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Chapter 2
Liquid Metals, Molten Salts, and Ionic Liquids:
Some Basic Properties

Abstract In the second chapter, some basic concepts of statistical thermodynamics
of liquids and of the nearly free electron model are introduced including quanti-
ties such as the pair distribution function g.r/, the structure factor S.q/, and the
dielectric function of electronic screening. This is followed by a more detailed
description of intermolecular potentials and microscopic structures of liquid metals,
molten salts, and ionic liquids, both their theoretical foundation and experimen-
tal determination. A summary of the bulk phase behaviour of Coulombic fluids
with emphasis on the liquid range is given. Specific thermodynamic characteris-
tics such as undercooling, the vapour pressures of ionic liquids, or their criticality in
binary mixtures are discussed. The mechanisms of electronic and ionic transport are
briefly described. In the final section on interfacial characteristics, a few fundamen-
tal relations such as the Gibbs adsorption equation and the basic equations of wetting
and electrowettting together with the scenario of wetting transitions are introduced.
Furthermore, topics such as the stratification at liquid metal/vapour interfaces and
charge ordering at electrified liquid/solid interfaces of molten salts and ionic liq-
uids are presented. All sections contain tables with representative numbers for the
properties considered.

2.1 Distribution Functions and Statistical Thermodynamics:
A Brief Introduction

For the calculation of thermodynamic quantities of simple classical fluids, by either
statistical thermodynamics or computer simulation methods, configurational dis-
tribution functions play a key role. They describe the microscopic structure of a
fluid on the same distance scale as the intermolecular interactions. Considering
a system of uniform number density, n D N=V , with a specific distribution of
the coordinates of N molecules, rN D r1; r2; : : : ; rN , and of their momenta,
pN D p

1
; p

2
; : : : ; p

N
, the N -particle probability density distribution function,

pN .rN ; pN /, is defined by
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6 2 Liquid Metals, Molten Salts, and Ionic Liquids: Some Basic Properties

pN .rN ; pN / D exp.�HN � ˇ/

QN

: (2.1)

Here, ˇ D 1=kT, with k being the Boltzmann constant, T the absolute temperature,
and HN and QN denote the total energy or Hamiltonian and the partition function
of the system, respectively. The Hamiltonian has the usual form,

HN .rN ; pN / D
NX

iD1

p2

i
=2m C �.rN /; (2.2)

where �.rN / is the total potential energy of the system. It is assumed that all parti-
cles have the same mass m. With the constraints that the number of molecules, N ,
the temperature, T , and the volume, V , are constant, the canonical partition function
QN is given by – see e.g. [2.1]:

QN D 1

N Šh3N

Z
� � �

Z
exp.�ˇ � HN .rN ; pN //drN dpN ; (2.3)

with h being the Planck constant. Knowing the distribution function pN , the ensem-
ble average of any property X D X.rN ; pN /, in principle, can be calculated
according to

hXi D
Z

� � �
Z

X.rN ; pN / � pN .rN ; pN /drN dpN : (2.4)

A solution of integrals like those in (2.3) or (2.4) requires an analytical form for
�.rN /. To this end, numerous approaches have been developed; see e.g. [2.1]. A
simple and often used approximation is that by pair potentials �ij.r ij/,

�.rN / D
NX

i>j D1

�ij .r ij / C ��; (2.5)

where r ij D r i � rj and the correction term �� summarizes all higher order
contributions to the potential energy.

In the discussion of the local microscopic structure of simple liquids – i.e. liq-
uids composed of identical particles with no internal structure and where the force
between two particles 1 and 2 depends only on the distance r12 � r – the radial pair
distribution function, g.r/, is of special interest. It is derived from pN .rN ; pN /,
(2.1), by integrating the momenta out and averaging over the positions of the
remaining N � 2 molecules; this yields the two-particle distribution function, see
also [2.2],

g2

�
r1; r2

� D V 2

Z
� � �

Z
exp

��ˇ � �
�
rN

��

QC
N

dr3 � dr4 � � � drN ; (2.6)
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where QC
N is the configurational partition function. It is obtained from (2.3) after

integration of the momenta pN and dividing QN by this integral. The distribution
function g2 .r1; r2/ defines the relative probability of two molecules 1 and 2 being
found simultaneously at r1 and r2.

According to the definition in (2.6), g2 is dimensionless. If spherical symmetry
can be assumed, the radial pair distribution function, g.r/, results,

g.r/ D n.r/

4�nr2dr
: (2.7)

Here, n.r/ is the number of molecule centres in a spherical shell of radius r

and thickness dr surrounding an arbitrary molecule at the centre. Within the pair
potential approximation, another simple relation for g.r/ results from (2.6):

g.r/ D exp.�ˇ�.r//; (2.8)

where �.r/ stands for �ij.rij/. Strictly speaking, this equation only holds in the limit
of low densities where �� ! 0 in (2.5). On the other hand, for dense fluids with
�� ¤ 0, the effect of higher order interactions can be taken into account by intro-
ducing the so-called potential of mean force, �eff.r/. The corresponding radial pair
distribution function is as follows:

g.r/ D exp.�ˇ � �eff.r//; (2.9)

which, in first approximation, describes contributions of nearest and second nearest
neighbours. An illustration of the behaviour of the radial pair distribution function of
a dilute fluid (gas) in comparison with that of a dense liquid is presented in Fig. 2.1.

Fig. 2.1 Upper panel: Schematic drawing of pair potential, �.r/, and potential of mean force,
�eff, vs. distance in units of the hard-sphere diameter � ; lower panel: corresponding radial pair
distribution functions, g.r/
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Experimentally, the pair distribution function g.r/ can be determined from
X-ray or neutron diffraction measurements of the structure factor, S.q/; see
Sect. A.1. These quantities are related by Fourier transformation according to:

S.q/ D 1 C 4� � n

Z 1

0

.g.r/ � 1/
sin qr

qr
r2dr: (2.10)

In the limit q ! 0 the structure factor obeys the relation,

S.0/ D �TnkT; (2.11)

where �T is the isothermal compressibility. This thermodynamic limit is often used
as an independent check of the correction of scattering data.

In this chapter, some basic relations of statistical thermodynamics and micro-
scopic structure of simple liquids have been summarized, which are of interest in
the following. For a detailed presentation of the theory of simple liquids, reference
is given to the classical book by Hansen and McDonald [2.3].

2.2 Interatomic Interactions and Microscopic Structures

2.2.1 Liquid Metals

The physics of metallic matter, in the solid and liquid state, is described in many
monographs and textbooks, of which the following references are especially recom-
mended for further studies [2.4–2.7]. Here, we confine to a short introduction of sim-
ple characteristics of the metallic state and briefly sketch the main approximations
leading to screened effective pair potentials in metals.

Metals, in general, may be considered as a two-component system made up of
ions and delocalized conduction electrons, whereby the latter originate from the
valence electrons of the metal atoms. The volume fraction occupied by the ion cores
is usually small so that most of the space in simple metals is available for the con-
duction electrons – for example, in solid or liquid alkali metals at conditions near
their normal melting point only about 15% of the specific volume is taken by the
ion cores. In the simplest approximation, the conduction electron states are treated
as a gas of free and independent electrons – free electron (FE) model. Thus, the
eigenstates of these electrons are the solutions of the time-independent Schrödinger
equation,

�„2

2me
r2‰.r/ D E ‰.r/; (2.12)

with the periodic boundary conditions:

‰.x C L; y; z/ D ‰.x; y; z/; (2.13)
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and similar for y, z. Here, the electron of mass me is contained in a 3D cube of
volume V D L3. The eigenfunctions are running plane waves,

‰k.r/ D 1p
V

exp.i k r/; (2.14)

with energy

E.k/ D „2k2

2me
: (2.15)

Since ‰k .r/ is also a solution of the momentum operator, „k has the meaning of
a momentum. Due to the boundary conditions, the wave vector k has only certain
discrete values of the form: kx D 2�nx=L; ky D 2�ny=L, and kz D 2�nz=L,
with ni D integers. For the ground state .T D 0K/ of N noninteracting electrons,
we begin by placing two electrons in the lowest energy state of E D 0 with k D 0

and continue up to the highest electron level with energy EF (Fermi energy) and
wave vector kF (Fermi wave vector). The factor 2 results from the Pauli exclusion
principle, i.e. for each k there are two states, one for each spin direction. Within a
sphere of radius kF, the number of occupied states is N D 2.4�k3

F =3/=.2�=L/3

and thus kF can be expressed by

kF D
�

3�2N

V

�1=3

: (2.16)

In a similar way, the number of states per energy unit or the density of states, n .E/,
can be derived; see e.g. [2.4]:

n.E/ D 3

2

�
n

EF

� �
E

EF

�1=2

; (2.17)

where n D N =V .
At finite temperatures, the occupation of the electronic energy levels is deter-

mined by the Fermi–Dirac distribution function,

f .E/ D
�

exp

�
.E � �/

kT

�
C 1

��1

; (2.18)

where � is the chemical potential of electrons with � � EF for T D 0. With the aid
of n.E/ and f .E/ the internal energy U of the free electron gas is given by

U D V

Z
E n.E/f .E/dE; (2.19)

which yields for the average energy per electron in the ground state: hEi D .3=5/ �
EF.
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The free electron or Sommerfeld theory of metals successfully accounts for some
metallic properties including the temperature dependence of the specific heat at
low temperatures and the high metallic conductivities, at least qualitatively. In this
theory, the ions play no role with exception of maintaining overall charge neutral-
ity. However, in many respects, this model is unrealistic! In the neighbourhood of
the ion cores, the conduction electrons clearly interact with the positively charged
ions. Nevertheless, for the following reasons, the electrons do not experience the
full Coulomb attraction, but only a weak potential that may be approximated by
a weak, nearly constant pseudopotential – nearly free electron (NFE) model. The
first argument is that due to the Pauli exclusion principle the conduction electrons
are expelled from the region of core electrons where the Coulomb attraction would
be strongest. Secondly, outside the ion core the Coulomb interaction a conduction
electron experiences is strongly screened by the rest of electrons. So the interactions
between the ions and the conduction electrons can be treated as a weak perturbation
(NFE model). In the following, the effect of screening is discussed in more detail;
see also [2.4].

