles the Coulomb scattering amplitude will dominate the dif-
ferential cross section giving a θ−4 singularity in the forward direction. However, at
larger scattering angles fs(θ) becomes relatively more important and information on
the phase of fs(θ) can be obtained from intermediate angles when the interference
term in (1.77) involving both fc(θ) and fs(θ) is important.

Finally we remark that, as is the case for pure Coulomb scattering, because of the
divergence in the forward direction the total cross section obtained by integrating
(1.77) over all scattering angles is infinite.

1.3 Analytic Properties of the S-Matrix

In this section we consider the analytic properties of the partial wave S-matrix,
defined by (1.14), in the complex momentum plane. We show that the poles in the
S-matrix lying on the positive imaginary k-axis correspond to bound states while
poles lying in the lower half k-plane close to the positive real k-axis correspond to
resonances. We also derive an expression for the behaviour of the phase shift and
the cross section when the energy of the scattered particle is in the neighbourhood
of these poles.

We consider the solution u	(r) of the radial Schrödinger equation (1.8) describ-
ing the scattering of a particle by a spherically symmetric reduced potential U (r)
which we assume is less singular than r−2 at the origin and vanishes faster than r−3

at infinity. Hence we assume

∫ ∞
0

r |U (r)|dr <∞ (1.78)

and
∫ ∞

0
r2|U (r)|dr <∞ , (1.79)

so that the solution u	(r) satisfies the boundary conditions (1.9).
Following Jost [515], we introduce two solutions f	(±k, r) of (1.8) defined by

the relations

lim
r→∞ e±ikr f	(±k, r) = 1 . (1.80)
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These boundary conditions define f	(k, r) uniquely only in the lower half k-plane
and f	(−k, r) uniquely only in the upper half k-plane. If the potential satisfies
inequalities (1.78) and (1.79) then f	(k, r) is an analytic function of k when
Im k < 0 for all r , while f	(−k, r) is correspondingly an analytic function of k
when Im k > 0 [52]. These regions of analyticity can be extended if we impose
stronger conditions on the potential. Thus if

I (μ) =
∫ ∞

0
eμr |U (r)|dr <∞, μ real > 0 , (1.81)

then f	(k, r) is analytic for Im k<μ/2 while f	(−k, r) is analytic for Im k>−μ/2.
Further, if the potential can be written as a superposition of Yukawa potentials

U (r) =
∫ ∞
μ0

ρ(μ)
e−μr

r
dμ , (1.82)

where ρ(μ) is a weight function and μ0 > 0, then f	(k, r) will be analytic in
the complex k-plane apart from a branch cut on the positive imaginary k-axis from
k = iμ0/2 to i∞while f	(−k, r)will be analytic in the complex k-plane apart from
a branch cut from k = −iμ0/2 to −i∞. These branch cuts are called Yukawa cuts.
Finally, if the potential vanishes identically beyond a certain distance a0 then I (μ)
defined by (1.81) is finite for all μ so that f	(±k, r) are analytic functions of k in
the open k-plane for all fixed values of r , that is, they are entire functions of k.

We can express the physical solution of (1.8), defined by the boundary conditions
(1.9), as a linear combination of f	(±k, r). Let us normalize this solution so that it
satisfies

lim
r→0

r−l−1u	(r) = 1 . (1.83)

From a theorem proved by Poincaré [749], the absence of a k-dependence in this
boundary condition implies that this solution is an entire function of k. The Jost
functions [515] are then defined by

f̃	(±k) = W [ f	(±k, r), u	(r)] , (1.84)

where the Wronskian W [ f, g] = f g′ − f ′g and where the primes denote the deriva-
tives with respect to r . It is straightforward to show from the differential equation
(1.8) satisfied by f	(±k, r) and u	(r) that the Wronskian is independent of r . It is
also convenient to introduce other Jost functions by the equation

f	(±k) = k	 exp(± 1
2 i	π)

(2	+ 1)!! f̃	(±k) . (1.85)

The functions f	(+k) and f	(−k) are continuous at k = 0 and approach unity at
large |k| for Im k ≤ 0 and ≥ 0, respectively.
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We now use the relations

W [ f	(±k, r), f	(∓k, r)] = ±2ik ,

W [ f	(±k, r), f	(±k, r)] = 0 , (1.86)

which follow from (1.80) and the definition of the Wronskian, to write u	(r) in the
form

u	(r) = 1

2ik
[ f̃	(k) f	(−k, r)− f̃	(−k) f	(k, r)] . (1.87)

Comparing this equation with the asymptotic form (1.13) and using (1.80) then
yields the following expression for the S-matrix elements:

S	(k) = eiπ	 f̃	(k)

f̃	(−k)
= f	(k)

f	(−k)
. (1.88)

This equation relates the analytic properties of the S-matrix with the simpler analytic
properties of the Jost functions.

In order to study the analytic properties of the Jost functions further we return to
(1.8) satisfied by the functions f	(±k, r). In particular we consider

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
f	(−k, r) = 0 . (1.89)

We now take the complex conjugate of this equation, which gives

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k∗2

)
f ∗	 (−k, r) = 0 , (1.90)

where we have assumed that r , 	 and U (r) are real but k can take complex values.
In addition, it follows from (1.89) that f	(k∗, r) is a solution of

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k∗2

)
f	(k

∗, r) = 0 . (1.91)

Now from (1.80)

f ∗	 (−k, r) ∼
r→∞ exp(−ik∗r) (1.92)

and

f	(k
∗, r) ∼

r→∞ exp(−ik∗r) , (1.93)
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so that f ∗	 (−k, r) and f	(k∗, r) satisfy the same boundary conditions. Since these
functions also satisfy the same differential equation, namely (1.90) and (1.91),
respectively, they are equal for all r , for all points in the upper half k-plane and for
all other points which admit an analytic continuation from the upper half k-plane.
Hence in this region

f ∗	 (−k, r) = f	(k
∗, r) (1.94)

and thus from (1.84) the Jost functions satisfy

f̃ ∗	 (−k) = f̃	(k
∗) . (1.95)

Combining this result with (1.88) we find that the S-matrix satisfies the following
symmetry relation

S	(k)S	(−k) = e2iπ	 f̃	(k)

f̃	(−k)

f̃	(−k)

f̃	(k)
= e2iπ	 (1.96)

and the unitarity relation

S	(k)S
∗
	 (k
∗) = f̃	(k)

f̃	(−k)

f̃ ∗	 (k∗)
f̃ ∗	 (−k∗)

= 1 . (1.97)

Also, from (1.96) and (1.97) we obtain the reflection relation

S	(k) = e2iπ	S∗	 (−k∗) . (1.98)

From (1.97), it follows that if k is real then the S-matrix has unit modulus and can
thus be expressed in terms of a real phase shift δ	(k) as

S	(k) = exp[2iδ	(k)] , (1.99)

in agreement with (1.14). In addition it follows from (1.98) that if the S-matrix has
a pole at the point k, then it also has a pole at the point −k∗ and from (1.96) and
(1.97) it has zeros at the points −k and k∗. Thus the poles and zeros of the S-matrix
are symmetrically situated with respect to the imaginary k-axis.

In order to determine the physical significance of poles in the S-matrix we note
from (1.84) that the Jost functions f̃	(±k) are finite for all finite k. Hence it follows
from (1.88) that a pole in the S-matrix must correspond to a zero in f̃	(−k) rather
than a pole in f̃	(k). Substituting this result into (1.87) and using (1.80) shows
that the physical solution of (1.8) corresponding to a pole in the S-matrix has the
following asymptotic form:

u	(r) ∼
r→∞Neikr , (1.100)
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where N is a normalization factor. When k is in the upper half k-plane, it follows
from (1.100) that the corresponding wave function vanishes exponentially and hence
is normalizable. Since the Hamiltonian is hermitian, all normalizable wave functions
must correspond to real energy eigenvalues and hence the corresponding value of
k2 must be real. This shows that if a pole in the S-matrix occurs in the upper half
k-plane in the region of analyticity connected to the physical real k-axis it must lie
on the positive imaginary axis. If we write k = iκ, where κ is real and positive, then
(1.100) becomes

u	(r) ∼
r→∞Ne−κr , (1.101)

which clearly corresponds to a bound state with binding energy−κ2/2. In the lower
half k-plane the wave function defined by (1.100) diverges exponentially and thus
cannot be normalized. The above arguments based on the hermiticity of the Hamil-
tonian then break down and the corresponding poles are then no longer confined to
the imaginary k-axis.

We present in Fig. 1.1 a possible distribution of S-matrix poles in the complex
k-plane. For potentials satisfying (1.78) and (1.79), only a finite number of bound
states can be supported and these give rise to the poles lying on the positive imagi-
nary axis in this figure. However, an infinite number of poles can occur in the lower
half k-plane. If they do not lie on the negative imaginary k-axis, they occur in pairs
symmetric with respect to this axis, as discussed above. If they lie on the negative
imaginary k-axis, they are often referred to as virtual state poles. Poles lying in the
lower half k-plane and close to the real positive k-axis give rise to resonance effects
in the cross section which will be discussed below. The corresponding resonance
states, defined by the outgoing wave boundary condition (1.100), are often called
Siegert states [876]. Poles lying in the lower half k-plane and far away from the real
positive k-axis contribute to the smooth “background” or “non-resonant” scattering.
The distribution of poles in the complex k-plane has been discussed in detail in a few
cases, most notably by Nussenzveig [700] for scattering by a square well potential.

