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1. Introduction

Various approaches have been taken to study the function of prion proteins.
Biochemical methods were applied to search for a binding partner of PrPC
which is attached to the cell surface by a glycosylphosphatidylinositol GPI
anchor (1). The glial fibrillary acidic protein was one of the first possible bind-
ing partners to be described (2) followed by Bcl-2 (3,4), molecular chaperones
(5), amyloid precursor-like protein 1 (6), the 37-kDa laminin receptor (7) and a
66-kDa membrane protein which has not been characterized in more detail (8).
However, it has not been possible to show any biological significance for PrP¢
binding of these proteins. Based on biochemical analyses of chicken PrPC,
Harris et al. (9) hypothesized that PrP€ may play a role in the regulation of the
expression of cholinergic receptors at the neuromuscular endplate.

Biochemical, morphological, and electrophysiological studies of the first
PrP gene (Prnp) knockout mouse (Prnp”® mouse), which was generated by
Biieler et al. (10), showed a regular expression of the acetylcholine receptor
(11). Except for changes in its circadian rhythm (12,13) and increased sensitiv-
ity to seizures (14), this Prnp”°® mouse showed no developmental or behavioral
changes (10). These findings were confirmed in studies of another Prnp?° line
generated by Manson et al. (15). The lack of severe defects in these two lines
of Prnp®? mice was ascribed to adaptation, because PrP¢ was absent through-
out embryogenesis. However, transgenic mice expressing inducible PrPC-
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transgenes that were rendered PrPC-deficient as adults by administration of
doxycycline have remained healthy for more than 1.5 yr (16). A third Prnp®°
mouse generated by Sakaguchi et al. (17) showed progressive ataxia and loss
of Purkinje cells in mice aged more than 70 wk. Also, a fourth independently
generated Prnp®”® mouse (18,19) exhibits ataxia and Purkinje cell degenera-
tion. Weissmann (20) suggested that additional deletions of intronic sequences
of Prnp may play a role in this knockout line. Most recently the upregulation of
a novel PrPC-like protein, designated Doppel, whose gene is located 16 kb
downstream of the mouse PrP, has been speculated to be the cause of Purkinje
cell degeneration observed in two of the Prnp”® mouse lines (21). Even though
the hypothesis of the interaction of prion proteins with cholinergic receptors
thus could not be confirmed, the studies of Harris et al. (9) indicated that PrP€
is enriched at the neuromuscular end-plate, i.e. at synaptic endings. Indeed
immunohistochemistry of PrPC-overexpressing transgenic mice reveal a syn-
aptic expression pattern of PrP¢ (22,23). PrPC is predominantly expressed in
regions of high synaptic density, such as the inner and outer plexiform layer of
the retina or the cerebellar molecular layer (Fig. 1), in contrast to earlier studies
in which a predominantly somatic expression of PrPC was described (24-26).
Further evidence for a preferentially synaptic location of the prion protein in
the central nervous system was shown in immunoelectron microscopic studies
by Fournier et al. (27) and Sales et al. (28). Electron microscopic evidence for
a synaptic location of PrP€ has proven very difficult, however. Thus, it was
necessary to use embedding techniques leading to destruction of cell mem-
branes. As a consequence, the electron microscopic evidence for PrP€ location
in synaptic vesicles has been disputed. Biochemical studies showed that the
prion protein is located predominantly in the synaptic plasma membrane (23)
and, to a lesser extent, in the synaptic vesicle fraction. Fig. 2 shows a Western
blot analysis of PrPC expression in various synaptic fractions. The enrichment
of PrPC in the synaptic plasma membrane fraction is evident (Fig. 2A, lane 4).

2. Electrophysiological Studies

Electrophysiological studies in Prnp”° mice have been used to identify the
function of PrP€ in neurons. Collinge et al. (29) were the first to describe a
change in long-term potentiation (LTP), i.e., a change of synaptic transmission
after repetitive stimulation in the Prnp”® mouse generated by Biieler et al. (10).
This finding was confirmed in a second Prnp”® mouse generated by Manson et
al. (30). However, Lledo et al. (31) did not observe LTP changes.

