
Preface

Computers are gaining more and more control over systems that we use or rely
on in our daily lives. Besides the visible appearance of computers, for example
in the form of PCs at home or at work, booking terminals in travel agencies,
or automatic teller machines in banks, there is a growing demand for comput-
ers as invisible parts of systems in order to control their proper functioning.
For example, computers inside washing machines or central heating systems
should help in saving energy in our homes. Computer-controlled airbags in cars
and automatic pilots in airplanes should bring more safety to the passengers.
Computerised signalling systems should guarantee safe and efficient operation
of railway traffic. Computer-operated telecommunication networks should bring
individual services to their customers.

But despite all these successes of computer applications, the question is how
much can we really rely on these systems ? Every now and then we read about
failures of computerised systems. It may only be annoying if the PC does not
work as expected. More serious is a breakdown of a railway signalling system
or an unwanted explosion of an airbag. Here the question of correctness of the
system, of its software and hardware arises. In other words: does the computer
system behave according to expectations and requirements ?

This question is a challenge to software engineers and computer scientists:
they need to understand the foundations of programming, need to understand
how different formal theories are linked together, how compilers correctly trans-
late high-level programs into machine code, why optimisations performed are
justifiable. They need the intellectual power to understand all these aspects
together in the framework of a suitable methodology for designing correct com-
puterised systems. These are the questions this book is about.

The concern about correctness goes in fact back to the origins of computer
programming. Already in 1949 Alan M. Turing posed in a conference paper
entitled “On Checking a Large Routine” 1 the question: “How can one check a
routine in the sense of making sure that it is right ?” and went on to answer that
“... the programmer should make a number of definite assertions which can be
checked individually, and from which the correctness of the whole programme
easily follows.” In modern terminology, Turing proposes the “inductive assertion
method” to prove program correctness, but the “large routine” considered in the
report is in fact quite small: a flow chart program for computing the square root.

Where are we today, 50 years after Turing’s pioneering paper ? What is our
current understanding of programming methodology, what has been achieved in
automatic correctness proofs, how far are we with the production of correct com-
pilers, what application domains of industrial relevance can be handled today ?
To answer these questions we invited 15 researchers to help us by explaining their
current understanding and contributions to the issue of correct system design.
1 A.M. Turing. On Checking a Large Routine. Report of a Conference on High Speed

Automatic Calculating Machines, Univ. Math. Laboratory, Cambridge, pages 67–
69, 1949. (See also: F.L. Morris and C.B. Jones, An Early Program Proof by Alan
Turing , Annals of the History of Computing 6, pages 139–143, 1984.)



VI Preface

A Book Dedicated to Hans Langmaack

How did we select the authors ? We took the opportunity of Prof. Dr. Dr. h.c. Hans
Langmaack’s retirement from his professorship at the University of Kiel on Oc-
tober 1st, 1999, in order to present the area closest to his heart from a personal
perspective. The contributors are on the one hand prominent scientists who had
or have some close scientific contacts with Langmaack and on the other hand
some of his former students who directly contributed to the area of correct sys-
tem design.

Hans Langmaack studied mathematics, physics, and logic at the Universities
of Münster and Freiburg. After receiving his doctorate in mathematics he became
the assistant of Klaus Samelson, who together with Friedrich L. Bauer, is one
of the German pioneers in the area of computer science in general and compiler
construction in particular. The assistantship brought Langmaack to the Univer-
sity of Mainz and the Technical University of Munich where he worked on the
topics of programming languages, compiler construction and formal languages.
This is where contacts to Gerhard Goos and David Gries were established. Lang-
maack wrote one of the first compilers for the programming language ALGOL
60. After a visiting assistant professorship at Purdue University, Lafayette, Indi-
ana, he took positions as a full professor of computer science at the Universities
of Saarbrücken and Kiel.