We now consider an isolated pole in the S-matrix which lies in the lower half
k-plane close to the positive real k-axis. We show that this pole gives rise to

Fig. 1.1 Distribution
of S-matrix poles in the
complex k-plane. ×, poles
corresponding to bound
states; ◦, poles corresponding
to resonances; �, poles
corresponding to background
scattering; ∗, conjugate poles
required by the symmetry
and unitarity relations;
•, poles corresponding
to virtual states
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resonance scattering at the nearby real energy. We assume that the pole occurs at
the complex energy

E = Er − 1
2 iΓ , (1.102)

where Er , the resonance position, and Γ , the resonance width, are both real positive
numbers and where from (1.3) we remember that E = 1

2 k2. Now from the unitarity
relation (1.97) we see that corresponding to this pole there is a zero in the S-matrix
at a complex energy in the upper half k-plane given by

E = Er + 1
2 iΓ . (1.103)

For energies E on the real axis in the neighbourhood of this pole, the S-matrix can
be written in the following form which is both unitary and explicitly contains the
pole and zero:

S	(k) = exp
[
2iδ0
	 (k)

] E − Er − 1
2 iΓ

E − Er + 1
2 iΓ

. (1.104)

The quantity δ0
	 (k) in this equation is called the “background” or “non-resonant”

phase shift. Provided that the energy Er is not close to threshold, E = 0, nor to
another resonance then the background phase shift is slowly varying with energy.
Comparing (1.99) and (1.104) we obtain the following expression for the phase
shift:

δ	(k) = δ0
	 (k)+ δr

	(k) , (1.105)

where we have written

δr
	(k) = tan−1

1
2Γ

Er − E
. (1.106)

The quantity δr
	(k) is called the “resonant” phase shift which we see from (1.106)

increases through π radians as the energy E increases from well below to well
above the resonance position Er . It is also clear from (1.106) that the rapidity of this
increase is inversely proportional to Γ , the resonance width.

If the background phase shift δ0
	 (k) is zero then we obtain from (1.30) and (1.106)

the following expression for the partial wave cross section:

σ	 = 4π

k2
(2	+ 1)

1
4Γ

2

(E − Er )2 + 1
4Γ

2
. (1.107)

This expression is called the Breit–Wigner one-level resonance formula first derived
to describe nuclear resonance reactions [135]. We see that at the energy E = Er the
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partial wave cross section σ	 reaches its maximum value 4π(2	+ 1)/k2 allowed by
unitarity and decreases to zero well below and well above this energy.

If the background phase shift δ0
	 (k) is non-zero then the partial wave cross section

can be written as

σ	 = 4π

k2
(2	+ 1) sin2 δ	(k) = 4π

k2
(2	+ 1)

(ε + q)2

1+ ε2
sin2 δ0

	 (k) , (1.108)

where ε is the reduced energy

ε = E − Er
1
2Γ

(1.109)

and q is the resonance shape parameter or line profile index

q = − cot δ0
	 (k) . (1.110)

The line profile index was introduced by Fano [301] to describe resonant atomic
photoionization processes. It follows from (1.108) that the partial wave cross section
is zero when ε = −q and achieves its unitarity limit 4π(2	+ 1)/k2 when ε = q−1.
In Fig. 1.2 we illustrate the total phase shift δ	(k) and the partial wave cross section
σ	 for s-wave scattering for four different values of the background phase shift,
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Fig. 1.2 The total phase shift δ	(k) and the partial wave cross section σ	 for s-wave resonance
scattering with k2

r = 2Er = 1.0 and Γ = 0.05 for four different values of the background phase
shift. Case (a), δ0

0(k) = 0 giving q = ∞; case (b), δ0
0(k) = π/4 giving q = −1; case (c),

δ0
0(k) = π/2 giving q = 0; case (d), δ0

0(k) = 3π/4 giving q = 1. The cross section is given in
πa2

0 units and the dashed lines are the s-wave unitarity limit 4k−2
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which we assume is energy independent. Case (a) with q = ∞ corresponds to a stan-
dard Breit–Wigner resonance given by (1.107), where the non-resonant background
scattering is zero. Case (c) with q = 0 corresponds to a window resonance where
the background scattering has its maximum value allowed by unitarity. Finally, cases
(b) and (d) are intermediate cases where the resonance shapes are asymmetric.

When several resonance poles lie in the lower half k-plane and close to the pos-
itive real k-axis their effects on the cross section may overlap. In the case of n
resonances we must replace (1.104) by

S	(k) = exp
[
2iδ0
	 (k)

] n∏
j=1

E − E j − 1
2 iΓ j

E − E j + 1
2 iΓ j

, (1.111)

where the position of the j th pole is E = E j − 1
2 iΓ j . The total phase shift is then

given by

δ	(k) = δ0
	 (k)+

n∑
j=1

tan−1
1
2Γ j

E j − E
. (1.112)

In this case the total phase shift increases through nπ radians as the energy increases
from below all the resonances to above all the resonances, provided that the non-
resonant phase shift δ0

	 (k) is slowly varying over this range. The corresponding
cross section will achieve its unitarity limit n times where the total phase shift goes
through an half odd integral multiple of π radians and will have n zeros where it
goes through an integral multiple of π radians.

1.4 Effective Range Theory

In this section we consider the analytic behaviour of the phase shift and the scat-
tering amplitude in the neighbourhood of threshold energy. We show that there is
a close relationship between the low-energy scattering amplitude and the bound-
state spectrum at negative energies. We consider first the analytic properties for
short-range potentials, where the potential vanishes faster than any inverse power
of the distance. We then extend our discussion to the situation where the poten-
tial behaves asymptotically as r−s where s ≥ 2, which is relevant for low-energy
electron scattering by neutral atoms. Finally, we consider scattering by a Coulomb
potential which is relevant to electron–ion scattering.

1.4.1 Short-Range Potentials

We commence by considering the solution of the radial Schrödinger equation (1.8)
where we assume that the potential U (r) satisfies the condition

U (r) = 0, r ≥ a , (1.113)
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for some finite radius a. It follows from (1.9) and (1.15) that the solution which is
regular at the origin satisfies the asymptotic boundary condition

u	(r) = s	(kr)+ c	(kr)K	(k), r ≥ a. (1.114)

In order to determine the analytic properties of the K -matrix K	(k) we relate it to
the R-matrix R	(E) which we introduce in Sect. 4.1 and which is defined on the
boundary r = a by

u	(a) = R	(E)

(
a

du	
dr
− bu	

)
r=a

, (1.115)

where b is an arbitrary constant. Substituting (1.114) for u	(r) into (1.115) then
yields

[K	(k)]
−1 = c	(ka)− R	(E)[kac′	(ka)− bc	(ka)]

−s	(ka)+ R	(E)[kas′	(ka)− bs	(ka)] , (1.116)

where s′	(kr) and c′	(kr) are the derivatives of s	(kr) and c	(kr) with respect to the
argument kr .

The analytic properties of the R-matrix are discussed in Sect. 4.1, where we
show that it is a real meromorphic function of the energy with simple poles only on
the real energy axis. The analytic properties of the functions s	(kr) and c	(kr) and
their derivatives are related to those of the spherical Bessel and Neumann functions
j	(kr) and n	(kr) defined by (1.10) and (1.11). These functions are discussed in
Appendix C.2, where we show that they can be expanded about z = 0 as follows:

j	(z) = [(2	+ 1)!!]−1z	 + O(z	+2) ,

n	(z) = −[(2	− 1)!!]z−	−1 + O(z−	+1) . (1.117)

Hence k−	−1s	(kr), k−	s′	(kr), k	c	(kr) and k	+1c′	(kr) are entire functions of k2,
that is they are analytic functions of k2 for fixed r . It follows from (1.116) that the
M-matrix, which is defined by the equation

M	(k
2) = k2	+1 [K	(k)]

−1 , (1.118)

is a real analytic function of k2 which can be expanded in a power series in k2 about
k2 = 0. It is also useful to express the T -matrix element defined by (1.26) in terms
of M	(k2). We find using (1.118) that

T	(k) = 2ik2	+1

M	(k2)− ik2	+1
. (1.119)
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We will see in Chap. 3 that this result generalizes in a straightforward way to
multichannel scattering. Also, remembering from (1.15) that K	(k) = tan δ	(k),
it follows that we can expand k2	+1 cot δ	(k) about zero energy in the form

k2	+1 cot δ	(k) = − 1

a	
+ 1

2
re	k

2 + O(k4) , (1.120)

where a	 is called the “scattering length” and re	 is called the “effective range”. This
“effective range expansion” or “Blatt–Jackson expansion” was first derived by Blatt
and Jackson [115] and by Bethe [104].

We can obtain a simple physical picture of the s-wave scattering length a0 in
terms of the zero-energy wave function. If we adopt the following normalization of
the s-wave reduced radial wave function

u0(r) ∼
r→∞ sin kr + cos kr tan δ0(k), r ≥ a , (1.121)

then in the limit as the energy tends to zero, we find using (1.120) that

lim
k→0

u0(r) = k(r − a0), r ≥ a . (1.122)

It follows that the s-wave scattering length a0 is the intercept of the extrapolation
of the asymptote of the zero-energy s-wave reduced radial wave function with the
r -axis.

As an example of the relationship between the s-wave scattering length and the
zero-energy wave function we consider the solution of (1.8) for a square-well poten-
tial. We consider the solution of the equation

(
d2

dr2
−U (r)+ k2

)
u(r) = 0 , (1.123)

where the range r = a of the potential U (r) is taken to equal 1 so that

U (r) = −A, r < 1,

U (r) = 0, r ≥ 1 , (1.124)

and the energy E = 1
2 k2 = 0. Also the sign of the potential strength A is chosen so

that it is positive for attractive potentials and negative for repulsive potentials.
We show in Fig. 1.3, three examples of the solution u(r) of (1.123) and (1.124)

for three different potential strengths. The first example, shown in Fig. 1.3a, cor-
responds to a repulsive potential where the scattering length a0 = 0.5, the second
example, shown in Fig. 1.3b, corresponds to a weak attractive potential which does
not support a bound state where a0 = −1 and the third example, shown in Fig. 1.3c,
corresponds to a stronger attractive potential which supports one bound state where
a0 = 2.
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Fig. 1.3 The s-wave zero-energy reduced radial wave function u(r), represented by the full lines,
showing the scattering length a0 for three square-well potentials with unit radius: (a) a repulsive
potential with potential strength A = −3.667, giving a0 = 0.5; (b) a weak attractive potential with
potential strength A = 1.359, giving a0 = −1; (c) a stronger attractive potential with potential
strength A = 4.116, giving a0 = 2. Also, represented by the dashed lines in (a) and (b) are the
extrapolations of u(r) for r ≥ 1 back to its intercept r = a0 with the r -axis