We first consider a positively charged particle with charge density �C.r/ at a
fixed position inside the electron gas. The electrostatic potential, �C.r/, resulting
from �C itself is given by Poisson’s equation:

r2�C.r/ D �4� �C.r/: (2.20)

The Fourier transform of (2.20) is as follows:

q2�C.q/ D 4� �C.q/: (2.21)

Very similar relations hold for the total potential �.r/ produced by both the pos-
itively charged particle and the induced cloud of screening electrons, ��.r/. If
the positive charge is an ion, the system of ion plus screening cloud of electrons
sometimes is called a pseudoatom, though the screening electrons are not bound to
the ion. To quantify the effect of screening, a linear relation between the Fourier
components of �.r/ and �C.r/ is assumed,

�
�
q
�

D "
�
q
��1

�C
�
q
�

; (2.22)

where the reduction of �C is described by the wave vector dependent dielectric
function, ".q/. For sufficiently weak �, the linear relation of (2.22) should hold.
The problem of screening is now the determination of ".q/. In quantum theoretical
calculations, the quantity that is more directly accessible is the charge density ��.r/

induced in the electron gas by �.r/. Assuming again a linear relation between ��
and �, their Fourier transforms satisfy the equation:

��
�
q
�

D 	
�
q
�

�
�
q
�

: (2.23)
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From (2.21) and the corresponding Fourier transform of r2�.r/ D �4� .�C.r/C
��.r//, the following relation between ".q/ and 	.q/ results:

".q/ D 1 �
�

4�

q2

�
	.q/ D 1 � .4�=q2/��.q/

�.q/
: (2.24a)

The determination of 	.q/ and thus of ".q/ now concentrates on the calculation of
��.q/. This, in principle, can be obtained from the electron pseudowave functions
using � as the potential in the Schrödinger equation. Here, we consider two approx-
imate solutions. In the Thomas–Fermi approximation, the dielectric constant is as
follows:

".q/ D 1 C k2
TF

q2
; (2.24b)

where kTF D 0:815.rs=aB/1=2 � kF is the Thomas–Fermi screening length, rs D
.3=4�n/1=3, and aB D Bohr radius. Since rs=aB is about 2–6 for metals, kTF is of
the order of kF. To illustrate the effect of ".q/ on �C.r/, we consider as an example a
point charge with �C.r/ D Q=r and with the Fourier transform �C.q/ D 4�Q=q2.
The total potential �.q/ is then as follows:

�.q/ D ".q/�1�C.q/ D 4� Q

.q2 C k2
TF/

; (2.25)

which has the inverse Fourier transform

�.r/ D
�

Q

r

�
� exp .�kTF � r/ ; (2.26)

i.e. in the Thomas–Fermi approximation, the Coulomb potential is exponentially
screened over a distance of the order of k�1

F .
The second approximation, first given by Lindhard [2.8], is a first-order pertur-

bation calculation of ��.r/ within the Hartree model. In this case, the screening of
a point charge at large distances takes the following form:

�.r/ � W.2kF/2 � .2kFr/�3 cos.2kFr/: (2.27)

The amplitude of the so-called Friedel oscillations of �.r/ is determined by the
magnitude of the screened pseudopotential W.q/ at q D 2kF. It may also be noted
that the screening in the Lindhard approximation decays more weakly with r in
comparison with the Thomas–Fermi approximation. With the knowledge of elec-
tronic screening, the construction of the effective interionic or pair potential �.R/1

in pure metals is straightforward. Effective here means that the interionic interaction

1 In the following, we also use R for the intermolecular distance in the pair potentials.
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is mediated by the electron gas. It is assumed that at low R a Thomas–Fermi type
repulsion prevails, whereas at intermediate and large R the attraction is given by an
oscillatory potential. Thus, �.R/ can be approximated by

�.R/ D 2Z2

R
exp.�kTFR/ C W.2kF/2 cos.2kFR/

.2kFR/3
; (2.28)

i.e. the ion core is approximated by a point charge. It is worth noting that this pair
potential, unlike, for instance, a conventional Lennard–Jones potential, depends on
the volume V , because kF is a function of V . Therefore, a better specification of
� should be �.RI V /, which implies that in metals a state-dependent potential has
to be considered. The characteristic behaviour of �.RI V / is shown in Fig. 2.2 for
the examples of Na and Al. The respective potentials have been calculated using
the same empty-core pseudopotentials but with different screening of the Coulomb
repulsion – for further details see [2.5].

A first test of effective pair potentials of metals was performed by Rahman [2.9].
By employing a potential of Price et al. [2.10], he calculated the static structure
factor of liquid Rb by molecular dynamic simulations and found good agreement
with experimental results from neutron diffraction [2.11].This is shown in Fig. 2.3.

Fig. 2.2 Effective pair potentials for Na (left) and Al (right); the respective different curves cor-
respond to different screening of the Coulomb repulsion – see Hafner [2.5]. Copy right permission
(2010) by Springer Publishers

Fig. 2.3 Structure factor,
S.Q/, of liquid Rb as
obtained from MD
calculations (full line) and
neutron diffraction (full and
open symbols). Figure
adopted from [2.11] with
permission from Copley and
Rowe; copyright permission
(2010) by the American
Physical Society
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2.2.2 Molten Salts and Ionic Liquids

In this section, we concentrate on the characteristic structural properties of molten
salts and ionic liquids. They consist of oppositely charged species, but the character
of these species varies from classical ions in the typical molten salts to charged
polyatomic molecules in ionic liquids. The prototype of molten salts are fused
alkali halides that contain closed-shell alkali and halogen ions and which exhibit
high melting temperatures around 1,000 K. On the other hand, most ionic liquids
have a polyatomic organic cation and an inorganic or organic anion. They typi-
cally melt near room temperature and, therefore, in the beginning, were also named
room temperature or ambient temperature molten salts [2.12, 2.13]. The first ionic
liquids, which were synthesized and characterized around 1980, were based on pyri-
dinium [2.14] and imidazolium [2.15], [2.16] cations; see Fig. 2.4; mixtures of their
chlorides with AlCl3 become liquid over a wide range of compositions below room
temperature; see e.g. Fig. 2.13 in Sect. 2.3. Over the last two to three decades, a large
variety of ionic liquids have been synthesized, including so-called air and water sta-
ble melts, and have been applied in different fields such as organic, inorganic, or
polymer synthesis, electrochemistry, catalysis, and various industrial processes – for
a comprehensive description of properties, synthesis, and applications, see [2.13].

On melting of an alkali halide crystal, the ionic short-range order essentially
remains. This is demonstrated by the partial pair distribution functions gC=�.R/ for
the example of molten RbCl in Fig. 2.5, which have been obtained from neutron
diffraction experiments with isotopic substitution [2.17]. On comparing the coor-
dination of unlike and like ions, a remarkable short-range order, i.e. alternation of
charges, in the ionic melt is apparent. This also implies that ionic screening is oscil-
latory rather than monotonously decaying as in concentrated electrolytes. The first
peak in gC=�.R/, which marks the correlation of unlike ions, is rather pronounced
and the first minimum is quite deep. This last observation suggests a slow exchange
rate of ions between the first-neighbour shell and the bulk liquid. From MD calcula-
tions, a displacement time of two unlike ions of the order of several picoseconds has
been estimated; see also [2.18]. The nearest neighbour distance, RC=�, defined by
the sharp maximum in gC=�.R/, is slightly smaller than in the solid; see Table 2.1.
This peak is asymmetrically broadened so that the corresponding coordination num-
ber NC=� is not clearly defined. If one mirrors the left part of the peak at RC=�, this
yields an average number of unlike ions in close contact of �4 [2.18]. On the other
hand, integration of the peak up to the first minimum yields an average nearest
neighbour coordination number of �6, which is comparable with the crystal value;

Fig. 2.4 Pyridinium (left)
and imidazolium cation
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Fig. 2.5 Smoothed partial
pair distribution functions of
molten RbCl obtained by
neutron diffraction. Reprinted
with permission from [2.17];
copyright permission (2010)
by Taylor & Francis

Table 2.1 Structural properties of solid (s) and liquid (l) alkali halides near the melting temper-
ature, Tm, at atmospheric pressure: RC=� D nearest neighbour distance; NC=� D coordination
number of nearest neighbours; �V=V D fractional volume change

Tm=K R
.s/

C=�
=Å N

.s/
C=�

R
.1/

C=�
=Å N

.1/

C=�
�V=V %

NaCl 1,081 (a) 2.814 (a) 6 2.78 (b) �5.8 (b) 25 (e)
KCl 1,045 (a) 3.139 (a) 6 3.06 (c) 17.3 (e)
RbCl 990 (a) 3.27 (a) 6 3.18 (d) �6.9 (d) 14.3 (e)

References in brackets: a D [2.19]; b D [2.20]; c D [2.21]; d D [2.18]; e D [2.22]; the R
.s/

C=�

values are taken at room temperature, the uncertainty of the liquid values is ˙0:05 Å

see Table 2.1. Possibly, the reduced number of 4 can explain the relatively large
expansion of the alkali halides on melting. The characteristic structural changes
described here for the example of RbCl agree with further neutron diffraction studies
of NaCl [2.20] and KCl [2.21] at conditions near the melting point.

Starting from the close similarity in the local microscopic structures of crystalline
and molten alkali halides, this suggests the use of similar interionic model potentials
to calculate the structural and thermodynamic properties of molten metal halides.
The most widely applied form is the Born–Mayer potential, see e.g. [2.23], which
is given by

�ij.R/ D Aij exp
��

Ri C Rj � R
�
=˛ij

� C QiQj =R � Cij R�6 � Dij R�8:

(2.29)

Here, the indices i and j refer to a cation or an anion and �ij is the potential energy of
a pair of ions i and j . It is a pairwise additive potential where the first term in (2.29)
describes the short-range Born–Mayer type repulsion due to overlapping orbitals on
neighbouring ions, which increases nearly exponentially with decreasing interionic
distance. The Coulombic part describes the attraction between oppositely charged
ions i and j . For an analysis of the parameters Ri ; Rj , and ˛ij, see the article
by Fumi and Tosi [2.24]. The Ri for a given crystal structure have the meaning of
ionic radii. The van der Waals terms with negative signs represent dipole–dipole and
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dipole–quadrupole interactions and typically give a small correction of the cohesive
energy.

Starting in the 1970s, numerous calculations of the microscopic structure and
thermodynamic properties of molten salts have been performed employing pair
potentials of the type in (2.29) including rigid and polarizable ions; see also refer-
ences [2.18] and [2.22]. In general, the calculated internal energies of alkali halide
melts agree well with experimental results, often within ˙1% [2.25]. Theoretical
work on the local ionic structures includes computer simulation studies – molecular
dynamics (MD) and Monte Carlo (MC) simulations – as well as hypernetted
chain (HNC) and mean spherical (MSA) approximations; see also [2.22]. One
of the first MD simulations was reported by Woodcock and Singer for molten
KCl [2.26, 2.27]. Good agreement with experimental data was found for both
the partial radial distribution functions and the thermodynamic quantities such as
internal energy, compressibility, and molar heat capacity. As an example, Fig. 2.6
shows for molten NaCl a comparison of experimental gij.R/ from neutron diffrac-
tion [2.28] with theoretical studies, both simulation results with a rigid ion model
[2.29] and HNC calculations [2.30]. Although the agreement between the differ-
ent datasets is satisfactory, there is a slight discrepancy between experiment and
theory as for the position and width of the first peak in gC=�.R/. Yet, in gen-
eral, calculations based on a Born–Mayer type interionic potential give satisfactory
results for the local ionic structures and thermodynamic functions of molten alkali
halides.