Hans Langmaack’s scientific interest is motivated by his work on compilers
and his pursuit of correctness. Among others, he investigated the procedure con-
cept of ALGOL 60 and ALGOL 68, where procedures are allowed as untyped
and typed parameters, and formalised the semantics of procedures in a partly
operational style in terms of a copy rule. This formalisation allowed him to at-
tack and solve decidability questions of so-called “formal” run time properties of
ALGOL-like programs, i.e. where the data are left uninterpreted. These questions
concerned the formal reachability of procedures, their formally correct param-
eter transmission, and the formal “most-recent” property. The last property is
concerned with an error occurring in an implementation of recursive procedures
by Edsger W. Dijkstra.2 A major achievement was the decidability proof of the
formal reachability of procedures within ALGOL 68 programs, which are typed
in the sense of the Lambda calculus.

Due to Edmund M. Clarke’s investigations on obtaining sound and relatively
complete Hoare-like proof systems for programming languages with an ALGOL-
like procedure concept, Langmaack’s interest turned to the issue of program
correctness in the sense of Hoare. This is where contacts to Krzysztof R. Apt
came about. Very interestingly, it turned out that essentially the same proof
techniques that had been used to prove the decidability or undecidability of for-
mal procedure properties could also be applied to show the presence or absence
of sound and relatively complete Hoare-like proof systems for programming lan-
guages with ALGOL-like procedures. This topic was pursued further by Werner
Damm, Ernst-Rüdiger Olderog and Hardi Hungar.

2 A minimal program violating the ”most recent” property is shown on the cover.



Preface VII

Besides his theoretical investigations Hans Langmaack has always been in-
volved in practical compiler projects. These projects were conducted in cooper-
ation with industrial partners. A major concern of these projects was to lift the
level of specification of the compiling function. Due to contact with and visits by
Dines Bjørner, VDM was used as a specification technique. Work on optimisa-
tion techniques and their scientific foundation also started from these practical
projects. This topic, comprising abstract interpretation and data flow analysis,
was pursued further by Bernhard Steffen, Jens Knoop and Oliver Rüthing, and,
focussing on functional and parallel languages, by Flemming Nielson, who, on
the initiative of Hans Langmaack, was guest professor at the University of Kiel
in 1992.

A major activity was the European basic research project ProCoS (Provably
Correct Systems) founded by Tony Hoare, Dines Bjørner and Hans Langmaack.
The project was conceived by Hoare in reaction to the so-called “CLInc stack”, a
multi-level verification task solved by Robert S. Boyer and J S. Moore. It defined
the so-called “ProCoS tower” of language levels and was concerned with the
correct links between these levels. In this project Hans Langmaack’s group was
responsible for correct compilers from an OCCAM-like programming language
to transputer machine code. Martin Fränzle and Markus Müller-Olm earned
their first scientific merits in this project. Anders P. Ravn and Hans Rischel at
Lyngby, and Ernst-Rüdiger Olderog at Oldenburg also participated in ProCoS.
The work of Langmaack’s group on compiler correctness in the ProCoS project is
currently continued in the project Verifix conducted by Gerhard Goos, Friedrich
von Henke and Hans Langmaack.

Links to local companies in Kiel established contacts to Jan Peleska, who was
rigorously applying formal methods in industry. Amir Pnueli brought “Turing
power” to international meetings in Schleswig-Holstein.

Hans Langmaack has also been successful as a teacher and advisor to many
students. About 170 students graduated with a Diplom (MSc) from his reseach
group, 22 completed a doctoral dissertation (PhD) under his supervison and 5
finished the habilitation procedure to qualify for a professorship with his guid-
ance. Being among his students, we have closely experienced his continuous
engagement for the topic of “Correct System Design”, in research, education
and unforgettable grill parties. Here, Bengt Jonsson, who regularly visited Kiel,
revealed unexpected talents, as an interpreter for both a Russian visitor and for
Chopin at the piano.