The relationship between the s-wave scattering length a0 and the potential
strength A is obtained by solving (1.123) and (1.124) subject to the condition that
the solution u(r) and its derivative are continuous on the boundary r = 1. We can
show that the relationship for repulsive potentials A < 0 is

a0 = 1− α−1 tanhα, where α2 = −A , (1.125)

and the relationship for attractive potentials A > 0 is

a0 = 1− α−1 tanα, where α2 = A . (1.126)

The dependence of the scattering length a0 on the potential strength A, given
by (1.125) and (1.126), is shown in Fig. 1.4 for A in the range −30 < A < 30,
where we have indicated by crosses on this figure the (A, a0) values corresponding
to the three solutions shown in Fig. 1.3. For an infinitely strong repulsive potential,
or hard-core potential, where A = −∞, the scattering length equals the range of
the potential, which is unity in this example. As the potential strength increases
towards attractive values, the scattering length decreases and passes through zero
when A = 0, becoming infinitely negative when the asymptote of the solution u(r)
is parallel to the r -axis. We see from (1.126) that this occurs when A = (π/2)2. A
further increase in the potential strength leads to a large positive scattering length,
resulting in the support of a bound state. The scattering length again decreases with
increasing attraction, becoming infinitely negative again when A = (3π/2)2. We see
from (1.126) that this process is repeated with each new branch, corresponding to a
new state becoming bound, occurring when A = [(2n + 1)π/2]2, n = 0, 1, 2, . . . .
Finally we observe that the same general picture occurs for square-well potentials of
arbitrary range a, the strength of the potential where the asymptotes of the solution
u(r) are parallel to the r -axis then being given by A = [(2n + 1)π/(2a)]2, n =
0, 1, 2, . . . .

We now discuss the relationship between the scattering length and effective range
and the low-energy behaviour of the S-matrix, T -matrix and cross section. Provided
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Fig. 1.4 The dependence of the scattering length a0 on the potential strength A for a square-well
potential with unit range. The scattering length and potential strength corresponding to Fig. 1.3a–c
is marked by crosses on this figure

that the p-wave scattering length a1 is non-singular then the s-wave partial wave
cross section dominates low-energy scattering. It follows from (1.30) and (1.120)
that the low-energy s-wave cross section

σ0 = 4π

k2
sin2 δ0(k) = 4π

k2

1

1+ cot2 δ0(k)
= 4πa2

0

k2a2
0 + (1− 1

2re0k2a0)2
. (1.127)

The zero-energy cross section is thus 4πa2
0 . Also, when an s-wave bound state

occurs at zero energy then the scattering length and hence the cross section is infi-
nite. We now determine the behaviour of the cross section when an s-wave bound
state occurs close to zero energy. It follows from (1.15) and (1.26) that

T	(k) = S	(k)− 1 = 2i

cot δ	(k)− i
. (1.128)

Hence a pole in the S- and T -matrices occurs when cot δ	(k) = i. However, we saw
in Sect. 1.3, see Fig. 1.1, that a bound-state pole in the S-matrix and hence in the
T -matrix must lie on the imaginary k-axis, so that

kb = iκb , (1.129)
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where κb is real and positive. Combining (1.128) and (1.129) we obtain the follow-
ing condition

kb cot δ0(kb) = −κb , (1.130)

for an s-wave bound state. By comparing this equation with the effective range
expansion (1.120) we find that the scattering length is related to the position of
the pole in the S- and T -matrices by

κb = a−1
0 , (1.131)

where we have retained only the first term on the right-hand side of (1.120). Sub-
stituting this result into (1.127) gives the following expression for the low-energy
s-wave cross section:

σ0 = 4π

k2 + κ2
b

. (1.132)

As we have already remarked, the s-wave cross section is infinite at zero energy
when the bound-state pole occurs at zero energy. Also, since this cross section is
independent of the sign of κb, it is not possible to distinguish by measuring the
cross section alone, whether the pole in Fig. 1.1 corresponds to a bound state with
positive κb or a virtual state with negative κb.

In the case of non-zero partial waves we obtain the following expression for the
T -matrix by combining (1.120) and (1.128)

T	(k) = 2ik2	+1

−a−1
	 + 1

2re	k2 − ik2	+1
, (1.133)

which can be written in the form

T	(k) = iΓ

Er − E − 1
2 iΓ

, (1.134)

where the resonance position is given by

Er = 1

a	re	
(1.135)

and the resonance width by

Γ = − 2

re	
k2	+1 . (1.136)

It follows that the effective range re	, corresponding to a low-energy resonance with
l ≥ 1, must be negative and its width energy dependent. This type of resonance is
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caused by the repulsive angular momentum barrier 	(	 + 1)r−2 which inhibits its
decay.

Finally, we can show that although we have derived the effective range expansion
(1.120) for a finite range potential satisfying (1.120), it is valid if the potential falls
off as fast as, or faster than, an exponential.

1.4.2 Long-Range Potentials

We now consider modifications that have to be made to the effective range expansion
(1.120) when the potential U (r) in the radial Schrödinger equation (1.8) behaves
asymptotically as follows:

U (r) = A

rs
, r ≥ a, s ≥ 2 . (1.137)

We can determine the required modifications by considering the first Born approxi-
mation for the phase shift given by (1.20), that is by

tan δB
	 (k) = −k

∫ ∞
0

U (r) j2
	 (kr)r2dr , (1.138)

which is applicable here since the coefficients in the effective range expansion arise
from the long-range tail of the potential where it is weak. In the limit as k → 0 we
can use the power series expansion (C.33) for the spherical Bessel function j	(kr) in
(1.138). It follows that the first term in the expansion of the integral in (1.138) only
converges for large r if s > 2	+ 3, which gives rise to the first term in the effective
range expansion (1.120). If s ≤ 2	+ 3 the integral diverges and the first term in the
effective range expansion is no longer defined. In a similar way, the second term in
the expansion of the integral in (1.138) only converges for large r if s > 2	+ 5 and
consequently if s ≤ 2	 + 5 the second term in the effective range expansion is not
defined. Summarizing these results for the terms in the effective range expansion
(1.120) we obtain

scattering length a	 defined if s > 2	+ 3
effective range re	 defined if s > 2	+ 5 ,

(1.139)

and so on for higher terms in the effective range expansion.
An important example of long-range potentials occurs in elastic electron scatter-

ing by an atom in a non-degenerate s-wave ground state such as atomic hydrogen
or the inert gases. We discuss this polarization potential in detail in Sect. 2.2.2, see
(2.19), where we show that U (r) has the asymptotic form

U (r) = 2Vp(r) ∼
r→∞−

α

r4
, (1.140)
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where α is the dipole polarizability. The radial Schrödinger equation (1.8) then
becomes

(
d2

dr2
− 	(	+ 1)

r2
+ α

r4
+ k2

)
u	(r) = 0, r ≥ a , (1.141)

where a is the radius beyond which the potential achieves its asymptotic form. In
order to obtain the threshold behaviour of the phase shift we use the Born approx-
imation (1.138), where we consider the contribution to this integral arising from
r ≥ a. Calling this contribution I	 we obtain, after writing x = kr ,

I	 = παk2

2

∫ ∞
ka

J 2
	+ 1

2
(x)x−3dx , (1.142)

where for 	 ≥ 1, the contribution to the integral from r < a behaves as k2	+1 for
small k and can therefore be neglected compared with I	 as k → 0. Also, for 	 ≥ 1
the integral in (1.142) converges at its lower limit for all k ≥ 0. Carrying out this
integral we find that

k2 cot δ	(k) = 8(	+ 3
2 )(	+ 1

2 )(	− 1
2 )

πα
+ higher order terms, 	 ≥ 1 . (1.143)

It follows in accord with (1.139) that the scattering length is not defined in the
presence of a long-range polarization potential when 	 ≥ 1.

For s-wave scattering in a long-range polarization potential, the contribution to
the integral from r < a dominates (1.142) and hence (1.143) is no longer applicable.
In this case O’Malley et al. [704] transformed (1.141) into a modified form of Math-
ieu’s equation. Replacing s	(kr) and c	(kr) in (1.114) by the appropriate regular and
irregular solutions of this equation and using the known analytic behaviour of the
Mathieu functions they obtained

k cot δ0(k) = − 1

a0
+ πα

3a2
0

k + 2α

3a0
k2 ln

(
αk2

16

)
+ O(k2), 	 = 0 . (1.144)

This equation differs from (1.120) due to the presence of terms containing k and
k2 ln k. Hence the scattering length a0 is defined but the effective range is not, in
accord with (1.139).

The low-energy behaviour of the total cross section in the presence of a long-
range polarization potential can be obtained by substituting the above result into
(1.30). We obtain

σtot(k) = 4π(a0 + πα
3

k + · · · )2 , (1.145)
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where we have omitted higher order terms in k and higher partial wave contributions.
It follows that the derivative of the total cross section with respect to energy is
infinite at threshold, whereas in the absence of the polarization potential it is finite.
Also, if the scattering length a0 is negative, then the total cross section will decrease
from threshold and in the absence of significant contributions from higher terms in
the expansion (1.145) will become zero when k = k0 where

k0 = −3a0

πα
. (1.146)

This leads to the Ramsauer minimum which occurs, for example, in the total cross
section for low-energy electron scattering from the heavier inert gases Ar, Kr and
Xe where the scattering length a0 is negative. On the other hand, if a0 is positive, as
is the case for electron scattering by He and Ne, there is no low-energy minimum in
the cross section.

Levy and Keller [588] have considered the general case of potentials whose
behaviour at large distances is given by (1.137). They found that

tan δ	(k) = 1
2π Aks−2 21−sΓ (s − 1)Γ (	+ 3

2 − 1
2 s)

Γ 2( 1
2 s)Γ (	+ 1

2 + 1
2 s)

, 2 < s < 2	+ 3 (1.147)

and

tan δ	(k) = − Ak2	+1 ln k

[(2	+ 1)!!]2 , s = 2	+ 3 . (1.148)

By considering the contribution from higher angular momenta we find that the total
threshold cross section is finite if s > 2 while the differential cross section is finite
if s > 3.