Proceeding to other metal halide melts, more complex binding characteristics and
variations in the microscopic ionic structures have to be considered. First, we discuss
the example of liquid CuCl. In the solid state, CuCl crystallizes in the zincblende
structure at lower temperature with fourfold coordination. This low number is also
found in the liquid state from pair distribution functions determined by neutron
diffraction with isotopic substitution; see Fig. 2.7 and [2.31]. On comparing the

Fig. 2.6 Partial pair distribution functions of molten NaCl at conditions near the melting point,
from neutron diffraction measurements (open symbols), simulation calculations (full symbols), and
HNC theory (full lines). Reprinted with permission from [2.18]; copyright permission (2010) from
IOP Publishing Ltd
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Fig. 2.7 Smoothed data of
the partial pair distribution
functions, gij.R/, of liquid
CuCl at 500ıC from neutron
diffraction experiments with
isotopic substitution.
Reprinted with permission
from [2.31]; copyright
permission (2010) by
Taylor & Francis

gij.R/ with those in a typical alkali halide melt, the following differences are appar-
ent: (1) There is an asymmetry between charge ordering in gClCl and gCuCu at larger
R. (2) Most striking is the observation that CuC ions penetrate deeply into the coor-
dination shell of unlike first neighbours; the shortest Cu�Cu distance is comparable
with the shortest Cu � Cl distance. These observations are not consistent with sim-
ple ionic interactions and are explained as follows. The monovalent CuC ion has
an outer subshell of ten d -electrons, a small ionic radius and large electronic polar-
izability in comparison with an alkali ion such as KC. In contact with a highly
polarizable Cl� anion, covalent contributions in the CuC � Cl� interaction have
to be taken into account accompanied by a low coordination. Thus, the electronic
structures of the ions can play an important role. Similar considerations apply for
the interpretation of the structure of silver halide melts; see also [2.18].

In the case of divalent metal halides – metal ions of group IIA and IIB – a
classification of the bonding characteristics has been predicted based on valence
electron orbital radii [2.32]. Accordingly, bond ionicity should increase going from
the lighter metal ions such as Zn2C or Mg2C to the heavier ones. This trend is sup-
ported by the results of neutron diffraction measurements of molten chlorides: For
Ba2C containing salts, the coordination number of closest contact of unlike ions
is reported as 6:4 ˙ 0:2, whereas for Zn2C systems it is given by 4.3 [2.33]. For
ZnCl2, different diffraction studies in the liquid and glassy state have been pub-
lished, [2.33–2.36], including a more recent analysis of the partial structure factors
from total scattering data [2.37], which all agree on the following structural model.
The occurrence of a prepeak in S.Q/ clearly indicates intermediate range ordering.
This is explained by a random close packing of Cl� ions with a coordination number
of NClCl of 8–10 with the ZnC ions occupying tetrahedral holes. Corner sharing of
the resulting ZnCl2�

4 tetrahedrons enables a maximum distance between Zn2C ions
and thus a minimum of the Zn � Zn repulsion. Further evidence for a network-like
melt with bridged tetrahedral ZnCl2�

4 species comes from Raman spectroscopy; see
e.g. [2.38], but see also the interpretation of these spectra by MD simulations [2.39].
Consistent with this structural model are also the low electrical conductivity and
high viscosity of molten ZnCl2 – see Sect. 2.4.

Recently, the structure of liquid ZnCl2 has been studied over a wide range of
pressure and temperature (up to 4.5 GPa and 1,300 K), both by X-ray diffraction
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Fig. 2.8 Snapshots of MD simulations of liquid ZnCl2 at 1,273 K; (left) covalent network regime
at low pressure; (right) ionic liquid regime at high pressure. Reprinted with permission from [2.41];
copyright permission (2010) by Elsevier

[2.40] and by MD simulations [2.41]. The main findings of these investigations are
that with increasing pressure a liquid–liquid transition occurs at higher tempera-
tures, whereby the structure transforms from a covalent network of Cl� ions to a
dissociated ionic liquid. This structural transition is illustrated in Fig. 2.8 by two
snapshots of the MD calculations.

With respect to the following discussion of the microscopic structure of ionic
liquids and their mixtures with chloroaluminates, a comment on the structure of
AlCl3 melts is of interest. Aluminium trichloride melts at a relatively low tem-
perature of 192ıC (under pressure) [2.19] and exhibits an enormous expansion on
melting of �V=Vs � 80% [2.18]. The specific electrical conductivity is very low
.�10�7 
�1 cm�1/, comparable with that of a molecular liquid. First evidence that
the melt is composed of molecular Al2Cl6 units came from Raman spectroscopy
[2.38]. Recently, Madden et al. [2.42] have performed MD calculations of the liq-
uid structure of AlCl3 using an interaction model of polarizable ions. They found
edge-sharing of tetrahedral structural units leading to the formation of charge neu-
tral Al2Cl6 dimers, which they explain by the strong polarization of the Cl� ions.
Mixing of AlCl3 with molten alkali halides leads to the formation of complex ion
species in equilibrium, i.e. AlCl�4 and Al2Cl�7 . Raman measurements indicate that
at compositions of xAlCl3 < 0:5, the AlCl�4 tetrahedral species predominate [2.38].
These ionic species also form in mixtures of AlCl3 with ionic liquids. This was
shown first by Osteryoung et al. [2.14] who measured the Raman spectra of alu-
minium chloride-1-butyl-pyridinium melts. 27Al NMR studies of the same system
showed that the AlCl�4 and Al2Cl7� ions have lifetimes up to milliseconds [2.43].

Finally, for further information on the microscopic structure of metal halide mix-
tures and transition metal and rare earth metal halide melts, reference is given to the
comprehensive reviews by Brooker and Papatheodorou [2.38] and Tosi et al. [2.44].

In comparison with molten salts, experimental research on the structural proper-
ties of ionic liquids is less advanced. In recent years, however, various computational
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methods have been employed to study the structure and dynamics of pure ionic liq-
uids and their mixtures with organic solvents, inorganic salts and gases such as CO2.
Computational modelling of ionic liquids includes methods such as classical MD
and MC simulations, ab initio quantum chemical, and ab initio or Car–Parrinello
MD calculations. A very recent review by Lynden-Bell et al. [2.45] covers results
on ionic liquids obtained by these methods. So, we concentrate here on a few top-
ics of these computations on the structural properties. They have been performed
predominantly for imidazolium-based ionic liquids and their mixtures.

The first simulation study of chloride and hexafluorophosphate salts of
dimethylimidazolium and 1-ethyl-3-methylimidazolium ŒC2mim�C was reported
by Lynden-Bell and coworkers [2.46]. The interionic potential they used is similar
to the Born–Mayer pair potential – see (2.29) – but without the quadrupolar term.
Partial charges at each atomic centre were determined from ab initio calculations
of individual cations and anions. Bond lengths and angles were kept fixed except
those formed between the N � C � H atoms in the methyl groups. Calculations were
performed both with an explicit atom model and with a so-called united atom model
where the carbon atoms and the hydrogen atoms are lumped. This potential model or
force field was tested on the crystal structures of the respective compounds. Results
of these calculations for the liquid structures at 400 K are shown in Fig. 2.9. A
pronounced first peak is visible in the cation–anion radial pair distribution function
gC=�.R/, which is similar for the explicit atom and united atom model calculations
for the chloride melts. In the case of the PF�

6 salt, this peak is shifted towards larger
distances corresponding to the bigger anion size. The data also indicate a long-range
charge ordering up to distances of �1:5nm. A more detailed picture of the anion
distribution around the imidazolium cation is given by the 3D distribution functions
in Fig. 2.9b, c. Apparently the highest probability for the chloride ion is near the C2

hydrogen, which is the most acidic site and the region of highest positive charge. A
view along the molecular symmetry axis down the C�H bond (Fig. 2.9c) illustrates
that the highest probability of the Cl� ion is above and below the plane of the
molecule.

In the years following 2001, various force fields with essentially the same
functional form but with different parameters have been developed and critically
analyzed for imidazolium-based ionic liquids; see [2.45]. The corresponding sim-
ulations essentially confirm the structural results described above. In several pub-
lications, Voth and coworkers have studied the effect of various alkyl side-chain
lengths on the mesoscopic structure of imidazolium nitrate melts [2.47, 2.48]. For
this aim, they have developed an effective force coarse-graining (CG) method,
whereby atoms are grouped together to form several CG sites. In this way, MD
simulations at a very large scale are possible. Figure 2.10 shows typical results of
such calculations for the example of imidazolium nitrate [2.48]. Figure 2.10 (upper
left) presents a snapshot of the tail groups of the alkyl chain with a length of four
carbon atoms .C4/, whereas the upper right gives the corresponding snapshot for the
anions. As can be seen, the ions are distributed relatively homogeneously, whereas
the tail groups aggregate together and form several spatially heterogeneous domains.
Increasing the alkyl chain length, this tail aggregation gets more pronounced, which
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Fig. 2.9 (a) Pair distribution function gC=�.R/ of liquid [MMIm][Cl] and [MMIm] ŒPF6� at
400 K calculated with the united (dashed line open circles and full line open diamonds) and explicit
(full line squares) atom model; (b) view from above of the 3D probability distribution of Cl� ions
around the ŒMMIm�C cation (united methyl model); (c) same as in (b), but viewed along the molec-
ular symmetry down the C�H bond. Reprinted with permission from [2.46]; copyright permission
(2010) by Taylor and Francis

is indicated by the pair distribution function in Fig. 2.10 (the lower left panel). In
parallel, the diffusion of ions is clearly reduced with increasing tail aggregation;
see Fig. 2.10 (lower right panel). On the basis of these results, it is concluded that
for long enough side chains of the cations domain formation and liquid crystal-like
structures should result. This is not restricted to imidazolium-based ionic liquids,
but should occur in most organic ionic liquid systems [2.47].

The solubility and solvation of organic and inorganic compounds and of gases in
ionic liquids is a crucial question, in both fundamental and applied research. Several
of these aspects are treated in the book by Wasserscheid and Welton [2.13]. So, we
may focus here on a few more recent theoretical investigations. Several groups have
studied the solvation of imidazolium-based ionic liquids in mixtures with water,
alcohols, acetronitrile, or DMSO [2.49–2.55]. The solvation of ŒC2mim�ŒCl� in a
cluster of 60 water molecules has been studied by Spickermann et al. with Car–
Parrinello MD simulations. The authors could demonstrate that the structure of the
hydration shell around the ion pair differs significantly from bulk water and that
no ion pair dissociation occurs on the timescale of the simulation [2.50]. In MD
simulations of 1-n-decyl-3-methylimidazolium bromide, ŒC10mim�ŒBr�, in aqueous
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Fig. 2.10 Coarse-grained MD simulation of imidazolium nitrate with 400 ion pairs at T D 700 K:
(upper left) snapshot of alkyl tail groups (alkyl chain length: C4); (upper right) snapshot of anions
only; (lower left) radial distribution function for tail–tail sites for different alkyl chain lengths
Ci ; (lower right) mean square displacements of cations. Reprinted with permission from [2.47];
copyright (2010) by American Chemical Society

solutions, it is found that cations spontaneously form small micellar aggregates
where the decyl chains are buried inside the micelle and the polar head groups are
exposed to water [2.49]. In their NMR and MD investigations of ŒC4mim�ŒCl� in
water and DMSO, Remsing et al. [2.53] find evidence of aggregation of butyl chains
in aqueous environment. On the other hand, they show that ŒC4mim�ŒCl� behaves as
a typical electrolyte in water i.e. both ions are completely solvated at low concen-
trations. This seems to be not the case in DMSO [2.53]. The solvation of lanthanide
cations (Ln D La, Eu, Yb) in imidazolium-based ionic liquids with different anions
has been studied with MD simulations by Chaumont and Wipff [2.56,2.57]. A main
result of these studies is that in all cases the first solvation shell of Ln(III) is found
to be purely anionic, with 6–8 coordinated ligands, and that this shell is surrounded
by 13–14 ŒC4mim�C cations leading to an onion type solvation of Ln(III).