In addition, Collinge et al. (29) found altered kinetics of the inhibitory
postsynaptic currents (IPSCs), i.e., a prolongation of the rise time of GABA
receptor-mediated IPSCs in hippocampal neurons of Prnp”® mice. The authors
argue that this may be caused by changes in the GABA, receptor on the
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Fig. 1. Synaptic expression pattern of PrP€ in PrP-overexpressing transgenic mice.
Laser scanning confocal images of PrPc expression in the retina and cerebellar cortex
of PrPC-overexpressing mice. Expression of PrPC (A) and synaptophysin (B) in Tg20
retina. PrPC is strongly expressed in the inner and outer plexiform layer, similar to
synaptophysin. PrPC expression in Tg35 (C) and Tg20 (D) cerebellar cortex. Strong
PrPC expression was observed in the molecular and granule cell layers in both
transgenic mouse lines. However PrPC expression in Purkinje cells was only observed
in Tg35 (C).

postsynaptic membrane since a decrease of the amplitude of stimulated inhibi-
tory postsynaptic currents and a shift of the reverse potential of GABA , recep-
tor-mediated chloride currents were also observed. Lledo et al. (31) did not
confirm this finding for hippocampal neurons of the same knockout line. Also,
a more detailed analysis of the kinetics of GABA ,-induced currents in outside-
out patches from cerebellar Purkinje cells of Prnp”° mice did not reveal sig-
nificant deviations from control cells (32). Moreover, studies on the kinetics of
spontaneous inhibitory postsynaptic currents (SIPSCs) in cerebellar Purkinje
cells of Prnp”° mice initially showed significant differences between the rise
time of wild-type and that of Prnp®® Purkinje cells (32). Further experiments
with Purkinje cells of younger animals, with a better voltage clamp (and conse-
quently a more exact estimation of the rise time [33]) showed a significant
increase in the rise time, from 1.9 ms in wild-type to 2.81 ms in Prnp”° mouse
Purkinje cells (Fig. 3D; P = 0.001). No differences were found in the decay
time (Fig. 3E). Evidence for the hypothesis that the increased rise time is
caused by loss of the PrPC was found in studies on the rise time in Prnp”° mice
that were Prnp reconstituted (Fig. 3D; Tg35; [34]). The IPSC rise time in
Purkinje cells of these animals corresponds to the rise time in wildtype ani-
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Fig. 2. Enrichment of PrP€ in the synaptic plasma membrane fraction. Preparations
of the synaptic plasma membrane fraction and synaptic vesicle fractions from synap-
tosomes (54). Equal amounts (100 wg/per lane) of brain homogenate and various sub-
cellular fractions from wild-type (lane 1-4), Prnp”° (lane 6), and Tg35 (lane 7) mice
were investigated in Western blots. The monoclonal antibody 3B5 (A); hybridoma
supernatant 1:50) (55) was used to identify PrPC. A polyclonal antiserum (1:2000) was
used to identify the synaptic vesicle protein synaptotagmin (B) (56). The N-methyl-
D-aspartate (NMDA) receptor subunit, R1, was shown using the monoclonal anti-
body, Akp (C); (1:2000) (55,57). Subcellular fractions are designated as follows: lane
1, WT homogenate; lane 2, WT crude synaptic vesicle fraction; lane 3, WT cytosolic
synaptic fraction; lane 4, WT synaptic plasma membrane fraction; lane 5, mol w. stan-
dards; lane 5 synaptic plasma membrane fraction from Prnp”® mouse brains. An
enrichment of PrPC (A) is noted in the synaptic plasma membrane fraction of wild-
type mouse (lane 4), in analogy to the subunit R1 of the NMDA receptor in lane 4 (C).
In contrast to synaptotagmin, a protein that is predominantly localized to the mem-
branes of synaptic vesicles, PrPC is not enriched in the synaptic vesicle fraction (lane 2),
although it may be found in this location in low concentration.