Another long-range potential of interest is a dipole potential which falls off
asymptotically as r−2 and is less singular than r−2 at the origin. This occurs in
many applications, for example, in the scattering of electrons by polar molecules
or by hydrogen atoms in degenerate excited states. The radial Schrödinger equation
then has the asymptotic form

(
d2

dr2
− 	(	+ 1)

r2
− A

r2
+ k2

)
u	(r) = 0, r ≥ a . (1.149)

This equation has analytic solutions which we can obtain by combining the r−2

terms as follows:

λ(λ+ 1) = 	(	+ 1)+ A , (1.150)

which has the solution

λ = − 1
2 ± 1

2

[
(2	+ 1)2 + 4A

]1/2
. (1.151)



32 1 Potential Scattering

Using this definition, (1.149) reduces to the standard form
(

d2

dr2
− λ(λ+ 1)

r2
+ k2

)
u	(r) = 0, r ≥ a . (1.152)

where λ is in general a non-integral quantity. In analogy with (1.10) and (1.11) we
can define two linearly independent solutions of (1.152) by

sλ(kr) = kr jλ(kr) ∼
r→∞ sin(kr − 1

2λπ) (1.153)

and

cλ(kr) = −krnλ(kr) ∼
r→∞ cos(kr − 1

2λπ) , (1.154)

where it is convenient to choose the upper positive sign in (1.151) so that λ→ 	 in
the limit A→ 0.

The solution of the radial Schrödinger equation, corresponding to a dipole poten-
tial U (r), which is regular at the origin can be written in analogy with (1.114) by

u	(r) = sλ(kr)+ cλ(kr)Kλ(k), r ≥ a , (1.155)

which defines the K -matrix Kλ(k). We can relate the physical K -matrix K	(k),
defined by (1.9) and (1.15), to Kλ(k), defined by (1.155). We find that

K	(k) = sin τ + cos τKλ(k)

cos τ − sin τKλ(k)
, (1.156)

where

τ = 1
2π(	− λ) . (1.157)

It follows that when A = 0 then 	 = λ and K	(k) = Kλ(k).
In order to determine the analytic behaviour of Kλ(k) in the neighbourhood of

threshold energy, we proceed as in the derivation of (1.118) by relating Kλ(k) to the
R-matrix on the boundary r = a. We substitute u	(r), given by (1.155), into (1.115)
which yields (1.116) with 	 replaced everywhere by λ. We then use the analytic
properties of the functions sλ(kr) and cλ(kr) and their derivatives, which are related
to those of the spherical Bessel and Neumann functions jλ(kr) and nλ(kr) through
(1.10) and (1.11). In this way we can show that the M-matrix, which is defined by
the equation

Mλ(k
2) = k2λ+1 [Kλ(k)]

−1 , (1.158)

is an analytic function of k2 in the neighbourhood of threshold which is a real ana-
lytic function when λ is real. We can also express the T -matrix T	(k) defined by
(1.26) in terms of the M-matrix, using (1.156) and (1.158). We find that

T	(k) = 2ie2iτ k2λ+1

Mλ(k2)− ik2λ+1
+ e2iτ − 1 , (1.159)

which reduces to (1.119) in the limit A→ 0 so that τ → 0.
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An important feature of scattering by a dipole potential occurs for strong attrac-
tive potentials where

A < − 1
4 (2	+ 1)2 . (1.160)

In this case, the argument of the square root in (1.151) becomes negative and λ,
which then becomes complex, can be written as

λ = − 1
2 + i Im λ , (1.161)

where Im λ can be positive or negative. The factor k2λ+1 in (1.159) can then be
written as

k2λ+1 = k2i Imλ = exp(2i Im λ ln k) . (1.162)

We see immediately that this gives rise to an infinite number of oscillations in the
partial wave cross section as the collision energy tends to zero. Also, if we consider
complex values of k defined by

k = |k|eiφ , (1.163)

then the denominator Dλ(k) = Mλ(k2)− ik2λ+1 in (1.159) can be written as

Dλ(k) = Mλ(k
2)− exp(−2φIm λ) exp

[
2i
(

Im λ ln |k| + π
4

)]
. (1.164)

It follows that Dλ(k) has zeros along lines in the complex k-plane given by

|Mλ(k
2)| = exp(−2φIm λ) , (1.165)

which gives

φ = − ln |Mλ(k2)|
2 Im λ

. (1.166)

Also as |k| → 0 then the quantity

θ = Im λ ln |k| + 1
4π (1.167)

in (1.164) will increase or decrease through π radians an infinite number of times.
Hence the T -matrix has an infinite number of poles converging to the origin along
two lines in the now infinite sheeted complex k-plane, where these two lines cor-
respond to the positive and negative values of Im λ in (1.167). These lines of poles
correspond to bound states, resonances or virtual states depending on the value of φ
and whether they lie on the physical sheet of the complex k-plane.
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We will see when we discuss multichannel effective range theory in Sect. 3.3 that
the oscillatory behaviour of the cross section above threshold and the infinite series
of bound states below threshold apply in certain circumstances both to electron scat-
tering by polar molecules and by atomic hydrogen in degenerate excited states. The
above discussion provides an introduction to these more complicated and realistic
situations.

We conclude this section by considering the properties of the total and momen-
tum transfer cross sections at finite energies in the presence of a long-range r−2

potential. For high angular momentum 	 the radial wave function in (1.155) is accu-
rately represented by the first term sλ(kr). Hence the corresponding phase shift is
given by

δ	 = 1
2π(	− λ) . (1.168)

For large 	 we find by expanding the square root in (1.151) and choosing the upper
sign in this equation that

δ	 ∼
	→∞−

π A

2(2	+ 1)
+ O(	−3) . (1.169)

The total cross section, defined by (1.30), then becomes

σtot = σ1 + σ2, (1.170)

where

σ1 = 4π

k2

L∑
	=0

(2	+ 1) sin2 δ	 (1.171)

and

σ2 = 4π

k2

∞∑
	=L+1

(2	+ 1) sin2 δ	 ≈ π
3 A2

k2

∞∑
	=L+1

1

(2	+ 1)
. (1.172)

In (1.171) and (1.172) L is the value of 	 where the phase shift δ	 can be accurately
represented by the first term on the right-hand side of (1.169). It follows that σ2, and
hence the total cross section σtot, diverges logarithmically with 	. Also the scatter-
ing amplitude, defined by (1.29), and hence the differential cross section, defined
by (1.4), diverge in the forward direction. Since the contribution to the differential
cross section in the forward direction arising from the short-range component of
the potential U (r) is negligible compared with that arising from the long-range r−2

component, the corresponding angular distribution is energy independent. In prac-
tice, the divergence in the forward direction is cut off either because of the Debye
screening of the dipole potential at large distances if the scattering process occurs
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in a plasma or because of the molecular rotational splitting or the fine-structure
splitting of the target levels.

Finally, we remark that the momentum transfer cross section defined by (1.6)
remains finite in the forward direction. This follows immediately by substituting the
asymptotic expansion for the phase shift given by (1.169) into (1.31). This result can
also be seen to follow from (1.6), where the factor (1− cos θ) cuts off the divergence
in the scattering amplitude in the forward direction.

1.4.3 Coulomb Potential

Finally in this section we consider electron or positron scattering by a positive or
negative ion. In this case we consider the solution of the radial Schrödinger equation
(1.70), where we assume that the short-range part of the potential U (r) vanishes for
r ≥ a. Hence the total potential reduces in this region to the Coulomb potential
alone given by

Uc(r) = 2Z1 Z2

r
, r ≥ a , (1.173)

where Z1 and Z2 are the charge numbers corresponding to the incident particle
and the ion, respectively, and where we assume that the ion has infinite mass. The
solution of (1.70) which is regular at the origin can be written as follows:

u	(r) = F	(η, kr)+ G	(η, kr)K	(k), r ≥ a , (1.174)

where F	(η, kr) and G	(η, kr) are the regular and irregular Coulomb wave func-
tions, defined by (1.58) and (1.59), respectively, η is defined by (1.42) and K	(k) is
the K -matrix.

In order to derive an effective range expansion we commence from (1.115) which
defines the R-matrix R	(E) in terms of the radial wave function u	(r) and its deriva-
tive du	(r)/dr on the boundary r = a of the internal region. We then substitute
u	(r), defined by (1.174), into (1.115) and set the arbitrary constant b = 0. After
re-arranging terms and using the Wronskian relation F ′	G	 − G ′	F	 = 1 we obtain

[K	(k)]
−1 = −G	

F	
+ 1

F ′	F	
+ 1√

ρF ′	

[
R	(E)− ρ−1 F	

F ′	

]
1

F ′	
√
ρ
, (1.175)

where ρ = ka and F	, G	 and F ′	 and G ′	 are defined by

F	 = F	(η, ka), G	 = G	(η, ka),

F ′	 =
1

k

dF	(η, kr)

dr

∣∣∣∣
r = a

, G ′	 =
1

k

dG	(η, kr)

dr

∣∣∣∣
r = a

. (1.176)
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It follows from (1.175) that the analytic behaviour of K	(k) in the complex energy
plane can be obtained in terms of the analytic properties of F	, G	, F ′	 and R	(E),
where we remember that R	(E) is a real meromorphic function of the energy with
simple poles only on the real energy axis.