As mentioned above, the experimental elucidation of the microscopic structure of
room temperature ionic liquids employing diffraction methods is a complex prob-
lem and knowledge is rather limited. A review covering the literature up to 2006
has been written by Hardacre [2.58]. In general, a complete set of partial struc-
ture factors or distribution functions is not accessible. A specific complication in
neutron scattering experiments is due to the large incoherent scattering cross sec-
tion of hydrogen, which typically dominates the coherent contributions of other
elements in the scattering function. In principle, this problem can be significantly
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reduced by deuterium isotope substitution. In X-ray diffraction, on the other hand,
light elements such as hydrogen or deuterium are barely visible since the atomic
form factors are proportional to the atomic number. So, the determination of the
local structures in ionic liquids often requires further information, e.g. from the
crystalline structures, MD simulations, or from NMR and Raman spectroscopy or
EXAFS spectra. As an example of the experimental limitations, one may consider
a recent study of Fujii et al. on the liquid structure of 1-ethyl-3-methylimidazolium
bis-(trifluoromethylsulfonyl)imide, ŒC2mim�ŒNTf2� [2.59]. For the structural char-
acterization, the authors have chosen X-ray measurements of the total scattering
function, MD simulations of the conformers of ŒC2mim�C and ŒNTf2��, and NMR
measurements of the 1H; 13C, and 19F chemical shifts. Figure 2.11 presents the
experimental total scatting intensity, I.Q/, in comparison with the contribution of
intramolecular scatting calculated for a 1:1 mixture of the conformers. As can be
seen, the intensity function at large Q.Q > 4 Å

�1
/ solely reflects the intramolec-

ular scattering. So all the information on the intermolecular structure at larger R

is contained in the small section of I.Q/ at low Q < 40 nm�1. To resolve the
structure from this part alone is not possible, i.e. independent results e.g. from MD
simulations are needed. For the present example, the authors suggest the following
model for the intermolecular structure: A nearest neighbour distance of 6 Å for the
ŒC2mim�CŒNTf2�� correlation and a distance of 9 Å for the like ions correlation.
From the NMR results, it is concluded that the C2 proton of ŒC2mim�C strongly
interacts with the O atom of the – SO2.CF3/ group of ŒNTf2�� [2.59].

Fig. 2.11 X-ray scattering from liquid ŒC2mim� ŒNTf2� at 298 K: (symbols) total scattering inten-
sity from X-ray measurement; .�/ calculated intramolecular scattering contribution assuming a
1:1 mixture of ŒC2mim� and ŒNTf2� conformers. Reprinted with permission from [2.59]; copyright
permission (2010) American Chemical Society
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2.3 Bulk Phase Behaviour

Coulombic fluids span a wide range of temperatures extending from the low melting
points of ionic liquids down to 200 K up to the critical temperatures of expanded
fluid metals with that of tungsten being above 15,000 K. A representative collection
of melting, boiling (decomposition temperatures in the case of ionic liquids) and
critical temperatures is given in Table 2.2. Mainly for two reasons, the elements and
compounds in this table have been chosen: First, they represent the typical range of
melting points of the respective class of materials, and second, their thermophysical
data are of interest in the following chapters.

The liquid range of a substance commonly is defined by the difference of the boil-
ing and melting point temperatures. Accordingly, alkali metals and alkali halides
have a high liquid range of the order of 600–700 K. Exceptionally high values
of about 2,000 K are observed for Ga and W. In comparison with alkali halides,
the liquid range of ionic liquids is rather reduced lying typically between 200

Table 2.2 Characteristic temperatures and thermodynamic data of Coulombic fluids: Tm D
melting point, Tb.Tdec/ D boiling point (decomposition temperature in the case of ionic liquids),
Tc D critical temperature, �m D liquid density at melting point, pc D critical pressure

Coulombic
fluids:

�m=g cm�3 Tm=K Tb.Tdec/=K Tc=K pc=bar

Metals
Cs 1.84 (a) 301.8 (a) 963 (a) 1,924 (b) 92.5 (b)
Rb 1.47 (a) 312.1 (a) 975 (a) 2,017 (b) 124.5 (b)
K 0.83 (a) 336.4 (a) 1,031 (a) 2,198 (c) 155 (c)
Hg 13.54 (a) 234.3 (a) 629 (a) 1,751 (b) 1,673 (b)
Ga 6.04 (a) 302.9 (a) 2,217 (a) – –
Bi 9.99 (a) 544.5 (a) 1,391 (a) – –
W 19.26 (a)

(at 298 K)
3,650 (a) 5,808 (a) 15,227 (h) –

Molten salts
KCl 1.52 (d) 1,045 (d) 1,680 (d) 3,200 (d) �200 (d)
BiCl3 3.92 (d) 505 (d) 714 (d) 1,178 (e) �120 (d)
AlCl3 2.48 (f) 465 (d) (at 2.5

bar)
453 (d)

sublimes
626 (f) 26 (f)

Ionic liquids
ŒC2mim�ŒBF4� 1.26 (i) 288 (g) - 520 – –
ŒC2mim�ClW
ŒAlCl3�(1:1)

1.29 (g)
(at 298 K)

283 (g) – – –

ŒC4mim�ŒCl� 1.08 (g)
(at 298 K)

338 (j) - 520 – –

ŒC4mim�ŒBF4� 1.14 (g)
(at 298 K)

257 (g) - 630 – –

Letters in brackets denote the following references: .a/ D [2.60], .b/ D [2.61], .c/ D [2.62],
.d/ D [2.19], .e/ D [2.63], .f/ D [2.64],.g/ D [2.13], h D [2.65], .i/ D [2.66], .j/ D [2.67]
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and 300 K, whereby the upper limit is determined by thermal decomposition. In
principle, the liquid range of matter can be extended in two ways: By undercooling
into a metastable state or by expanding the liquid at supercritical pressures up to the
liquid–vapour critical region. For Coulombic fluids of interest, these variations shall
be considered in detail here.

Most liquid metals can be undercooled below their melting point Tm; see
e.g. [2.68]. For that purpose, it is necessary that the liquid is free of solid parti-
cles or intrinsic solid nuclei where the latter usually can be dissolved by heating the
melt up to �1:2Tm [2.68]. In large systems, undercooling is almost always limited
by nucleation at extraneous interfaces. However, extreme levels of undercooling
can be achieved by emulsification of liquid droplets (�10 �m radii) in an inert
carrier fluid, which was reported for the first time by Turnbull [2.69]. Employing
the droplet emulsion technique, Perepezko and coworkers have studied a number of
liquid metals and alloys and have elucidated the effects of size and surface coating
on undercooling [2.70–2.72]. For low melting point metals such as Ga and Bi, they
found a lower limit of undercooling in the range of 0:3–0:4Tm. The idea behind the
dispersion technique is that the nucleation probability is strongly reduced because
the catalytic effect of heterogeneous nucleants may be restricted to a small fraction
of droplets. The technique is not limited to low melting metals, where carrier fluids
such as alcoholic sodium oleate or silicon oils have been used, but can be extended
to high melting point materials such as Ge if proper molten salts are employed as
dispersion medium [2.73].

The second possibility to extend the liquid range of matter is that by expansion
at elevated temperature and pressure. This is illustrated in Fig. 2.12 for the example
of expanded fluid caesium [2.74]. The coexisting liquid and vapour densities up to
the critical point and the density variation along different isobars between 60 and
200 bar are presented. It is worth to note that in the limits between the melting and
critical point the coexisting liquid density expands by nearly a factor of 5 and that
the temperature range from boiling to critical temperature, Tc=Tb, is extended by a
factor of �2. These two values are typical of fluid alkali metals; see also Table 2.2
and reference [2.61]. In the case of a molten salt such as BiCl3, the corresponding
values are �m=�c � 3 and Tc=Tb D 1:65, which are comparable with those of typ-
ical molecular fluids; see e.g. [2.75]. Such a large expansion of fluids raises several
fundamental questions: (1) Up to what density and temperature do the characteris-
tic liquid properties such as the metallic or ionic conductance persist? (2) How do
they transform to different states of condensed matter? These topics are discussed
in detail in Chap. 3.

The bulk phase behaviour of molten salts and ionic liquids is dominated by
Coulomb attraction between ions, which depends on the ion charges, the interionic
distances and the coordination number, or the Madelung constant in the correspond-
ing crystals. With this knowledge, some characteristic trends of the melting points
are immediately understandable: For instance, the decrease in melting tempera-
tures of the alkali halides with increasing anion or cation size. In particular, this
explains the strong reduction of the melting points in room temperature ionic liq-
uids due to the large size of the organic cations. Qualitatively, this also accounts
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Fig. 2.12 Density variation
of expanded fluid Cs at
liquid–vapour coexistence
and along different isobars
between 60 and 200 bar at
sub- and supercritical
conditions. See also [2.74]

Fig. 2.13 Solid–liquid
phase diagram for
ŒC2mim�Cl�AlCl3 as a
function of AlCl3 mole
fraction; full symbols, melting
and freezing points, open
circles, glass transition points.
Adapted with permission
from [2.16]; copyright
permission (2010) by
American Chemical Society

for the variation of the melting temperatures with changing the anion size, the trend
being: Tm.Cl�/ > Tm.PF�

6 / > Tm.BF�
4 / > Tm.NTf�

2 /; see also [2.76]. A signif-
icant effect on the low temperature phase behaviour of ionic liquids is induced by
varying the alkyl chain length Cn in e.g. ŒCnmim�C salts; see also [2.77]. Increas-
ing the length from n D 2 to n D 10, the melting point is reduced with a trend
for glass transition on cooling. For n > 10, the melting point increases again and
liquid crystalline phases occur [2.13, 2.76]. The tendency to strong undercooling
and low glass transition temperatures is especially pronounced in binary mixtures
of imidazolium-based salts with AlCl3 or with other Lewis acidic melts such as
ZnCl2 [2.16, 2.78]. This behaviour is similar to mixtures containing simple inor-
ganic salts such as KI C ZnCl2 [2.78]. An illustration is given in Fig. 2.13 for the
phase diagram of ŒC2mim�Cl C AlCl3 [2.16].