mals. To clarify the question of whether the increase in rise time in Prnp®©
mice is caused by the loss of PrPC expression in the presynapse or postsynapse,
an additional Tg line, which expresses PrP¢ only at the presynapse (Tg20) (34)
was examined. In this line, rise times corresponding to the wildtype were found
(Fig. 3D). Thus, it appears that the loss of the presynaptic PrP¢ expression at
the inhibitory synapse is responsible for the prolongation of the rise time of
inhibitory postsynaptic currents in Prnp®? mice.

Independent of the findings at inhibitory synapses, Colling et al. (35)
described an additional electrophysiological phenotype in Prnp”® mice, i. e. a
disturbance of the late afterhyperpolarization current, I,yp. This current is
involved in action potential repolarization and therefore influences the fre-
quency of action potentials. Colling et al. (35) reasoned that the disturbed I ,yp
in Prnp”° mice is caused by a decreased conductance of calcium-activated
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Fig. 3. Presynaptic PrP€ expression modulates the kinetics of inhibitory postsynap-
tic currents (IPSC). (A), Spontaneous IPSCs from a Purkinje cell of a 10-d-old wild-
type mouse using the patch-clamp technique, as described (32) (B), Using the effect of
10 uM bicucullin, a y-aminobutyric acid A (GABA 4, receptor blocker, it is shown that
the synaptic currents are inhibitory GABA , receptor-mediated conductances. (C), rise
time and decay time in wildtype IPSCs. During rise time, there is a linear increase of
GABA , receptor-mediated current from 10 to 90% of the maximum (gray line a). The
decay time (t) is calculated from the kinetics of an exponential function (gray line b)
that shows the best fit to the actual decay of the current. (D), Rise time in WT, Prnp®?,
Tg20, and Tg35. Shown is the mean of results from each of 10 measurements in
Purkinje cells of 9-12d-o0ld animals. Each point corresponds to the rise time of inhibi-
tory postsynaptic currents of a Purkinje cell (mean of the rise time of 20 consecutive
IPSCs for each cell). The mean of all measurements is shown as black line. The IPSC
rise time is significantly prolonged in Prnp®® mice compared to wild-type mice (p = 0.001,
t-test according to Welch). No significant differences were found among the rise times
of wild-type, Tg20, and Tg35 cells. (E), Means of the decay time of IPSCs in wildtype,
Prnp®?, Tg20 and Tg35. There are no differences among these mouse lines.

potassium channels, which may be related to a disturbed intracellular calcium
homeostasis. This concept is based on findings by Whatley et al. (36) that indi-
cated an effect of recombinant PrPC on the intracellular calcium concentration
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Fig. 4. Copper concentration in synaptosomes correlates with PrP€ expression. The
copper concentrations in whole-brain homogenates and synaptosomal fractions from
wild-type (open columns), Prnp®® (black columns), and Tg20 (gray columns) mice
were studied by atomic absorption spectroscopy. Shown are the mean and SE of the arith-
metic mean of 3—7 preparations from each of five brains of age-matched (2 + 0.4 mo)
female animals of various lines. The copper concentration related to protein concen-
tration in whole-brain homogenates shows no significant differences among wild-type,
Prnp”° and Tg20 mice, but the synaptosomal fraction shows a significant reduction of
copper in Prnp®® mice compared to wildtype and Tg20 mice (p = 0.03; z-test).

in synaptosomes. Indeed, a study of calcium-activated potassium currents in
Purkinje cells of Prnp”® mice showed a reduced amplitude of these currents
(Herms et al., in preparation). Further investigations of transgenic animals
which were Prnp reconstituted on the Prnp?? background (Tg35, Tg20) showed
that loss of PrP€ expression in Purkinje cells is responsible for this finding (37).
Thus, a reconstitution of the amplitude of calcium-activated potassium conduc-
tances was observed in a transgenic line that shows overexpression of PrPC in
all neurons (Tg35), whereas a transgenic line that overexpresses PrPC in all
neurons but Purkinje cells, showed no reconstitution of the amplitude. The sub-
sequent microfluorometric investigation of the intracellular calcium homeosta-
sis in Prnp®® mice confirmed that the reduction of calcium-activated potassium
currents is probably caused by reduced calcium release from intracellular cal-
cium-sensitive calcium stores (37) (Herms et al., in preparation).