The Coulomb wave functions, which were introduced and discussed in Sect. 1.2,
can be written as follows:

F	(η, kr) = C	(η)(kr)	+1Φ	(η, kr) (1.177)

and

G	(η, kr) = (kr)−	

(2	+ 1)C	(η)

×
[
Ψ	(η, kr)+ (kr)2	+1 p	(η)

(
ln(2kr)+ q	(η)

p	(η)

)
Φ	(η, kr)

]
,

(1.178)

where Φ	(η, kr) and Ψ	(η, kr) are entire functions of k2 and C	(η) is defined by
(1.60) and (1.61). Also in (1.178)

p	(η) = 2η(2	+ 1)
C2
	 (η)

C2
0(η)

, (1.179)

and

q	(η)

p	(η)
= f (η) , (1.180)

is a rational function of η2 which tends to a constant as |η2| → ∞. Finally

f (η) = 1

2
[ψ(iη)+ ψ(−iη)] , (1.181)

where ψ(z) is the Psi (digamma) function which is defined in terms of the gamma
function Γ (z) by

ψ(z) = dΓ (z)

dz
. (1.182)

Using these properties of the Coulomb wave functions, it then follows from
(1.175) that the M-matrix, defined by

M	(k
2) = k2	+1[(2	+ 1)!!]2C2

	 (η)[K	(k)]−1 + h	(η) , (1.183)

is a real analytic function of k2, where

h	(η) = k2	+1[(2	+ 1)!!]2
[

2ητ
C2
	 (η)

C2
0(η)

− iC2
	 (η)

]
(1.184)
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and

τ = ln k + f (η)+ iπ

e2πη − 1
. (1.185)

Hence M	(k2) can be expanded in a power series in k2 giving the following effective
range expansion for a Coulomb potential

k2	+1[(2	+ 1)!!]2C2
	 (η) cot δ	(k)+ h	(η) = − 1

a	
+ 1

2
re	k

2 + O(k4) , (1.186)

where we have expressed K	(k) in (1.183) in terms of the phase shift δ	(k) using
(1.15) and where a	 is the scattering length and re	 is the effective range. Equa-
tion (1.186) was first derived for s-wave scattering by Bethe [104]. It is also conve-
nient to rewrite this effective range expansion for the T -matrix, defined by (1.26),
in terms of the M-matrix. We find that

T = 2ik2	+1[(2	+ 1)!!]2C2
	 (η)

M	(k2)− k2	+1[(2	+ 1)!!]2 p	(η)τ (2	+ 1)−1
. (1.187)

In the limit η→ 0, corresponding to short-range potentials, we can show that

[(2	+ 1)!!]2C2
	 (η)→ 1, (2	+ 1)!!]2 p	(η)τ → i, h	(η)→ 0 . (1.188)

Hence (1.186) reduces to the effective range expansion (1.120) and (1.187) reduces
to (1.119). We will consider the generalization of (1.187) to multichannel scattering
by a Coulomb potential in Sect. 3.3.3.

When the Coulomb potential is attractive, corresponding to electron scattering
by positive ions or positron scattering by negative ions, we can relate the energies
of the bound states to the positive energy scattering phase shift. We have shown in
Sect. 1.3 that the poles of the S-matrix, and hence the T -matrix, which lie on the
imaginary axis in the complex k-plane, correspond to bound states. It follows from
(1.187) that these poles occur when

M	(k
2) = k2	+1[(2	+ 1)!!]2 p	(η)τ (2	+ 1)−1 . (1.189)

The branches of the function τ in (1.189) for negative energies, corresponding to
positive imaginary k, give rise to an infinite number of solutions of (1.189) converg-
ing onto zero energy. These solutions correspond to the Rydberg series of bound
states. The relationship between positive and negative energies is obtained using
Stirling’s series for the Psi functions in the definition of f (η) given by (1.181). We
find that

τ = ln z + iπ

e2πη − 1
+ χ(k2), k2 > 0 (1.190)
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and

τ = ln z + π cot
(π z

κ

)
+ χ(k2), k2 < 0 , (1.191)

where k = iκ below threshold and z = −Z1 Z2. Also in (1.190) and (1.191) χ(k2)

is a real analytic function of k2 which has the following representation in the neigh-
bourhood of k2 = 0:

χ(k2) =
∞∑

r=1

Br

2r(2r − 1)2

(
k

z

)2r

, (1.192)

where Br are Bernoulli numbers. Hence, using (1.191), we see from (1.189) that the
bound-state energies are given by the solutions of

M	(k
2) = k2	+1[(2	+ 1)!!]22η

C2
	 (η)

C2
0(η)

[
ln z + π cot

(
π z

κb

)
+ χ(k2)

]
, (1.193)

where we have substituted for p	(η) in (1.189) using (1.179). Since M	(k2),
k2	+1[(2	 + 1)!!]22ηC2

	 (η)/C2
0(η) and χ(k2) in (1.193) are analytic functions of

energy then cot(π z/κb), where k2 = −κ2
b are the bound-state energy solutions of

(1.193), can be fitted by an analytic function of energy and extrapolated to positive
energies.

At positive energies it follows from (1.183) that

cot δ	(k) = M	(k2)− h	(η)

k2	+1[(2	+ 1)!!]2C2
	 (η)

, (1.194)

where we have rewritten [K	(k)]−1 in (1.183) as cot δ	(k). We then substitute for
M	(k2), defined by (1.193), and h	(η), defined by (1.184), in (1.194) yielding

cot δ	(k) = 2η

C2
0(η)

[
ln z + π cot

(π z

k

)
+ χ(k2)

]
− 2ητ

C2
0(η)

+ i . (1.195)

Finally, we substitute for τ , defined by (1.190), in (1.195) yielding the final result

cot δ	(k)

e2πη − 1
= cot

(
π z

κb

)
. (1.196)

We interpret this equation by extrapolating cot(π z/κb) on the right-hand side, which
is defined at the bound-state energies k2 = −κ2

b , to positive energies, where it is
defined in terms of the phase shift δ	(k), given by the expression on the left-hand
side.
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We can rewrite (1.196) in a more convenient form by introducing effective quan-
tum numbers νn and associated quantum defects μn of the bound states by the
equation

− κ2
b = −

z2

ν2
n
= − z2

(n − μn)2
, n = 	+ 1, 	+ 2, . . . , (1.197)

where μn is a slowly varying function of energy which is zero when the non-
Coulombic part of the potential vanishes. Substituting (1.197) into (1.196) gives

cot δ	(k)

1− e2πη
= cot[πμ(k2)] , (1.198)

where μ(k2) is an analytic function of energy which assumes the values μn at the
bound-state energies. For small positive energies the factor exp(2πη) is negligibly
small and (1.198) then reduces to

δ	(k) = πμ(k2) . (1.199)

This result enables bound-state energies, which are often accurately known from
spectroscopic observations, to be extrapolated to positive energies to yield electron–
ion scattering phase shifts and hence the corresponding partial wave cross sections.

Equations (1.198) and (1.199) were first derived by Seaton [851, 852] and are the
basis of single-channel quantum defect theory. The foundations of modern quantum
defect theory were laid by Hartree [443], who considered bound-state solutions of
the Schrödinger equation (1.8). Further interest in this theory was stimulated by
the work of Bates and Damgaard [75], whose Coulomb approximation provided
a powerful method for the computation of bound–bound oscillator strengths for
simple atomic systems. An interest in quantum defect theory also arose in solid
state physics discussed by Kuhn and van Vleck [551], which led to developments
in the mathematical theory described in a review article by Ham [440]. In recent
years quantum defect theory has been extended to multichannel scattering by Seaton
[854] and co-workers, and a comprehensive review of the theory and applications
has been written by Seaton [859]. We review multichannel quantum defect theory
in Sect. 3.3.4.

We show in Fig. 1.5 an application of single-channel quantum defect theory to
e−–He+ 1Se and 3Se scattering carried out by Seaton [855]. In this work

Y (k2) = A−1(k2, 	) tan[πμ(k2)] , (1.200)

rather than cot[πμ(k2)], was used in the extrapolation of the quantum defects, where
A(k2, 	) is an analytic function of energy defined by

A(k2, 	) =
	∏

s= 0

(
1+ s2k2

z2

)
, (1.201)
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Fig. 1.5 Phase shifts δ in radians versus energy ε in Rydbergs for e−–He+ 1Se and 3Se scatter-
ing. Full lines, extrapolations using single-channel quantum defect theory; broken lines, polarized
orbital calculations by Sloan [880]. The points at negative energies correspond to the experimental
bound-state energies of He (Fig. 1 from [855])

which in the present application equals unity, since the angular momentum 	 of the
scattered electron is zero. A least-squares fit was then made to the bound-state data
and the positive energy phase shifts determined using a re-arrangement of (1.198)
for tan δ	(k). We see in Fig. 1.5 that the phase shifts obtained by extrapolation from
the experimental bound-state energies are in excellent agreement with polarized
orbital phase shift calculations by Sloan [880] close to threshold and remain good
up to quite high energies. This agreement provides experimental confirmation of the
accuracy of the theoretical phase shift calculations at low energies.

An important feature of the phase shift for electron scattering from positive ions,
which is apparent from Fig. 1.5, is that it does not tend to nπ radians at threshold
energy. This is in contrast to the phase shift for scattering by neutral targets which
tends to a multiple of π radians as the scattering energy tends to zero. This is because
the attractive Coulomb potential Uc(r) pulls the scattered electron into a region
where the short-range part of the potential U (r) in (1.70) is effective, even for non-
zero angular momenta. This effect is the same as that which causes the quantum
defect μn in (1.197) to be non-zero at threshold.

When the Coulomb potential Uc(r) is repulsive, which is the situation when elec-
trons scatter from negative ions or positrons scatter from positive ions, the scattered
electron or positron is kept away from the target at low energies and the phase shift
vanishes rapidly as the energy tends to zero. In this case η = Z1 Z2/k is positive
and large. It follows from (1.61) that the quantity [C0(η)]2, which in this context is
called the Coulomb penetration factor, is given to a good approximation by

[C0(η)]2 ≈ 2πη exp(−2πη) . (1.202)

The factor exp(−2πη) in (1.202) is called the Gamow factor [361]. It then follows
from (1.186) and (1.202) that
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δ	(k) ∼
k→0

exp

(
−2π Z1 Z2

k

)
, Z1 Z2 > 0 , (1.203)

which applies for all angular momenta. It is clear that the Gamow factor strongly
inhibits scattering at low energies when the Coulomb potential is repulsive.

The case when the potential U (r) in (1.70) has a long-range component, falling
off asymptotically as r−s where s > 1, in addition to the Coulomb potential Uc(r),
has been considered by Berger and Spruch [91]. When the Coulomb potential is
attractive the threshold behaviour of the phase shift is left unmodified, since the
electron is pulled into the region where the short-range component of U (r) is dom-
inant. However, when the Coulomb potential is repulsive, the tail of U (r) is impor-
tant at low energies since this is the only part of the potential seen by the scattered
electron. An important example of this situation is when the leading non-Coulombic
component of the potential is due to the polarization of the ion so that s = 4. In this
case we find that

tan δ	(k) = 1

15
α2k5 , (1.204)

where α is the dipole polarizability. Clearly this contribution to the phase shift will
dominate the contribution arising from (1.203) at sufficiently low energies.