Investigation of the high-temperature phase behaviour of ionic liquids is rather
complicated due to thermal decomposition. The onset temperatures of decomposi-
tion are generally not well defined and reproducible. They depend on a number of
influences such as impurities (especially water), wall reactions, and prolonged expo-
sure at elevated temperatures; see also [2.13]. Therefore, the numbers in Table 2.2
may be considered as an average upper bound.
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Near and slightly above the melting point, ionic liquids exhibit exceptionally
low vapour pressures in their pure state (<10�8 mbar according to the author’s own
experience with UHV experiments [2.79]), which for the first time enabled ultrahigh
vacuum measurements such as XPS with a fluid system; see e.g. [2.80]. It is mainly
this unusual property to which ionic liquids owe the name green solvents. Various
attempts have been made to determine or estimate the thermodynamic properties,
in particular, the vapour pressures, of different ionic liquids at elevated tempera-
tures [2.81–2.84]. Rebelo et al. have tried to predict the boiling and critical point of a
number of imidazolium-based ionic liquids on the basis of measured surface tension
data and by extrapolation of the critical points with the use of the empirical Eötvös
and Guggenheim relations. Such predictions have some severe uncertainties, not
only because of the extrapolation over a wide temperature range, but also because it
is not clear if these empirical laws apply to ionic liquids where charge ordering at the
liquid/vapour interface should be considered – see also Sect. 2.5.2. Only recently,
reliable measurements of the thermodynamic properties at elevated temperatures
have been reported [2.83, 2.84]. By Knudsen effusion and transpiration measure-
ments, Heintz and coworkers obtained the vapour pressure curves of ŒC2mim�ŒNTf2�

and ŒC2mim�ŒDCA� at temperatures up to 528 K and 480 K, respectively. They
also could determine the gaseous enthalpy of formation of ŒC4mim�ŒDCA� from
combustion measurements and found good agreement with results from ab initio
calculations. On the basis of these calculations, they conclude that the vapour phase
is composed of ion pairs, i.e. ŒC4mim�CŒDCA��, with a negligible degree of dissoci-
ation at the highest measured temperatures. This last result is supported by a recent
mass spectroscopic study of several imidazolium-based salts. As for the nature of
the vapour phase, these observations demonstrate the close similarity between ionic
liquids and conventional molten salts. With the vapour pressure data of Heintz et al.,
finally, a more realistic extrapolation of two interesting quantities is possible: The
vapour pressure near room temperature and the boiling point. For ŒC2mim�ŒNTf2�

these are p � 10�12 mbar, which is barely measurable, and Tb � 1;200 K, which is
almost 600 K above the decomposition onset of this salt [2.85].

For a long time, criticality in Coulombic fluids has attracted the interest in theory
and experiment alike; see e.g. [2.86–2.96]. Detailed knowledge of the thermody-
namic properties near a liquid–vapour or liquid–liquid demixing critical point gives
insight into the scaling behaviour and the nature of the dominant intermolecular
interaction potential. In fluid alkali metals (Cs and Rb), Hensel and Warren [2.61]
present a careful analysis of the coexisting liquid and vapour densities, �l and �v, and
the diameter �d D .�l C�v/=2 as a function of reduced temperature  D .Tc�T /=T

approaching the critical point up to  � 10�3. From a single power law fit of
��=2�c D .�l � �v/=2�c vs.  they find for the critical exponent ˇ of the order
parameter � a value of ˇ D 0:35–0:36, which is close to the value of 0.325 predicted
for the 3D Ising model. Therefore, these authors conclude that the critical behaviour
of these fluid metals – despite the metal–nonmetal transition near the critical region,
see Sect. 3.1 – can be described by short-range interactions, but it is not domi-
nated by long-range Coulomb interactions. For binary liquid mixtures exhibiting a
metal–nonmetal transition as a function of composition and a miscibility gap with an
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Fig. 2.14 High-temperature
section of the phase
diagrams – temperature T vs.
metal mole fraction x – of
alkali metal–alkali chloride
melts; the full dots indicate
the critical or consolute point
of the respective system. See
also [2.96]

upper critical point, differences in the critical behaviour have been reported. As an
example of such systems, Fig. 2.14 shows the phase diagrams of alkali metal–alkali
chloride melts.

Precise determinations of the liquid–liquid coexistence curve in Na-NH3 solu-
tions show a change of the critical exponent ˇ from 0.502 to 0.34 at �2 K below
the consolute point [2.97]. Small-angle neutron scattering investigations of the con-
centration fluctuations in the critical region of K � KBr melts indicate a behaviour
corresponding to the 3D Ising model [2.98].

Research of the critical demixing of ionic liquid solutions at ambient conditions
was started by Weingärtner and coworkers [2.99]. They studied systems of tetraalky-
lammonium salts dissolved in different aqueous and nonaqueous solvents, and also
the system ethylammonium nitrate C n-octanol, which has an upper critical point of
315.2 K. From an experimental point of view, these systems are especially attractive
for investigations of critical phenomena since the critical temperatures near ambient
conditions allow temperature stabilization and control with a high precision. A sys-
tematic investigation of the coexistence curves of tetra-n-butylammonium picrate,
N4444 Pic, solutions in 1- and 2-alkanols has been reported by Schröer, Weingärtner,
and coworkers, whereby the dielectric constant at Tc varied from " D 16:8�3:6 and
the critical temperatures ranged from 315.87 to 351.09 K [2.100]. Figure 2.15 shows
a typical example of the liquid–liquid miscibility gap in N4444 Pic in 1-tetradecanol.
For the uncertainty of the critical temperatures, the authors give a value of ˙10 mK
and that of the order parameter, the mass fraction wc, is ˙0:004. From a detailed
analysis of the scaling laws, the following conclusions are drawn. The critical expo-
nent ˇ for the coexistence curves lies near the Ising value, but shows systematic
deviations with varying ", from ˇ D 0:315 at " D 16:8 to ˇ D 0:36 at " D 3:6.
For larger reduced temperatures  > 0:01 and using the mole fraction scale as
order parameter, the critical exponent is near the mean field value of ˇeff D 0:5.
The authors do not draw a final conclusion on the problem of crossover to mean-
field criticality, which is discussed in several of the earlier publications [2.95–2.97].
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Fig. 2.15 Coexistence curve of solutions of N4444 Pic in 1-tetradecanol with an upper critical
temperature of 351.09 K; plotted is the temperatures T vs. measured refractive index n as compo-
sition variable along the coexistence curve (open circles) and the coexistence curve diameter and
an extension into the homogeneous liquid phase (open diamonds). Remarkable is the deviation of
the diameter from the simple rectilinear diameter rule. Reprinted with permission from [2.100];
copyright permission (2010) from American Institute of Physics

Finally, assuming Ising criticality and the applicability of the rectilinear diameter
rule, an empirical state behaviour of ionic liquid solutions seems possible, where all
phase diagrams map on one master curve [2.101].

2.4 Transport Properties

Transport in fluid systems encompasses energy (thermal conductivity), momentum
(viscosity) and particle transfer (diffusion) and, in Coulombic fluids, includes charge
transfer characteristics (electrical conductivity). This is a broad field and, therefore,
we content ourselves with a brief description of the electrical transport properties
that are relevant to the discussion in later chapters and give reference to reviews for
further details.

The theoretical basis of the electron transport in liquid metals is described in the
monographs by Ziman [2.6] and Cusack [2.7]. Within the NFE model for metals,
the DC conductivity is given by

�.0/ D n e �e D n e2e

me
D n e2�e

mevF
: (2.30)

Here, �e is the mobility, e is the relaxation time, and �e is the mean free path
of conduction electrons; the other symbols have their usual meaning, vF being the
Fermi velocity. For a calculation of e, the scattering of conduction electrons by
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the pseudopotentials is treated as a weak perturbation and the positions of screened
ions are taken into account by the structure factor S.Q/ of the liquid. This yields
the Ziman formula for �.0/ of liquid metals [2.6] as follows:

1=�.0/ D 3�n

e2„v2
F

� 1

4k4
F

Z 2kF

0

Q2S.Q/�.Q/2dQ; (2.31)

where �.Q/ is the Fourier transform of the pseudopotential. There are two fur-
ther transport properties that within the NFE model are independent of e: The Hall
coefficient, RH, which characterizes the electronic transport in a magnetic field ver-
tical to the electric current, and the thermoelectric power, S , which is defined by
the Thomson coefficient, �� , i.e. S D R �

0
.��=T /dT . In the NFE model, these

quantities are as follows:
RH D �.nec/�1; (2.32)

and

S D ��2

6
� kB

e

�
kBT

EF

�
(2.33)

Intuitively, one expects that the distance �e between two scattering events is large in
comparison with the interatomic distance, which is of the order of rs D .3=4�n/1=3

i.e. �e � rs – for alkali metals rs is several Å. In this way, the conduction electrons
can wander nearly freely through the metal and their wave functions can be approx-
imated by plane waves. On the other hand, if the electrons were localized within
an atomic distance, i.e. their uncertainty in position would be �x � rs, then the
uncertainty in momentum – since kF � 1=rs – would be „kF. Thus, a classical NFE
model is impossible. The data in Table 2.3 give an overview how well the criterion
�e � rs holds for liquid metals near their melting point.

Table 2.3 Experimental data of electronic DC conductivity, � .0/, electron mean free path, �e,
Hall coefficient, RH, divided by the NFE value according to (2.32), and conductivity ratio �

ı
�calc;

�calc has been determined according to (2.31) with pseudopotentials from phase shift analysis and
with experimental S.Q/ data [2.102]

Metal �=105
�1cm�1 �e=Å RH=RNFE �=�calc

Na 1:04 157 0.98 (b) 1.77 (d)
K 0:77 176 2.1 (d)
Rb 0:45 118 1.2 (d)
Cs 0:27 82 1.0 (c) 1.1 (d)
Cu 0:47 34 1.0 (b)
Al 0:41 18 1.0 (b)
Ga 0:38 17 0:97: : :1:04 (b)
Bi 0:078 4 0:7: : :0:95 (b)
All data for liquid metals near the melting point; conductivities from .a/ D [2.60]; .b/ D [2.103],
.c/ D [2.104], .d/ D [2.102]
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In the liquid state, electronic conduction is not restricted to metals, but is also
known to occur in mixtures with molten salts, possibly also in ionic liquids, although
this has not been studied yet. In molten salts, two situations are of interest. At
elevated temperatures salts such as the alkali or bismuth halides exhibit continu-
ous miscibility with the respective metals and thus, as a function of added metal,
undergo a nonmetal–metal transition. In this context, one of the fundamental ques-
tions is, what is the electronic structure in the nonmetallic salt-rich melts and
how does it change towards the metal-rich solutions? With these problems, we
will be concerned in Sect. 3.5. Another important mechanism of electron con-
duction in molten salts prevails in systems that contain two valence states of the
same metal element. Typical examples are mixtures of NdI2 � NdI3 [2.105–2.107],
CuCl � CuCl2 [2.108], or solutions of transition metal halides such as TaCl5 or
NbCl5 in molten salts such as NaCl or CsCl [2.109]. The composition in these mix-
tures can be varied by changing the ratio of the salt components of different valency,
by adding metal to the salt of higher valency, or, in electrochemical experiments,
by changing the applied electrochemical potential in an electrochemical cell with
a solution of e.g. TaCl5 � NaCl [2.109]. The electronic transport in these systems
is thermally activated, which can be explained by intervalence charge transfer in a
simple two-site model [2.107, 2.109]. As a function of composition, the electronic
conductivity exhibits a parabolic dependence with a clear maximum, whereby the
conductivities at the maximum range from �10�2 
�1 cm�1 [Ta.IV/ � Ta.V/ in
CsCl � NaCl] to 10 
�1 cm�1 .CuCl � CuCl2 at a temperature near 1,000 K);
see Fig 2.16. The parabolic concentration dependence is easy to understand if one
takes into consideration that for a successful intervalence charge transfer two ions
of different valency have to be nearest neighbours; the probability for this is pro-
portional to the product of the respective mole fractions, e.g. x.Ta IV/ � x.Ta V/. In
applications, where optimization of current efficiencies matters, knowledge of the
electronic conduction component is very valuable.