3. The Role of Copper

The cause of the observed electrophysiological alterations in Prnp”° mice is
not yet known. They may be related to the decreased copper concentration in
synaptic membranes of Prnp”° mice (Fig. 4; [23]). The N-terminus of PrPC has
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a highly conserved octapeptide repeat sequence (PHGGGWGQ) x4 (38), whose
possible copper-binding properties were first shown by Hornshaw et al. (39,40)
and later by Miura et al. (41). The recombinant N-terminus of PrP€ from amino
acid 23 to 98 (PrP 23-98) shows a cooperative binding of 5-6 copper ions (42).
Half-maximal cooperative copper binding of PrP23-98 is in the micromolar
range (5.9 uM). Further investigations, using synthetic octapeptides (43) con-
firmed cooperative copper binding by PrPC.

The significant decrease of synaptosomal copper concentration in Prnp
mouse synaptosomes (Fig. 4) may be caused by a decreased reuptake of copper
released into the synaptic cleft during synaptic vesicle release, since the differ-
ence in the synaptosomal copper concentration between Prnp”® mice and
wildtype mice seems to be too large to be explained solely by the loss of cop-
per bound to PrP€. In addition, one would then also expect differences in the
copper concentration of the crude homogenate in wildtype, Tg20 and Prnp®°
mice (Fig. 4). The findings may therefore be explained by a dysregulation of
the copper concentration in the brains of Prnp®® mice caused by loss of PrPC.

In addition to the decreased synaptosomal copper concentration, a number
of further changes were observed that indicated a biological function of copper
binding by PrPC. Thus, significant differences between Prnp”® mice and
wildtype mice were found in inhibitory synaptic transmission in the presence
of copper (42). The application of copper elicited a significant reduction of the
mean amplitude of spontaneous inhibitory postsynaptic GABA , receptor-
mediated currents in Purkinje cells of Prnp®? mice at a concentration of 2 uM
Cu?*, whereas this concentration showed no effect on the IPSCs of the wildtype
mice. Because it is well known that the GABA , receptor is functionally dis-
turbed at a concentration of copper in the range of 1 uM (44), this finding
indicates that differences between Prnp?° and wildtype mice may be caused by
missing copper buffering in the synaptic cleft by PrPC.

It is difficult to verify whether the loss of PrPC indeed leads to a reduction of
the amount of copper located at the synaptic plasma membrane in intact syn-
apses because direct synaptic measurements in vivo are not possible at present.
We used an indirect approach to assess the problem of copper binding at the
synapse, by studying the effect of hydrogen peroxide on inhibitory synaptic
transmission (23). H,0, is known to alter the probability of synaptic vesicle
release by reacting with metal ions, particularly iron and copper at the
presynapse, by increasing the presynaptic calcium concentration. By perform-
ing patch-clamp measurements on cerebellar slice preparations of wildtype,
Prnp®° and PrPC reconstituted transgenic mice, we observed the effect of 0.01%
H,O, on the frequency of spontaneous IPSCs in Purkinje cells correlate with
the amount of PrP€ expressed in the presynaptic neuron (Fig. 5). This indicates
that the amount of copper at the synapse may indeed be PrPC-related.