1.5 Variational Principles

Variational principles were introduced in scattering theory by Hulthén [480, 481],
Tamm [909–911], Schwinger [841] and Kohn [542]. In this section we derive Kohn
variational principles for the partial wave phase shift and for the S-matrix which
have been widely used in electron scattering. This section thus provides an introduc-
tion to multichannel variational principles discussed in Sects. 2.4 and 5.2. For spe-
cialized treatments of variational principles in scattering see, for example, Demkov
[259], Moiseiwitsch [656] and Nesbet [678].

We commence by considering the radial Schrödinger equation (1.8) or (1.70),
which we rewrite as

L	u	(r) = 0 , (1.205)

which defines the operator L	. We consider a solution u	(r) of (1.205) satisfying
the boundary conditions

u	(0) ∼
r→0

nr	+1,

u	(r) ∼
r→∞ sin(θ	 + τ)+ cos(θ	 + τ) tan(δ	 − τ) , (1.206)

where n is a normalization factor and where in the case of a long-range Coulomb
potential

θ	 = kr − 1
2	π − η ln 2kr + σ	 , (1.207)
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with η defined by (1.42) and σ	 defined by (1.62). Also in (1.71) τ is a fixed constant
chosen so that 0 ≤ τ ≤ π . We note that the solution defined by the boundary
conditions (1.206) differs only by a normalization factor cos δ	/ cos(δ	 − τ) from
the solution defined by the boundary conditions given by (1.71).

We now consider the functional

I	[ut
	] =

∫ ∞
0

ut
	(r)L	u

t
	(r)dr , (1.208)

where ut
	(r) is a trial function satisfying the same boundary conditions (1.206) as

u	(r)with the phase shift δ	 replaced by a trial phase shift δt
	. It is clear from (1.205)

and (1.208) that I	[u	] = 0. We then find using Green’s theorem that

∫ ∞
0
[u	(r)L	ut

	(r)− ut
	(r)L	u	(r)]dr =

[
u	

dut
	

dr
− ut

	

du	
dr

]∞
0
. (1.209)

It follows using the boundary conditions satisfied by u	 and ut
	 that

I	[ut
	] − I	[�u	] = k[tan(δ	 − τ)− tan(δt

	 − τ)] , (1.210)

where we have written

�u	(r) = ut
	(r)− u	(r) . (1.211)

Relation (1.210) was first obtained by Kato [525] and is referred to as the Kato
identity. If the trial function ut

	(r) is sufficiently close to the exact solution u	(r)
then the functional I	[�u	], which is second order of smallness, can be neglected.
Equation (1.210) can then be written as

δ[I	 + k tan(δ	 − τ)] = 0 , (1.212)

where

δ I	 = I	[ut
	] − I	[u	] = I	[ut

	] (1.213)

is the change in I	 under the variation δut
	(r) = ut

	(r)− u	(r) and

δ[tan(δ	 − τ)] = tan(δt
	 − τ)− tan(δ	 − τ) . (1.214)

Equation (1.212) is known as the Kohn variational principle [542].
The Kohn variational principle (1.212) is clearly satisfied by the exact solution

of the differential equation (1.205). It can also be used as the basis for obtaining
approximate solutions of (1.205). Thus if we start from a trial function ut

	(r) which
depends on n parameters c1, c2, . . . , cn as well as the phase shift through the quan-
tity λt

	 defined by

λt
	 = tan(δt

	 − τ) , (1.215)
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then taking the variation in (1.212) with respect to these n+ 1 parameters yields the
equations

δ I	
δλt
	

= −k (1.216)

and

δ I	
δci
= 0, i = 1, . . . , n . (1.217)

If the trial function ut
	(r) depends linearly on the parameters c1, c2, . . . , cn and λt

	

then (1.216) and (1.217) are a set of n + 1 linear simultaneous equations which
can be solved to yield these parameters. We can then use the variational principle
(1.212) to obtain an improved estimate for λ	 which is correct up to terms of second
order in the error in the trial function. It is given by

[λ	] = λt
	 +

1

k
I	[ut

	] , (1.218)

where the symbol [λ	]means that this quantity is the variational estimate of λ	. The
corresponding phase shift, correct up to terms of second order, is then obtained from
the variational estimate using the equation

[λ	] = tan(δ	 − τ) . (1.219)

It follows from the above discussion that different choices of τ in the range 0 ≤
τ ≤ π will yield different variational estimates for the phase shift. Kohn chose
τ = 0 so that the trial function satisfied the asymptotic boundary condition

ut
	(r) ∼r→∞ sin θ	 + cos θ	 tan δt

	(k) . (1.220)

Equation (1.218) then becomes

[tan δ	] = tan δt
	 +

1

k
I	[ut

	] , (1.221)

which gives the Kohn variational estimate for tan δ	 and hence, from (1.15), for the
K -matrix. On the other hand Rubinow [800] took τ = π/2 so that the trial function
satisfied the asymptotic boundary condition

ut
	(r) ∼r→∞ cos θ	 + sin θ	 cot δt

	(k) . (1.222)

In this case (1.218) yields

[cot δ	] = cot δt
	 −

1

k
I	[ut

	] . (1.223)
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This approach is often called the Rubinow or inverse Kohn variational principle
since it gives a variational estimate for cot δ	 = (tan δ	)−1.

It is also often useful to adopt the S-matrix form of the Kohn variational principle.
In this case, the solution of (1.205) is chosen to satisfy the asymptotic boundary
condition

u	(r) ∼
r→∞ exp(−iθ	)− exp(iθ	)S	(k) , (1.224)

where the S-matrix S	(k) is defined in terms of the phase shift δ	(k) by (1.14). We
also introduce a trial function ut

	(r) satisfying the asymptotic boundary condition

ut
	(r) ∼r→∞ exp(−iθ	)− exp(iθ	)S

t
	(k) . (1.225)

As before we consider the variation

δ I	 = I	[ut
	] − I	[u	] , (1.226)

which can be simplified using the boundary conditions satisfied by u	(r) and ut
	(r).

Neglecting terms of second order in�u	(r) = ut
	(r)−u	(r)we obtain the S-matrix

form of the Kohn variational principle

δ[I	 + 2ikS	] = 0 , (1.227)

where we have written

δS	 = St
	 − S	 . (1.228)

Again if the trial function ut
	(r) depends linearly on n parameters c1, c2, . . . , cn as

well as on the S-matrix St
	, then taking the variation in (1.227) with respect to these

n + 1 parameters yields the n + 1 coupled linear simultaneous equations

δ I	
δSt
	

= −2ik (1.229)

and

δ I	
δci
= 0, i = 1, . . . , n . (1.230)

Equations (1.229) and (1.230) can be solved to yield these n + 1 parameters. The
variational principle (1.227) can then be used to obtain an improved estimate for λ	
which is correct up to terms of second order in the error in the trial function. We
find that

[S	] = St
	 +

1

2ik
I	[ut

	] , (1.231)
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which can be used instead of the Kohn variational estimate for tan δ	 given by
(1.221) or the inverse Kohn variational estimate for cot δ	 given by (1.223).

In concluding this discussion of variational principles in potential scattering
we stress that they are not extremum principles but are only stationary principles.
Consequently the variational estimate can lead to misleading results if poor trial
functions are used. Indeed, it was shown by Schwartz [838, 839] that anomalous
singularities can arise in [tan δ	] and in [cot δ	] which can invalidate the variational
estimate in these cases if care is not taken, even if the number n of trial functions
is large. A detailed discussion of these anomalous singularities and methods for
avoiding them has been given, for example by Nesbet [675, 676, 678], Burke and
Joachain [171] and Cooper et al. [229] and will not be considered further here.
However, we remark that the R-matrix method, discussed in Chap. 4 and in later
chapters, provides a variational procedure for solving (1.205) which enables phase
shifts and S-matrices to be obtained which do not have these singularities.

1.6 Relativistic Scattering: The Dirac Equation

We conclude this chapter on potential scattering by considering relativistic scatter-
ing of an electron by a spherically symmetric potential. This situation occurs for
relativistic electron scattering energies or for electron collisions with heavy atoms
and ions. The wave equation which must then be solved is the time-independent
Dirac equation, which takes into account both the spin and the relativistic behaviour
of the scattered electron. We consider first the separation of the Dirac equation in
spherical polar coordinates which yields two coupled first-order differential equa-
tions satisfied by the radial functions describing the motion of the scattered electron.
We then derive expressions for the phase shifts, scattering matrix and cross sections
in terms of the asymptotic solution of these coupled equations.

The time-independent Dirac equation describing the motion of an electron in a
potential V (r) is (see [110, 171, 263, 411]),

[cα · p+ β ′c2 + V (r)]ψ(x) = Eψ(x) , (1.232)

in atomic units, where c is the velocity of light in vacuum, x ≡ (r, σ ) represents the
space and spin coordinates of the scattered electron and p = −i∇ is the electron
momentum operator. Also in (1.232), β ′ = β − I4 and α and β are the 4× 4 Dirac
matrices defined by

α =
(

0 σ

σ 0

)
, β =

(
I2 0
0 −I2

)
, (1.233)

where the components of σ , σx , σy and σz , are 2 × 2 Pauli spin matrices [723]
defined by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.234)
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and I2 and I4 are 2×2 and 4×4 unit matrices, respectively. Finally, the choice of β ′
in (1.232) is made so that the energy E in this equation does not include the electron
rest mass and hence reduces in the non-relativistic limit to the energy E in (1.1).