The ionic DC conductivity in molten salts and ionic liquids can be described by
the following equation:

�ion.0/ D
X

i

ni qi�i ; (2.34)

Fig. 2.16 Impedance
measurements of the
electronic DC
conductivity vs.
electrochemical potential E

in a CsCl � NaCl – 3 mol%
Ta (IV, V) oxychloride melt at
863 K; (open circles)
experimental points; (full
line) fit with a parabolic
function. See also [2.109]
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where ni is the number density, qi the charge, and �i the mobility of ions i.i D
C; �/. The mobility is given by the Einstein relation,

�i D Di qi

kBT
; (2.35)

where Di is the self-diffusion coefficient of ion i . Thus, the ionic conductivity is
directly related with the self-diffusivity of the ions; the molar conductivity, ƒ D
�=c, is then determined by

ƒ D
�

F 2

RT

�
.DC C D�/: (2.36)

Here, F is the Faraday constant, R is the gas constant, and c is the molar con-
centration. Conductivities calculated from (2.36) with independently measured
ion diffusion coefficients may deviate from measured ionic conductivities. Both
in molten salts [2.110] and in ionic liquids [2.111, 2.112], these deviations are
explained by short-lived ion pairs. These pairs can contribute to diffusion, but not
to the electrical conductance. Via the Stokes–Einstein relation, there is a strong
coupling between the viscosity, �, and the diffusion, and thus between viscosity
and ionic conductivity. So, in many cases, the temperature dependence of the ionic
conductivity follows a Vogel–Tammann–Fulcher (VTF) relation,

�ion.T / D �0exp

� �B

.T � T0/

�
(2.37)

and correspondingly for �, which is inversely proportional to �ion. In (2.37), B is
referred to as a pseudo-activation energy and T0 is the zero-mobility temperature or
glass transition temperature. Typical values of conductivities, viscosities, and self-
diffusion coefficients of a few ionic liquids in comparison with molten salts are
given in Table 2.4.

Table 2.4 Ionic DC conductivity �ion, diffusion coefficients DC and D�, and viscosity �, of
selected molten salts and ionic liquids

Ionic melt Tm=K �ion=
�1cm�1 DC=10�7 cm2s�1 D�=10�7cm2s�1 �=c Poise

NaCl 1,081 3.61 962 673 1.43
KCl 1,045 2.2 – – 1.34
CsCl 918 1.09 350 380 1.60
BiCl3 505 0.38 – – 42.2
ZnCl2 556 0.02 – – 18,000
ŒC2mim�ŒBF4� 288 (b) 0.14 (c) 5.0 (d) 4.0 (d) 35(c)/43 (c)
ŒC2mim�ŒNTf2� 258 (b) 0.008 (c) 5.0 (d) 3.0 (d) 33 (b)
ŒC4mim�ŒBF4� 192 (c) 0.005 1.8 (c) 1.8 (c) 75 (c)
Data of molten salts are from reference (a) at conditions near their respective melting points, those
of ionic liquids correspond to 298 K and, for �ion, to 303 K; .a/ D [2.19], .b/ D [2.111], .c/ D
[2.67], .d/ D [2.112]
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With regard to these data, it is striking that the conductivities of molten salts
near their melting points are of the same order of magnitude, �1 
�1 cm�1. Excep-
tions are melts such as ZnCl2, which are characterized by a network structure (see
Sect. 2.2.2) and so are not completely dissociated molten salts. On comparing the
conductivities and diffusion coefficients of the high-temperature molten salts with
those of room temperature ionic liquids, they differ by roughly two orders of mag-
nitude. However, if one extrapolates the values of ionic liquids to high temperatures
near 1,000 K with the aid of (2.37) – for instance, for ŒC2mim�ŒBF4� B is �720 K
and T0 � 150 K [2.112] – these hypothetical conductivities and diffusivities would
be comparable with the values of molten salts. So, the essential difference between
both classes of ionic media is less in their transport properties, but in their thermal
stability and, of course, in the large chemical variability of ionic liquids.

2.5 Interfacial Characteristics

The behaviour of fluids at surfaces2 and interfaces is a classical area of physical
chemistry. It includes a variety of topics such as surface thermodynamics, adsorption
phenomena, catalysis, tribology, micro- and nanofluidics, or processes at electri-
fied liquid/solid interfaces; to name some of the most important subjects; see also
[2.113]. Phenomena at fluid interfaces are not only of fundamental interest, but also
of great practical importance in different fields. In many respects, surface science is
also the basis for nanoscience and technology, since nano-objects – for which the
number of atoms on the surface and in the interior are of comparable magnitude – are
strongly determined by their surface characteristics and by interfacial phenomena.
In recent years, research of fluid interfaces has made considerable progress based
on new developments of microscopic theories and experimental techniques. For
instance, with X-ray reflectivity measurements at high flux synchrotron sources
and scanning probe microscopy, two powerful tools became available to probe the
microscopic structure of surfaces and interfaces. In consequence, novel interfacial
phenomena such as wetting and prewetting transitions, surface melting and freezing,
or electrochemical nanostructuring have attracted special interest in physics, chem-
istry, and material science. With respect to liquid metals and molten salts or ionic
liquids, studies of these topics at elevated temperatures are also of special practical
interest. This covers applications in soldering, metal–metal or metal–ceramic bond-
ing, and liquid metal embrittlement – see e.g. [2.114] – and also problems of thin
film stability in integrated circuits or electrochemical 2D and 3D phase formation
and growth. Some of these interfacial phase transitions of Coulombic fluids, at the
liquid/vapour, the liquid/solid, and the electrified liquid/solid electrode interfaces,
are dealt with detail in Chaps. 4 and 5. In the following, some basic characteristics
are introduced from a more phenomenological point of view.

2 The term surface often is used for interfaces where one of the neighbouring phases is a vapour
phase or vacuum.
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2.5.1 Liquid Metals

Across the liquid/vapour interface, metals exhibit a singular variation of their elec-
tronic structure: They undergo a metal–nonmetal .M � NM/ transition and so, at
temperatures well below the critical one, the character of the interatomic interaction
changes abruptly from screened Coulomb interaction in the liquid to a Lennard–
Jones type potential in the insulating vapour phase. The effect of this electronic
transition on the microscopic structure of a liquid metal surface was first studied by
Rice and coworkers [2.115]. Their Monte Carlo simulations of the inhomogeneous
interfacial region indicated that the liquid/vapour interface of metals is stratified, i.e.
a layered structure exists at the interface that decays over several atomic diameters
into the bulk liquid. Experimental evidence of this stratification was obtained
by X-ray reflectivity measurements on different liquid metals [2.116–2.118].
Figure 2.17 shows a comparison of theoretical with experimental results of the
density distribution normal to the liquid/vapour interface of Ga at conditions near
the normal melting point. The calculations are based on self-consistent quantum
Monte Carlo simulations with pseudopotential representation of the electron–
ion and ion–ion interactions [2.119], the experimental curve results from X-ray
reflectivity measurements [2.117]. It is interesting to add that at the solid/vacuum
interface of metals the electron distribution exhibits a similar oscillatory behaviour
decaying into the bulk after several atomic layers; see e.g. [2.120].

For a description of the macroscopic interfacial properties, the Gibbs adsorp-
tion equation is fundamental. We consider a multicomponent system with two bulk
phases, ˛ and ˇ, in equilibrium and separated by a plane located near a planar
interface. Then the Gibbs equation is [2.113] as follows:

d�˛ˇ D �S .�/dT �
X

i

�
.�/
i d�i : (2.38)

Fig. 2.17 Normalized
density distribution along the
normal to the liquid/vapour
interface of Ga near its
melting point; (open
diamonds) from quantum
Monte Carlo simulations;
(full line) from X-ray
reflectivity measurements.
Adapted with permission
from [2.119]; copyright
permission (2010) by
American Physical Society
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It relates the interfacial free energy per unit area, �˛ˇ – which is numerically equal
to the surface tension – to the relative interfacial entropy per unit area, S .�/, and
the relative adsorption or interfacial excess per unit area, �i

.�/ D ni
.�/=A, with A

being the area of the interface, T the temperature, and �i the chemical potential
of component i . The mole number is ni

.�/ D ni � ni
˛ � ni

ˇ . Since the �i
.�/ are

defined relative to an arbitrarily chosen Gibbs dividing surface, the surface can be
placed such that one �j

.�/ D 0. For a binary system of solvent 1 and solute 2, one
can choose �1

.�/ D 0, so that at constant temperature the interfacial excess of 2
relative to 1 is �

.�/

2.1/
D �.@�˛ˇ =@�2/T . If the slope of �˛ˇ vs. �2 is negative, then

there is an actual excess or enrichment of solute at the interface. In the opposite
case, there is a deficiency of solute. In the case of solid/vapour interfaces, �˛ˇ is not
generally equal to the surface tension because of crystallographic anisotropy and
of changes in the state of surface stress on increasing the surface area. However, at
temperatures near the melting point, these effects are reduced due to the relatively
high atomic mobility. Similar considerations apply if a solid ˛ is in contact with
its own liquid – for instance, at nucleation in supercooled melts – or with a second
solid having a negligible solubility in ˛.

Representative values of the interfacial free energies of pure metals are listed
in Table 2.5 for the liquid/vapour, the solid/vapour, and the solid/liquid interface
at conditions near the respective melting points. Also given are the temperature
coefficients, �@�lv=@T D S .�/.

A careful analysis of the �lv data from the literature obtained by different meth-
ods has been performed by Allen [2.121], who suggests the following reliability
limits: ˙5% for the surface tensions �lv and ˙50% for the temperature coeffi-
cients. Several attempts have been made to correlate the surface tension of liquid
metals with bulk thermodynamic properties. Qualitatively, the data in Table 2.5
suggest that �lv increases with the melting temperature Tm, Ga being an exception.
A quantitative fit of most experimental data is obtained by the empirical relation:
�lv D 3:6 Tm � V

�2=3
m , where Vm is the molar volume of the liquid and the pref-

actor has the dimension 10�7 J K�1 [2.121]. This correlation is consistent with
the temperature dependence of �lv of liquid metals that follow the simple Eötvös
law: �lv D kE.Tc � T /V

�2=3
m , with kE � 0:64 � 10�7 J K�1 and Tc � 6:6 Tm.