Structure of this Book

This book consists of 17 chapters describing recent insights and advances in Cor-
rect System Design. They are grouped together under the five topics of method-
ology, programming, automation, compilation and application.

Methodology. Tony Hoare discusses in his paper “Theories of Programming:
Top-Down and Bottom-Up and Meeting in the Middle” complementary approaches
to describing the behaviour of programs. The top-down approach starts from a



VIII Preface

specification of the desired behaviour; the bottom-up approach from a collec-
tion of realisable components. A complete theory of programming will combine
both approaches. Throughout the presentation Hoare stresses the advantages of
algebraic laws in conveying the essence of both approaches.

Dines Bjørner illustrates in his chapter “A Triptych Software Development
Paradigm: Domain, Requirements and Software” his view of software engineer-
ing by describing a three-step approach to rigorous software development. The
approach comprises descriptions of the application domain, the requirements,
and the software architecture. It is exemplified in terms of a decision support
software for sustainable development.

Anders P. Ravn and Hans Rischel summarise in their chapter “Real-Time
Constraints Through the ProCoS Layers” the results of the European research
project ProCoS in which the Universities of Oxford, Lyngby, Kiel and Olden-
burg collaborated. They concentrate on the main achievements of ProCoS in the
area of real-time systems: the correct link between different layers of formal de-
scription ranging from requirements capture, through design and programming,
down to machine code generation.

David Gries looks in his chapter “Monotonicity in Calculational Proofs” at
logic formulae as a basic formalism for specifying systems. He is interested in a
specific aspect that is of importance in the calculational manipulation of logic for-
mulae: the monotonicity of positions where substitutions of formulae for variables
are applied, and he presents a suitable metatheorem concerning monotonicity.

Programming. Krzysztof R. Apt and Andrea Schaerf explain in their chapter
“The Alma Project, or How First-Order Logic Can Help Us in Imperative Pro-
gramming” how a given imperative programming language like Modula-2 can be
extended by concepts from the logic programming paradigm in order to raise
the level of abstraction. As a result executable specification statements allowing
bounded quantifiers can be formulated in the extended language. This leads to
surprisingly clear and short programs.

Flemming Nielson and Hanne Riis Nielson show in their chapter “Type and
Effect Systems” how static inference techniques can be used to ensure that the
dynamic behaviour of a program satisfies the specification. To this end, the
basic type information is extended by suitable annotations to express further
intensional or extensional properties of the semantics of the program.

Automation. J S. Moore describes in his chapter “Proving Theorems about
Java-Like Byte Code” how correctness theorems about Java programs compiled
into code for a toy version of the Java Virtual Machine can be proved mechan-
ically. The basis for this work is the mechanized logic ACL2 (A Computational
Logic for Applicative Common Lisp) developed by Boyer and Moore.

Armin Biere, Edmund M. Clarke and Yunshan Zhu present in their chapter
“Multiple State and Single State Tableaux for Combining Local and Global Model
Checking” a new algorithm for the automatic verification of reactive systems
specified in linear temporal logic. It combines the advantages of local and explicit
state model checking with those of global and symbolic model checking.



Preface IX

Parosh A. Abdulla and Bengt Jonsson consider in their chapter “On the
Existence of Network Invariants for Verifying Parametrized Systems” infinite
classes of finite state systems consisting of an unbounded number of similar
processes specified by a parametrised system. The aim is an inductive correctness
proof of such systems using the notion of a network invariant. The paper presents
sufficient conditions under which a finite-state network invariant exists.

Compilation. Gerhard Goos and Wolf Zimmermann report in their chapter
“Verification of Compilers” on the results of a joint research project of the Uni-
versities of Karlsruhe, Kiel and Ulm. They discuss a suitable notion of correctness
for compilers and how it can be verified exploiting the traditional compiler archi-
tectures involving certain intermediate languages. A main achievement is the use
of program checking for replacing large parts of compiler verification by the sim-
pler task of verifying program checkers. As semantic basis for the programming
language abstract state machines are used.