We consider the solution of (1.232) for the case where the potential V (r) is
spherically symmetric and hence depends only on the radial variable r and not on
the angular variables. We then separate the angular variables in (1.232) from the
radial variable using the identity

α · p = αr pr + ir−1αr (� · L+ I4)

= αr pr + ir−1αrβK , (1.235)

where the radial momentum operator pr and the radial velocity operator αr are
defined by

pr = −i
1

r

∂

∂r
r, αr = r−1α · r , (1.236)

and where the operator K is defined by

K = β(� · L+ I4) , (1.237)

with

� =
(
σ 0
0 σ

)
, L =

(
� 0
0 �

)
. (1.238)

The operator K can be shown to commute with the Dirac Hamiltonian and hence its
eigenvalues are constants of the motion. Furthermore, since

� · L = 2S · L = J2 − L2 − S2 = J2 − L2 − 3

4
I4 , (1.239)

then we may rewrite the operator K as

K = β
(

J2 − L2 + 1

4
I4

)
. (1.240)

Also it follows from (1.237) that

K 2 =
(

L+ 1

2
�

)2

+ 1

4
I4 . (1.241)

Since (L + 1
2�)

2 is the square of the total angular momentum operator, which has
the eigenvalues j ( j + 1), then the eigenvalues of K 2 are ( j + 1

2 )
2 ≡ κ2 where κ is

given by

κ = ±1, ±2, ±3, . . . . (1.242)
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Using the above equations, the Dirac equation (1.232) can be written as

Hψ(x) = [cαr pr + icr−1αrβK + β ′c2 + V (r)]ψ(x) = Eψ(x) . (1.243)

The solution of (1.243) can be written as a four-component spinor in the form

ψ(x) = 1

r

(
pκ(r)ηκm(r̂, σ )

iqκ(r)η−κm(r̂, σ )

)
, (1.244)

where pκ(r) and qκ(r) are radial functions which depend on κ as described below,
and the factor i is introduced so that the radial equations satisfied by pκ(r) and qκ(r),
derived below, are real, and hence these functions can be chosen to be real. The
spin–angle functions ηκm(r̂, σ ) in (1.244) are two-component spinors defined by

ηκm(r̂, σ ) ≡ Y
	 1

2 jm(r̂, σ ) =
∑

m	ms

(	m	
1
2 ms | jm)Y	m	 (θ, φ)χ 1

2 ms
(σ ) , (1.245)

where (	m	 1
2 ms | jm) are Clebsch–Gordan coefficients defined in Appendix A.1,

Y	m	 (θ, φ) are spherical harmonics defined in Appendix B.3 and χ 1
2 ms
(σ ) are the

usual two-component Pauli spin functions given by

χ 1
2

1
2
(σ ) =

(
1
0

)
, χ 1

2− 1
2
(σ ) =

(
0
1

)
. (1.246)

It then follows from Appendices A and B that the functions Y
	 1

2 jm(r̂, σ ) defined by

(1.245) are simultaneous eigenfunctions of J2 and L2 belonging to the eigenvalues
j ( j + 1) and 	(	+ 1), respectively. Hence

(
J2 − L2 + 1

4 I2

)
Y
	 1

2 jm(r̂, σ ) =
[

j ( j + 1)− 	(	+ 1)+ 1
4

]
Y
	 1

2 jm(r̂, σ )

=
[
( j + 1

2 )
2 − 	(	+ 1)

]
Y
	 1

2 jm(r̂, σ ) . (1.247)

Using this result and the definition of K given by (1.240) andψ(x) given by (1.244),
we find that

Kψ(x) = −κψ(x) , (1.248)

where the eigenvalue κ is then defined by

κ = 	(	+ 1)− ( j + 1
2 )

2 . (1.249)

Hence the eigenvalue κ is related to the orbital and total angular momentum
quantum numbers 	 and j by the equations

κ = 	 when j = 	− 1
2 ,

κ = −	− 1 when j = 	+ 1
2 . (1.250)
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Table 1.1 Relationship of κ to the usual spectroscopic notations 	 and j

κ negative κ positive

κ = −1 s1/2 κ = +1 p1/2
κ = −2 p3/2 κ = +2 d3/2
κ = −3 d5/2 κ = +3 f5/2
.
.
.

.

.

.
.
.
.

.

.

.

This relationship is given explicitly in Table 1.1.
Using the above results for the eigenvalues of the K operator, we can now sim-

plify the Dirac equation defined by (1.243). Substituting (1.244) into (1.243) and
using (1.233) and (1.248) we obtain the following coupled equations

cσr(pr + ir−1κ)ir−1qκ(r)η−κm(r̂, σ )+ [V (r)− E]r−1 pκ(r)ηκm(r̂, σ ) = 0 ,
(1.251)

and

cσr(pr− ir−1κ)r−1 pκ(r)ηκm(r̂, σ )+[−2c2+V (r)−E]ir−1qκ(r)η−κm(r̂, σ ) = 0 .
(1.252)

These equations can be simplified using the identity

σrη±κm(r̂, σ ) = −η∓κm(r̂, σ ) , (1.253)

which follows since σr = σ · r̂ is a pseudo-scalar operator and hence it changes
the sign of the parity but leaves the total angular momentum and its z-component
unaltered. Projecting (1.251) onto the function ηκm(r̂, σ ) and (1.252) onto the func-
tion η−κm(r̂, σ ) and using (1.236) we find that the time-independent Dirac equation
reduces to the following coupled first-order differential equations satisfied by the
functions pκ(r) and qκ(r)

(
d

dr
+ κ

r

)
pκ(r)− 1

c
[2c2 + E − V (r)]qκ(r) = 0 (1.254)

and

(
d

dr
− κ

r

)
qκ(r)+ 1

c
[E − V (r)] pκ(r) = 0 , (1.255)

which must be solved for each κ . The coupled Eqs. (1.254) and (1.255) take the
place of the radial Schrödinger equation (1.8) in non-relativistic theory. We thus see
that the Dirac equation for a spherically symmetric potential can be separated with-
out approximation in spherical polar coordinates. We also note from these equations
that for scattering energies E � c2, the ratio pκ/qκ ≈ c. Hence pκ is often referred
to as the “large component” and qκ as the “small component” of the Dirac wave
function.
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It is instructive at this point to consider the non-relativistic limit of the coupled
differential equations (1.254) and (1.255). In this limit

|E − V (r)| � 2c2 , (1.256)

and hence (1.254) can be rewritten as(
d

dr
+ κ

r

)
pκ(r)− 2cqκ(r) = 0 . (1.257)

Substituting for qκ(r) from (1.257) into (1.255) then gives

1

2

(
d

dr
− κ

r

)(
d

dr
+ κ

r

)
pκ(r)+ [E − V (r)] pκ(r) = 0 , (1.258)

which can be rewritten as(
d2

dr2
− κ(κ + 1)

r2
− 2V (r)+ 2E

)
pκ(r) = 0 . (1.259)

It follows from (1.250) that κ = 	 or −	− 1, so that in both cases

κ(κ + 1) = 	(	+ 1) . (1.260)

Also we remember from Sect. 1.1 that k2 = 2E and the reduced potential U (r) =
2V (r). Hence (1.259) can be written as

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
pκ(r) = 0 , (1.261)

which is the usual form of the radial Schrödinger equation given by (1.8).
The coupled equations (1.254) and (1.255) can be reduced to Schrödinger form

even when (1.256) is not satisfied. This occurs for relativistic electron scattering
energies or when the potential V (r) corresponds to electron collisions with heavy
target atoms or ions with large nuclear charge number Z . Taking the derivative of
(1.254), substituting for dqκ/dr from (1.255) and eliminating qκ(r) then yields

d2 pκ
dr2

− A′(r)
A(r)

dpκ
dr
+
(

A(r)B(r)− A′(r)
A(r)

κ

r
− κ(κ + 1)

r2

)
pκ = 0 , (1.262)

where we have written

A(r) = 1

c
[2c2 + E − V (r)] ,

A′(r) = dA

dr
, (1.263)

B(r) = 1

c
[E − V (r)] .
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We then make the substitution

pκ(r) = [A(r)]1/2 p̃κ(r) (1.264)

in (1.262), which gives the following equation for p̃κ(r):

(
d2

dr2
− κ(κ + 1)

r2
−Uκ(r)+ k2

r

)
p̃κ(r) = 0 , (1.265)

where

k2
r =

1

c2
E(E + 2c2) (1.266)

and

Uκ(r) = 2(E + c2)V (r)

c2
− [V (r)]

2

c2
+ κ

r

A′(r)
A(r)

+ 3

4

[A′(r)]2
[A(r)]2 −

1

2

A′′(r)
A(r)

. (1.267)

After substituting for κ(κ + 1) from (1.260), we see that (1.265) has the same form
as the non-relativistic Schrödinger equation (1.8). Also, for low-energy electron
collisions with light atoms or ions, the terms involving [V (r)]2, A′(r) and A′′(r)
in (1.267) can be neglected and we obtain

A(r) = 2c, k2 = 2E, Uκ(r) = U (r) . (1.268)

Hence (1.265) reduces to the non-relativistic Schrödinger equation (1.261) or (1.8)
as expected.

However, for relativistic electron scattering energies or for electron collisions
with heavy atoms or ions all the terms in the potential Uκ(r) given by (1.267) are
appreciable. Hence the Dirac equations (1.254) and (1.255) or the equivalent rela-
tivistic Schrödinger equation (1.265) gives different results from the non-relativistic
Schrödinger equation (1.8) or (1.261) for the same potential U (r) = 2V (r). In
particular, the term containing κ in Uκ(r) corresponds to a spin–orbit interaction,
since from (1.250), κ = 	 when j = 	 − 1/2 and κ = −	 − 1 when j = 	 + 1/2.
We will see later in this section that this spin–orbit term in Uκ(r) gives rise to spin
polarization effects in electron collisions with heavy atoms or ions even for low
electron scattering energies.