Table 2.5 Representative selection of surface free energies, �˛ˇ , of metals at the liquid/vapour
(l/v), solid/vapour (s/v), and solid/liquid (s/l) interface at conditions near the melting point; the
�sv – data correspond to polycrystalline surfaces

Metal �lv

ı
mJ m�2 �sv

ı
mJ m�2 �sl

ı
mJ m�2 @�lv=@T

ı
mJ m�2 K�1

K 115 ˙ 10 (a) – – �0:08 (a)
Ga 730 ˙ 10 (b) 767 ˙ 6 (c) 82 (d) �0:09 (b)
Bi 375 ˙ 10 (b) 501 ˙ 4 (c) 99 (d) �0:11 (b)
Au 1;140 ˙ 50 (a) 1;410 ˙ 30 (c) 128 (d) �0:5 (a)
Fe 1;900 ˙ 100 (a) 2,170 (c) �-Fe 269 (d) �0:5 (a)
W 2;500 ˙ 150 (a) 2;690 ˙ 22 (c) 436 (d) �0:3 (a)
.a/ D [2.121], .b/ D [2.122], .c/ D [2.123], .d/ D [2.124]
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With these data, the above prefactor results. Further correlations that take into
account the atomic bond strengths by the corresponding enthalpies of phase tran-
sition and consider the number of broken bonds at the interface have been tested.
This yields the relation: �lv .Tm/ D 0:174 � 10�8mol1=3�HVV

�2=3
m , where �HV

is the molar enthalpy of evaporation at Tm. It gives a very god fit of experimental �lv

data with a correlation coefficient of 0.998 [2.125]. On the same basis of a broken
bond model, a relation has been derived between �sv and �lv of the form [2.115]:
�sv D .Z � Z.�//=�HfV

�2=3
m;s C .�s=�l/

2=3�lv; here, Z denotes the coordina-
tion number in the bulk solid, Z.�/ that at the surface, �Hf is the molar heat
of fusion, Vm;s is now the molar volume of the solid, and �s and �l are the solid
and liquid density, respectively, at Tm. The main simplifying assumption is that
the bond energies of surface and bulk atoms are equal. Depending on the pack-
ing of atoms in the surface planes – corresponding to hcp, bcc, and fcc crystal
structures – lower and upper bounds for the ratio �sv=�lv can be estimated from
the above relation [2.121]: 1:1 - �sv=�lv - 1:3. Thus, an anisotropy of about 20%
is estimated for the surface tension of crystalline metals. Theoretical determinations
of the surface tension anisotropy in transition metals yield the following results
[2.126]: For fcc crystals such as Ni cleaved with different surface orientations, it
is found that �sv.110/ > �sv.110/ > �sv.111/ with �sv.110/=�sv.111/ D 1:3;
likewise, for bcc crystals with half band filling the corresponding inequality is
�sv.100/ > �sv.111/ > �sv.110/ with �sv.100/=�sv.110/ D 1:4. In both cases,
a relatively strong anisotropy is predicted. Experimental values for different noble
and transition metals amount to �10% [2.121]. The data given in Table 2.5 for the
solid/liquid interfacial free energies �sl have been determined from homogeneous
nucleation rates in strongly undercooled liquid metals and are compiled in [2.124].
For metals, Turnbull found the following rule: �sl.Tm/ D 0:45 �Hf V

�2=3
m;s [2.127],

which has been verified on simple thermodynamic grounds [2.128].
Wetting phenomena of liquid metals are of particular interest in various metal-

lurgical applications such as soldering, brazing, and welding and in problems with
heat transfer or floatation. Wetting, generally, describes the spreading of a liquid
deposited on a solid or liquid substrate. In order to simplify, consider a liquid drop
on top of a clean, smooth, non-deformable, and horizontal solid surface. Then, three
configurations are of particular interest, which can be distinguished by the magni-
tude of the contact angle ‚ – this is defined by the angle between the solid surface
and the tangent to the liquid surface at a point on the three phase contact line, taken
in a plane vertical to the solid surface. The three distinct wetting configurations are
as follows: (1) non-wetting for ‚ > 90ı; (2) partial wetting for 0 < ‚ � 90ı; and
(3) complete wetting in the limit ‚ D 0. The contact angle depends on the surface
free energies of the three phases in contact: Solid (s), liquid (l), and vapour (v).
At three-phase equilibrium, the total surface free energy, �F .�/, has a minimum,
@�F .�/=@A D 0 from which the Young equation follows (see also [2.113]):

�lv cos ‚ D �0
sv � �sl: (2.39)
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It is important to note that the three phases are in mutual equilibrium and so the
solid surface must be in equilibrium with the saturated vapour at pressure p0. Con-
sequently, there must be an adsorbed film with a film pressure �0, i.e. �0

sv D �sv��0,
where �sv is the surface free energy of the pure solid substrate. In the limiting case
‚ D 0, (2.39) does not hold any longer and ‚ D 0 is not defined. This situation
corresponds to the condition of a wetting transition.

Further insight into the distinct wetting configurations may be obtained by the
spreading coefficient S , which is defined by

S D �0
sv � .�lv C �sl/: (2.40)

It measures the difference between the surface free energy of the substrate when
dry and wet. If S > 0, the liquid spreads completely and thus lowers the surface
free energy. The opposite case, S < 0, corresponds to partial or non-wetting. Very
similar considerations hold for spreading of a liquid over another liquid [2.113].

Research on wetting phenomena during the last decades was stimulated by a
seminal paper of J. W. Cahn on Critical point wetting [2.129]. He could show that
in any two phase mixture of fluids near their critical point, contact angles against
any third phase become zero in that one of the critical phases completely wets the
third phase and excludes contact with the other critical phase: : :At some temper-
ature below the critical, this perfect wetting terminates in what is described as a
first-order transition of the surface. The situation is illustrated in Fig. 2.18, which
shows the phase diagram of a binary fluid mixture of components A and B exhibit-
ing a miscibility gap. This is defined by the coexistence curve of phases ˛ and ˇ

with an upper critical temperature Tc. In order to describe the characteristic wetting
transitions in this system, let us focus on two specific variations of the thermody-
namic states indicated by paths (1) and (2) in the figure. If at coexistence along
path (1) the surface excess �A.�B � 0/ has a low and finite value, but diverges
at some temperature Tw, this is the signature of a first-order, critical wetting transi-
tion, with Tw being the wetting temperature. Connected with this first-order wetting
transition are so-called prewetting transitions, where a discontinuous jump from
microscopically thin to thick adsorption films occurs and which can be observed
off of coexistence along path (2) in the homogeneous B-rich fluid phase. The loci
of these prewetting transitions define the prewetting line that leaves the coexistence
curve tangentially at Tw and ends in a critical prewetting point at Tcpw – see the
dashed line in Fig. 2.18. Along path (2) the distance to the coexistence curve is
measured by the difference in the chemical potential, ��, relative to �0 at coexis-
tence. Following �A.��/ along path (2) all the way to two phase coexistence, the
surface excess continuously increases and diverges at coexistence. This is denoted
a complete wetting transition. So, for Tw < T < Tc along the coexistence curve,
a macroscopically thick wetting film of the A-rich phase ˛ separates the ˇ phase
from the vapour phase – or the container wall with T 0

w. For an in depth presentation
and discussion of the theory of wetting transitions, reference is given to the review
article by Dietrich [2.131]. Wetting phenomena in nanofluidics have been treated
recently in a review by Rauscher and Dietrich [2.132]. A very recent review on
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Fig. 2.18 Schematic bulk phase diagram of a binary fluid mixture exhibiting a miscibility gap,
which is defined by the coexistence curve of phases ˛ and ˇ with an upper critical temperature
Tc (full line in the temperature–mole fraction plane). Included in this figure is the surface phase
diagram with a critical wetting transition at Tw and prewetting transitions along the prewetting
line (dashed line). Changes in the surface excess �A accompanying the distinct wetting transitions
along paths (1) and (2) are depicted in the figures to the right. See also [2.130]

wetting and spreading covering various fundamental aspects and applications, with
a high number of nearly 600 references, is that by Bonn et al. [2.133].

2.5.2 Molten Salts and Ionic Liquids

Various theoretical investigations have focused on the interfacial structure of molten
salts. Evans and coworkers have calculated the equilibrium density profile and sur-
face tension for the liquid/vapour interface within the restricted primitive model of
a molten alkali halide. In this model, the anions and cations are represented by hard
spheres of equal diameter and opposite charges. Using a square gradient approxi-
mation to calculate the free energy of the inhomogeneous charged fluid, they find
differences in the shape of the density profile in comparison with a Lennard–Jones
fluid, in particular, a sharper thickness of �R �R being the radius of hard spheres –
near the melting temperature. The theory gives a reasonable description of both the
magnitude and the temperature dependence of surface tensions of alkali halides and
other salts of nearly equal ionic radii [2.134,2.135]. A number of molecular dynam-
ics simulations of solid and liquid interfaces of salts have been performed by Heyes
et al. [2.136, 2.137]. Of particular interest are the results obtained for a liquid/rigid
wall and the corresponding electrified interface. A Born–Mayer–Huggins potential
was used to model the ionic interactions with parameters for KCl [2.136]. It is found
that close to and in a direction perpendicular to the wall there is substantial structural
ordering. Oscillations in the density profile indicate a tendency towards layering of
the ions near the liquid/wall interface; these oscillations die away rapidly towards



2.5 Interfacial Characteristics 37

Fig. 2.19 MD simulation of the ion density profile, �.z/, vertical to the electrified liquid/wall
interface of KCl at 1,075 K; (full line) corresponds to KC, (dashed line) to Cl�; densities are
relative to the bulk liquid value. The formation of alternating KC- and Cl�-rich layers is apparent.
Adapted with permission from [2.136]; reproduced by permission (2010) of The Royal Society of
Chemistry

the bulk. Similar effects are known from MD calculations of hard-sphere fluids
against a repulsive wall and are predicted by theory; see e.g. [2.138]. Applying an
electric field of �109 V m�1 perpendicular to the liquid KCl/wall (electrode) inter-
face, evidence is found of charge separation and ordering, whereby the oscillations
of charge densities now penetrate much further into the bulk – see also Fig. 2.19.
In relation to the double layer problem of electrified interfaces of ionic fluids, these
findings are of special importance. Finally, it must be noted that experimental inves-
tigations of the microscopic structure of the liquid/vapour interface of molten salts
such as alkali halides are still missing. Such experiments are complicated due to
the fact that alkali halides have a relatively high vapour pressure near their melting
point, which makes the use of ultrahigh vacuum techniques difficult.