Amir Pnueli, Ofer Shtrichman and Michael Siegel present in their chapter
“Translation Validation: From Signal to C” an alternative approach to compiler
verification where each run of a compiler is considered individually and followed
by a validation phase. This phase verifies that the target code produced on this
run correctly implements the submitted source program. The authors address
the practicality of this approach for an optimising, industrial code generator
from Signal to C.

Martin Fränzle and Markus Müller-Olm provide in their chapter “Compi-
lation and Synthesis for Real-Time Embedded Controllers” an overview of two
constructive approaches for the generation of hard real-time code from abstract
specifications. The first approach starts from a real-time imperative program-
ming language and pursues an incremental code generation. The second approach
starts from formulae in a real-time logic and pursues a synthesis approach.

Jens Knoop and Oliver Rüthing investigate in their chapter “Optimization
Under the Perspective of Soundness, Completeness, and Reusability” the code
optimization technique PRE (partical redundancy elimination) in various pro-
gramming paradigms: imperative, parallel, and object-oriented. For each of these
paradigms the authors analyse whether PRE is sound (i.e. admissible) and com-
plete (i.e. optimal).

Application. Tom Bienmüller, Jürgen Bohn, Henning Brinkmann, Udo Brock-
meyer, Werner Damm, Hardi Hungar and Peter Jansen describe in their chapter
“Verification of Automotive Control Units” the application of automatic verifi-
cation (model-checking) tools to specification models of electronic control units
for automotive applications. The approach is based on the use of the design tool
Statemate for dealing with the discrete part of the models. For dealing with
values ranging over continuous domains, the authors also present a new tech-
nique of first-order model-checking. The approach has been successfully applied
in cooperation with the car manufacturer BMW.

Ernst-Rüdiger Olderog shows in his chapter “Correct Real-Time Software for
Programmable Logic Controllers” how ideas from the theory of real-time systems



X Preface

can be applied to an area from industrial practice: the design of railway signalling
systems to be implemented on PLCs (programmable logic controllers). The pro-
posed approach comprises the levels of requirements, design specifications and
programs for PLCs. Correctness between these levels is achieved on the basis of
a real-time logic.

Jan Peleska and Bettina Buth summarise in their chapter “Formal Methods
for the International Space Station ISS” the results and experiences obtained
in a project in collaboration with DaimlerChrysler Aerospace. The aim of this
project was to check a number of correctness requirements for a fault-tolerant
computer to be used in the International Space Station ISS. To this end, a com-
bination of formal verification, simulation and testing was applied. The formal
verifcation relied on the careful use of Hoare’s theory CSP (communicating se-
quential processes) and its associated model checker FDR.

Bernhard Steffen and Tiziana Margaria explain in their chapter “MetaFrame
in Practice: Design of Intelligent Network Services” how concepts from the the-
ory of reactive systems, temporal logics, and model-checking can be applied to
the area of intelligent networks. The problem considered is how to assist program-
mers in the correct design of new telecommunication services for customers. The
approach, on the basis of the MetaFrame environment, led to a product that has
been adopted, bought, and marketed by Siemens Nixdorf Informationssysteme
AG.

Acknowledgements

In the first stages of the book project Krzysztof R. Apt and David Gries were
helpful. Alfred Hofmann from Springer-Verlag was supportive from the very
first moment. Annemarie Langmaack kindly helped us to obtain a photograph
of Hans Langmaack. We are particularly grateful to Claudia Herbers for her
devoted support in the production of this book. Last but not least all contacted
authors were very easy to motivate to contribute and in the end kept their
promise. They also helped in the mutual refereeing process of the contributed
papers.

Oldenburg and Dortmund E.-R. Olderog and B. Steffen
July 1999



Prof. Dr. Dr. h.c. Hans Langmaack
Foto: Foto-Renard, Kiel