We conclude our discussion of the equivalent relativistic Schrödinger equa-
tion (1.265) by noting that although it has the same form as the non-relativistic
Schrödinger equation, there are two other fundamental differences. First, the k2

r
term, defined by (1.266), depends on E2 as well as upon E and second the rel-
ativistic potential Uκ(r), defined by (1.267), depends on the energy E as well as
upon the radius r . However, for low-energy electron collisions with heavy atoms
or ions, where the electron scattering energy E � c2, these differences become
insignificant and we obtain in this limit

k2
r → k2 = 2E (1.269)
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and

Uκ(r)→ Uκ0(r) = 2V (r)− [V (r)]
2

c2
+ κ

r

A′(r)
A(r)

+ 3

4

[A′(r)]2
[A(r)]2 −

1

2

A′′(r)
A(r)

. (1.270)

The corresponding relativistic Schrödinger equation (1.265) then reduces to the
standard non-relativistic Schrödinger equation form, as shown in our discussion
leading to (1.261), where k2 = 2E and the potential does not depend on energy.
We will see in Sects. 4.6 and 5.5 that this result has important implications for
the R-matrix method of solving the Dirac equation describing low-energy electron
collisions with heavy atoms or ions.

We now derive expressions for the scattering amplitudes and cross sections by
considering the asymptotic form of the solution of the Dirac equation. We com-
mence by noting that it is only necessary to know the “large components” of the
Dirac four-component spinor in order to determine the scattering matrix (see, for
example, [171]). Thus if the Dirac four-component spinor, given by (1.244), is writ-
ten in terms of two-component spinors as follows

ψ =
(
ψA

ψB

)
, (1.271)

then we need to only consider the two-component spinor ψA containing the “large
component” pκ(r). In analogy with (1.2), we write the asymptotic form of ψA cor-
responding to a plane wave and outgoing spherical wave as

ψA(x) ∼
r→∞χ 1

2 ms
(σ )eikz+

∑
m′s=± 1

2

χ 1
2 m′s (σ )Mm′s ms (θ, φ)

eikr

r
, ms = ± 1

2 , (1.272)

where we have assumed that the potential V (r) is short range, vanishing faster
than r−1 at large distances. Equation (1.272) then defines the scattering matrix
Mm′s ms (θ, φ), where the wave number k of the scattered electron is related to the
incident electron energy E by (1.266).

In order to determine the scattering matrix, we expand ψA(x) in terms of the
spin–angle functions ηκm(r̂, σ ) ≡ Y

	 1
2 jm(r̂, σ ) defined by (1.245). We write

ψA(x) =
∞∑
	= 0

	+ 1
2∑

j = 	− 1
2

B	j (k)r
−1 p	j (r)Y	 1

2 jms
(r̂, σ ) , (1.273)

where the radial functions p	j (r) can be identified with the radial functions pκ(r)
which satisfy (1.262). Also from (1.264) and (1.265), and the result that A(r) tends
to a constant as r → ∞, it follows that the radial functions p̃κ(r) and hence the
radial functions p	j (r) can be chosen to vanish at the origin and to satisfy the
asymptotic boundary conditions

p	j (r) ∼
r→∞ sin

[
kr − 1

2	π + δ	j (k)
]
, j = 	± 1

2 . (1.274)
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In this equation we have introduced the phase shifts δ	j (k) which depend on j as
well as on 	 because of the κ dependence of Uκ(r) in (1.265).

The scattering amplitudes and cross sections can be obtained, as in Sect. 1.1, by
equating (1.272) with the asymptotic form of (1.273). We first express the incident
plane wave term in (1.272) in terms of the spin–angle function Y

	 1
2 jm . To achieve

this we note from (1.27) that

χ 1
2 ms
(σ )eikz = χ 1

2 ms
(σ )

∞∑
	= 0

(2	+ 1)i	 j	(kr)P	(cos θ) . (1.275)

Using (B.47) and the inverse of (1.245), which from Appendix A.1 is

Y	m(θ, φ)χ 1
2 ms
(σ ) =

	+ 1
2∑

j = 	− 1
2

(
	m	

1
2 ms | jm	 + ms

)
Y
	 1

2 jm	+ms
(r̂, σ ) , (1.276)

enables us to rewrite (1.275) as

χ 1
2 ms
(σ )eikz =

∞∑
	= 0

	+ 1
2∑

j = 	− 1
2

[4π(2	+ 1)]1/2 i	 j	(kr)
(
	0 1

2 ms | jms

)
Y
	 1

2 jms
(r̂, σ ) .

(1.277)
The coefficient B	j (k) in (1.273) is then determined by equating the ingoing wave
terms in (1.273) and (1.277). We find using (1.274) that

B	j (k) = k−1[4π(2	+ 1)]1/2 i	 exp[iδ	j (k)]
(
	0 1

2 ms | jms

)
. (1.278)

The second term on the right-hand side of (1.272) can now be obtained by subtract-
ing (1.277) from the asymptotic form of (1.273). Calling this term ψsc(x) we find
that

ψsc(x) ∼
r→∞

1

2ik

∞∑
	= 0

	+ 1
2∑

j = 	− 1
2

[4π(2	+ 1)]1/2{exp[2iδ	j (k)] − 1}
(
	0 1

2 ms | jms

)

× Y
	 1

2 jms
(r̂, σ )

eikr

r
. (1.279)

The scattering matrix Mm′s ms (θ, φ) is determined by substituting for the spin–angle
function Y

	 1
2 jms

(r̂, σ ) from (1.245) and comparing with (1.272). We obtain
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Mm′s ms (θ, φ) =
1

2ik

∞∑
	= 0

	+ 1
2∑

j = 	− 1
2

[4π(2	+ 1)]1/2 {exp
[
2iδ	j (k)

]− 1
} (
	0 1

2 ms | jms

)

×
(
	ms − m′s 1

2 m′s | jms

)
Y	ms−m′s (θ, φ) . (1.280)

We can write this result as a 2× 2 matrix in spin space using the explicit forms for
the Clebsch–Gordan coefficients and for the spherical harmonics defined in Appen-
dices A and B, respectively. We find that

M(θ, φ) =
(

f (θ) h(θ)e−iφ

−h(θ)eiφ f (θ)

)
, (1.281)

where the direct scattering amplitude f (θ) is given by

f (θ) = 1

2ik

∞∑
	= 0

[
(	+ 1){exp[2iδ

		+ 1
2
(k)] − 1} + 	{exp[2iδ

		− 1
2
(k)] − 1}

]

× P	(cos θ) , (1.282)

and the spin-flip scattering amplitude h(θ) is given by

h(θ) = 1

2ik

∞∑
	=1

{
exp[2iδ

		+ 1
2
(k)] − exp[2iδ

		− 1
2
(k)]

}
P1
	 (cos θ) . (1.283)

We note that if the spin–orbit coupling term in the potential is negligible so that
the interaction potential is the same for j = 	 + 1

2 and j = 	 − 1
2 , then

δ
		+ 1

2
(k) = δ

		− 1
2
(k). The spin-flip amplitude h(θ) then vanishes and the direct

scattering amplitude f (θ) reduces to the familiar form given by (1.29) where
δ	(k) = δ		+ 1

2
(k) = δ

		− 1
2
(k).

We can rewrite the scattering matrix (1.281) in terms of the 2× 2 unit matrix I2
and the Pauli spin matrices given in (1.234) as

M(θ, φ) = f (θ)I2 − ih(θ) sinφ σx + ih(θ) cosφ σy . (1.284)

This expression can be further simplified if we define the (x, z) plane to be the plane
of scattering, with the z-axis being the incident beam direction and the y-axis being
normal to this plane. Then φ = 0 and we obtain

M = f (θ)I2 + ih(θ)σy . (1.285)

If we introduce a unit vector n̂ normal to the scattering plane defined by the incident
and scattered electron vectors ki and kf , respectively, so that
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n̂ = ki × k f

|ki × k f | , (1.286)

then the scattering matrix can be written as

M = f (θ)I2 + ih(θ)σ · n̂ . (1.287)

We note that the scattering matrix M is a scalar and hence is independent of the
particular coordinate system which we have used to obtain it. In fact the expression
given by (1.287) is the most general scalar which can be formed in the case of spin
1
2 particles scattered from a spin zero target under the assumptions of rotational
invariance, time-reversal invariance and parity conservation.

Having determined the scattering matrix, we can now calculate the cross sections.
The differential cross section for a transition from a state denoted by (k,ms) to a
state denoted by (k′,m′s) is

dσm′s ms

dΩ
= |〈χ 1

2 m′s |M|χ 1
2 ms
〉|2 = |Mm′s ms (θ, φ)|2 . (1.288)

If the spin orientation of the final state is not measured, then the differential cross
section for scattering from a pure initial spin state χ 1

2 ms
is

dσms

dΩ
=

∑
m′s =± 1

2

|〈χ 1
2 m′s |M|χ 1

2 ms
〉|2

=
∑

m′s =± 1
2

〈χ 1
2 ms
|M+|χ 1

2 m′s 〉〈χ 1
2 m′s |M|χ 1

2 ms
〉

= 〈χ 1
2 ms
|M+M|χ 1

2 ms
〉 , (1.289)

where M+ is the hermitian conjugate of M. Using (1.287) and the identity

(σ · V1)(σ · V2) = V1 · V2 + iσ · (V1 × V2) , (1.290)

where V1 and V2 are any two vectors, then we find that

dσms

dΩ
= | f (θ)|2 + |h(θ)|2 + i[ f ∗(θ)h(θ)− f (θ)h∗(θ)]
× 〈χ 1

2 ms
|σ · n̂|χ 1

2 ms
〉 . (1.291)

This result can be rewritten as

dσms

dΩ
=
[
| f (θ)|2 + |h(θ)|2

] [
1+ S(θ)Pi · n̂

]
, (1.292)
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where the real function

S(θ) = i
f ∗(θ)h(θ)− f (θ)h∗(θ)
| f (θ)|2 + |h(θ)|2 (1.293)

is called the Sherman function [871] and

Pi = 〈χ 1
2 ms
|σ |χ 1

2 ms
〉 (1.294)

is the initial electron spin polarization vector. Since we are considering a pure initial
spin state we have |Pi | = 1. However, (1.292) remains valid for any degree of
polarization of the incident electron beam where 0 ≤ |Pi | ≤ 1. Spin and relativistic
effects in potential scattering are discussed further by Burke and Joachain [171] and
a discussion of polarization phenomena in atomic collisions using a density matrix
approach has been given by Blum [119]. We refer to these texts for a more detailed
presentation of these phenomena.