Most metals – and other solid systems such as rare gases or ice – exhibit the
phenomenon of surface melting approaching the melting point from below Tm dur-
ing which the solid is wet by its own liquid – see e.g. [2.139]. It seems that this is
not the case in salts such as the alkali halides. Indications of partial wetting con-
nected with a contact angle of �48ı have been observed in an experiment of an
Ar bubble captured at a crystalline NaCl/melt interface [2.140]. In a recent theo-
retical study, this problem of incomplete wetting of alkali halide crystal surfaces
by their own melt at the triple point has been tackled by Tosatti and coworkers
[2.141]. Using classic Born–Mayer–Huggins–Fumi–Tosi two-body potentials, these
authors have performed extensive simulations for NaCl and have calculated the
solid/liquid, liquid/vapour and solid/vapour interfacial free energies. They could
show that NaCl(100) is a nonmelting surface with �sv < �sl C �lv. This behaviour
is explained by mainly three factors (1) Surface anharmonicities stabilize the solid
surface and thus reduce �sv; (2) A large density jump on melting causes bad liquid –
solid adhesion; (3) Incipient NaCl molecular correlations at the liquid/vapour inter-
face lead to a reduction of the surface entropy of liquid NaCl below that of solid
NaCl(100) and thus raise �lv. These are interesting predictions, waiting for an
independent experimental confirmation.
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The structure and composition of liquid/vapour or liquid/vacuum interfaces of
room temperature ionic liquids have been studied quite intensively in recent years.
In a first atomistic simulation of dimethylimidazolium chloride, Lynden-Bell found
indications of charge ordering and a region of enhanced density immediately below
the interface in which the cations are oriented with their planes perpendicular to the
surface [2.142]. Similar conclusions were drawn from a more recent MD simula-
tion study of ŒC4mim�ŒPF6� melts, where the butyl chains are observed to project
outside the liquid surface and the imidazolium ring plane is found to lie parallel
to the surface normal [2.143]. These findings have been supported by direct recoil
spectroscopy measurements [2.144] and also by sum frequency generation (SFG)
spectroscopy [2.145]. Seemingly conflicting propositions were derived from X-ray
reflectivity measurements where it was claimed that these data are not consistent
with a model in which the butyl chains protrude from the air/liquid interface [2.146].
However, this conflict could be solved unambiguously by a combined SFG and
X-ray reflectivity study of imidazolium-based ionic liquids with different anions
such as BF�

4 ; PF�
6 , and I� by Jeon et al. [2.147]. From a careful analysis of their

reflectivity data in conjunction with the SFG spectra, these authors give evidence
that the gas/liquid interface of these melts consists of a topmost layer of loosely
packed butyl chains, while the densely packed imidazolium cores and anions form
a layer in contact with the bulk liquid. Furthermore, the surface composition of
various 1,3-dialkyl-imidazolium ionic liquids was studied by X-ray photoelectron
spectroscopy [2.80]. Again, a clear enrichment of the alkyl chains at the outer sur-
face is found; it is further concluded that both anions and cationic head groups are
located approximately at the same distance from the outer surface [2.80].

It is known for a long time that charged walls in contact with an electrolyte
solution strongly affect the interfacial structures and properties. This was first
demonstrated by Langmuir in explaining the capillary rise of a dilute KCl solution
in a quartz or glass tubing [2.148]. This effect can also explain a strong enhancement
of the wetting film thickness at the molten KCl/sapphire interface due to charging
of Al2O3 and double layer formation at the interface [2.149]; see also Sect. 4.3.
The microscopic structure of an ionic liquid/charged wall interface has been elu-
cidated, for the first time experimentally, for an ionic liquid at a charged sapphire
(0001) surface [2.150]. This interface was probed by high energy X-ray reflectiv-
ity measurements spanning a momentum transfer range up to q D 1:4 Å

�1
. In

a temperature range from �15ıC up to 110ıC, three ionic liquids with different
cations and the common ŒFAP�� anion have been studied, where ŒFAP�� stands for
bis(pentafluoroethyl)trifluorophosphate. Charging of the Al2O3 surface was inde-
pendently measured with a Kelvin probe. One of the main observations is that
all reflectivity curves in the temperature range studied show a clear dip around
q0 � 0:8 Å

�1
. This is a strong indication of interfacial layering with a layer spac-

ing of d D 2�=q0 � 8Å comparable in size with the thickness of an anion–cation
double layer. A detailed analysis of the Fresnel-normalized reflectivity curves by
fits with different models of the interfacial electron density profiles yields a layer-
ing structure of alternating cation and anion strata, which decays exponentially into
the bulk with a decay length of �16 Å at the lowest temperature; see Fig. 2.20. In
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Fig. 2.20 Molecular layering in a fluorinated ionic liquid at a charged sapphire (0001) surface:
Electron densities obtained from the best fit of the X-ray reflectivity measurement for the ŒC4mpy�

[FAP]–Al2O3 interface at �15ıC; red and blue lines indicate cation and anion Gaussian distribu-
tions contributing to the respective partial electron density profiles; black line, total electron density
profile, grey bar, electron density of sapphire substrate without roughness. From [2.150], reprinted
with permission from the American Association for the Advancement of Science (2010)

conclusion, there is a close similarity in charge ordering at an electrified solid/liquid
interface between an ionic liquid and a molten salt such as KCl; see Fig. 2.19.

Electrocapillarity and electrowetting phenomena have attracted considerable
interest in recent years; see e.g. the review by Mugele and Baret [2.151]. Strong
motivations result from potential applications in lab-on-a chip devices or new kinds
of electronic displays. Electrowetting enables the manipulation of tiny amounts
of liquids on surfaces. The basic equation behind this is the Young–Lippmann
equation; see [2.151]:

cos ‚ D cos ‚0 C
�

C

2�lv

�
� U 2; (2.41)

which describes the variation of the contact angle ‚ of a liquid droplet of a conduct-
ing fluid on top of a thin dielectric film with capacitance C as a function of voltage U

applied across the droplet and film. The liquid/vapour surface tension of the droplet
is denoted by �lv. So far, electrowetting experiments have been mainly performed
with droplets of aqueous electrolyte solutions on polymer coated dielectric films
[2.151]. Only recently studies with ionic liquids have been reported [2.152–2.154].
Essentially, they exhibit the same electrowetting features of a parabolic dependence
of cos ‚ vs. U 2 as is observed in electrolyte solutions. However, at higher voltages –
	 50 V in ŒC4mim�ŒPF6� and ŒC4mim� ŒNTf2� melts on a 100 nm SiO2 �Si dielectric
substrate – decomposition of these ionic liquids sets in [2.79]. This is presumably
caused by an electric breakdown and a corresponding discharging. The decomposi-
tion has been observed by the formation of large bubbles under UHV conditions that
result from decomposition products such as HF. An example is given in Fig. 2.21.
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Fig. 2.21 Typical droplet shape of a ŒC4mim�ŒPF6� ionic liquid on a 100 nm thick SiO2Si substrate
with a contact line diameter of �2:60 mm at 298 K; (a) for an applied voltage below 50 V, (b) above
50 V where decomposition occurs indicated by small and large bubbles. These measurements have
been performed under UHV conditions. Adapted from [2.79]

Table 2.6 Interfacial free energies or surface tensions, �lv, and their temperature dependence at
the liquid/vapour interface of selected molten salts and ionic liquids near their respective melting
points

Compound �lv=mJ m�2 �@�lv=@T=mJ m�2 K�1

NaCl 1,138 (a) 0.07 (a)
KCl 98 (a) 0.07 (a)
BiCl3 73 (b) 0.139 (b)
ŒC4mim�ŒCl� 47.5 (c) 0.04 (c)
ŒC4mim�ŒCl��AlCl3 (1:1) 46.5(c) (300 K) 0.055 (c)
ŒC4mim�ŒPF6� 43.5 (d) 0.035 (d)
.a/ D [2.135], .b/ D [2.19], .c/ D [2.155], .d/ D [2.156]

In concluding this section, a selection of representative values of liquid/vapour
surface tensions of molten salts and ionic liquids at conditions near their respective
melting points is given in Table 2.6.
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2.125. H.M. Lu, Q. Jiang, J. Phys. Chem. B 109, 15463 (2005)
2.126. M.C. Desjonqueres, F. Cyrot-Lackmann, Surf. Sci. 50, 257 (1975)
2.127. D. Turnbull, Sol. State Phys. 3, 225 (1956)
2.128. R.M. Digilov, Physica. B 352, 53 (2004)
2.129. J.W. Cahn, J. Chem. Phys. 66, 3667 (1977)
2.130. W. Freyland, D. Nattland, Ber. Bunsenges Phys. Chem. 102, 1 (1998)
2.131. S. Dietrich, Wetting Phenomena. in Phase Transitions and Critical Phenomena, vol 12,

ed. by C.Domb, J.L. Lebowiz (Academic, London, 1988)
2.132. M. Rauscher, S. Dietrich, Wetting Phenomena in Nanofludics, in Annual Review of

Materials Research, vol 38, ed. by D.R. Clarke, M. Rühle, A.P. Tomsia (Annual Reviews,
Palo Alto, 2008)



44 2 Liquid Metals, Molten Salts, and Ionic Liquids: Some Basic Properties

2.133. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 81, 739 (2009)
2.134. M.M. Telo da Gama, R. Evans, T.J. Sluckin, Mol. Phys. 41, 1355 (1980)
2.135. R. Evans, T.J. Sluckin, Mol. Phys. 40, 413 (1980)
2.136. D.M. Heyes, J.H.R. Clarke, J. Chem. Soc. Faraday Trans. 77, 1089 (1981)
2.137. D.M. Heyes, Phys. Rev. B 30, 1282 (1984)
2.138. G. Navasmés, P. Tarazona, Mol. Phys. 37, 1077 (1979)
2.139. U. Tartaglino, T. Zykova-Timan, F. Ercolessi, E. Tossati, Phys. Rep. 411, 291 (2005)
2.140. G. Grange, B. Mutaftschiev, Surf. Sci. 47, 723 (1975)
2.141. T. Zykova-Timan, D. Ceresoli, U. Tartaglino, E. Tosatti, Phys. Rev. Lett. 94,

176105–1 (2005)
2.142. R.M. Lynden-Bell, Mol. Phys. 101, 2625 (2003)
2.143. B.L. Bhargava, S. Balasubramanian, J. Am. Chem. Soc. 128, 10073 (2006)
2.144. P.G. Law, P.R. Watson, A.I. Carmichael, K.R. Seddon, Phys. Chem. Chem. Phys. 3,

2879 (2001)
2.145. S. Rivera-Rubero, S. Baldelli, J. Am. Chem. Soc. 126, 11788 (2004)
2.146. E. Sloutskin, B.N. Ocko, L. Tamann, L. Kuzmenko, T. Gog, M. Deutsch, J. Am. Chem. Soc.

127, 7796 (2005)
2.147. Y. Jeon, J. Sung, W. Bru, D. Vaknin, Y. Ouchi, D. Kim, J. Phys. Chem. C. 112, 19649 (2008)
2.148. I. Langmuir, Science 88, 430 (1938)
2.149. S. Staroske, W. Freyland, D. Nattland, J. Chem. Phys. 115, 7669 (2001)
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