0/0
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Fig. 5. Enhancement of inhibitory synaptic activity by hydrogen peroxide is related
to the amount of PrPC at the presynaptic plasma membrane. Effect of 0.01% H,0, on
the frequency of inhibitory postsynaptic currents in the different mouse lines. Each
point represents the mean + SEM sIPSC frequency in 1-min intervals normalized to
the values before H,0, application of wild-type (n= 14), Prnp”® (n=21), Tg35
(n=15) and Tg20 (n =4) mouse Purkinje cells. The bar indicates the time during
which H,O, was applied. The application of H,O, led to a marked enhancement of
synaptic activity in wild-type mice, there is no comparable effect in Prnp®® mice. In
transgenic mice that overexpress PrP¢ on a Prnp”® background in all neurons
(Tg35), the sIPSC frequency increase after H,O, application is rescued. Also, PrP¢-
reconstituted mice, which express PrP€ in cerebellar interneurons, but not in Purkinje
cells (Tg20), show a rescue, indicating that the presynaptic PrP¢ expression is impor-
tant for the rescue of the H,0, effect on IPSC frequency.

It remains to be shown whether buffering of copper released during synaptic
vesicle release, which prevents or minimizes unspecific binding of copper to
other proteins, is the primary function of PrP€ (Fig. 6). Alternatively, the bind-
ing of copper to PrPC¢ may primarily serve the reuptake of copper into the
presynapse by endocytosis of PrPC (45,46) or may be of structural importance
for the N-terminus of PrPC (47).

The hypothesis of a functional re-uptake of copper in the synaptic cleft by
the prion protein (Fig. 6) may explain electrophysiological findings in Prnp®©
mice, which, on first glance, seem contradictory. A slight increase of extracel-
lular copper concentration, caused by decreased or missing copper buffering in
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Fig. 6. Hypothetical model showing a possible function of copper binding by PrP¢
at the synaptic plasma membrane. The prion protein is attached to the presynaptic
plasma membrane (1) (23), where its N-terminal moiety (2) binds free copper that is
released into the synaptic cleft with synaptic vesicle release (3) (58,59). There is an
endocytotic uptake of PrP€ into the presynapse (4) (45,46) where PrPC-bound copper
is released, possibly induced by endosomal pH changes (5) (43). Thus PrP€ serves to
keep the copper concentration in the presynaptic cytosol and the synaptic cleft con-
stant despite copper losses during synaptic vesicle release (3).

the synaptic cleft in Prnp®® mice, may cause a decrease in the conductance of

voltage-activated calcium channels and a change in the kinetics of the GABA 4
receptor. Thus, the conductance of the GABA , receptor and voltage-activated
calcium channels, which modulate intracellular calcium homeostasis is clearly
disturbed by copper concentrations of 1-10 uM (44,48). This would explain
the alteration of the intracellular calcium homeostasis in Prnp®”® mice, changes
in the conductance of calcium-related ion currents, and changes in GABA,
receptor-related inhibitory postsynaptic currents observed under certain condi-
tions. Reduced LTP in Prnp®® mice may be explained by this hypothesis, as
well. As shown by Doreulee et al. (49), LTP is blocked by concentrations of
free copper as low as 1 uM. Changes in the circadian rhythm observed by
Tobler et al. (12,13) in Prnp”° mice could be related to a disturbed copper
uptake and a decreased activity of copper-dependent enzymes, since the syn-
thesis of melatonin, which is important in the regulation of circadian rhythms
(50), is regulated by the copper-dependent enzyme monamine oxidase (51).
Also, the activity of two other copper-dependent enzymes, the Cu/Zn superox-
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ide dismutase and the glutathione reductase have been found to be altered in
PrP%0 mice (52,53).

4. Conclusion

In summary, our studies have shown that PrP¢ binds copper cooperatively
and with high affinity. In the brain highest concentrations of PrP¢ are found at
synapses. Synaptosomes of Prnp”® mice demonstrate a strong reduction of cop-
per concentration. Copper binding by PrPC in the synaptic cleft has a significant
influence on synaptic transmission. It remains to be shown whether additional
phenotypes observed in Prnp”°® mice result from decreased copper binding or
from a disturbance of copper distribution in the absence of PrPC.
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